JPH0560521A - Water screen sensor for printing plate of printer - Google Patents

Water screen sensor for printing plate of printer

Info

Publication number
JPH0560521A
JPH0560521A JP4009287A JP928792A JPH0560521A JP H0560521 A JPH0560521 A JP H0560521A JP 4009287 A JP4009287 A JP 4009287A JP 928792 A JP928792 A JP 928792A JP H0560521 A JPH0560521 A JP H0560521A
Authority
JP
Japan
Prior art keywords
wave
polarized
light
waves
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4009287A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hamamoto
芳孝 濱本
Makoto Shimoyama
誠 下山
Ikuo Ozaki
郁夫 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPH0560521A publication Critical patent/JPH0560521A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable high-speed sampling to be performed for a zone having a small measurement area such as a water scale division by using a semiconductor laser beam as an illuminant. CONSTITUTION:Linearly polarized light 2 from a semiconductor laser 1 is converted to circularly polarized light 21 via a collimator 3 and a 1/4 wavelength plate 4. The circularly polarized light 21 passes a beam displacing prism 22, and becomes parallel laser beams 26 and 27 with optical axes relatively displaced for P- and S-polarized light. The laser beam 26 and 27 collides with the surface of a printing plate 6, and the quantity of regular reflected light for both P- and S-waves is branched into a half with a half-mirror 23, and separated into the light receiving side of the P-polarized light wave 26 and the light receiving side of the S-polarized light wave 27. Light receiving constitution for the P-wave interrupts the S-wave and, therefore, the voltage signal 31 of a P-wave component is obtained by a receiver lens 24 and a laser detecting element 25. Light receiving constitution for the S-wave also interrupts the P-wave and permit the passage of only the S-wave. The voltage signal 32 of a S-wave component is obtained by a receiver lens 7 and a laser detecting element 8. Also, the voltage signals 31 and 32 are calculated from the voltage signals of the P- and S-waves by a signal processor 9, thereby calculating the thickness of a water screen on the plate 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は印刷機械、製鉄機械等に
適用される水膜センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water film sensor applied to printing machines, iron making machines and the like.

【0002】[0002]

【従来の技術】従来装置を図8について説明する。印刷
機械(インキ・水ローラ群10,11,12等及び版・
各種胴で構成)では、版面6上の水膜状態で印刷品質が
左右される。図8はこの水を検出する装置の構成図であ
る。赤外発光体15から発光された赤外線を赤外集光レ
ンズ16で集光して、チョッパ17上の干渉フィルタ3
3,34に透過させ、参照波長光・水の吸収波長光を交
互に選択する。この光を光導管18で導き、版6上の水
で光を吸収させた後、透過・反射した光をレシーバレン
ズ19、検出素子20で信号変換する。また干渉フィル
タ33,34の位置検出器31で、素子20の信号を認
識する。9は検出素子20の信号及び位置検出器31の
信号を取り込み水膜厚に換算処理する信号処理器であ
る。
2. Description of the Related Art A conventional apparatus will be described with reference to FIG. Printing machines (ink / water roller groups 10, 11, 12 etc. and plates
With various cylinders), the print quality depends on the state of the water film on the plate surface 6. FIG. 8 is a block diagram of an apparatus for detecting this water. The infrared light emitted from the infrared light emitter 15 is condensed by the infrared condenser lens 16, and the interference filter 3 on the chopper 17 is collected.
The light having the reference wavelength and the light having the absorption wavelength of water are alternately selected. This light is guided by the optical conduit 18, and the light is absorbed by the water on the plate 6, and then the transmitted / reflected light is converted into a signal by the receiver lens 19 and the detection element 20. The position detector 31 of the interference filters 33 and 34 recognizes the signal of the element 20. Reference numeral 9 denotes a signal processor that takes in the signal from the detection element 20 and the signal from the position detector 31 and converts it into a water film thickness.

【0003】[0003]

【発明が解決しようとする課題】版面上の水膜状態に起
因する印刷品質障害は、 現象1水目:幅方向に1.5mm以下の筋目(濃度変
化)が幾つも流れ方向に生じる。 現象2の地汚れ:絵柄が無い部分(非画線部)に、広い
範囲で汚れる。 等がある。現象2の水膜計測は、計測面積が大きく且つ
チョッパ速度が低くても、汚れの範囲を平均して、測定
出来るので、従来の水膜計で計測可能である。しかし、
現象1の水膜計測は、計測面積は狭く且つ高速チョッパ
を必要とする。
The problem of print quality due to the state of the water film on the plate surface is as follows: Phenomenon 1 Water grain: A number of streaks (change in density) of 1.5 mm or less in the width direction occur in the flow direction. Phenomenon 2 of phenomenon 2: A part without a pattern (non-image area) is stained in a wide range. Etc. In the water film measurement of Phenomenon 2, even if the measurement area is large and the chopper speed is low, it is possible to measure by averaging the range of the dirt, and thus it is possible to measure with the conventional water film meter. But,
The water film measurement of phenomenon 1 has a small measurement area and requires a high-speed chopper.

【0004】上述の印刷品質障害に対して、前述した従
来技術には次のような問題点がある。 (1)赤外発光体は点光源でないので、光量を下げずに
φ1.5mm以下に絞る事が出来ない。 (2)計測面積が小さくなれば、高速チョッパでサンプ
リングする必要がある。しかし従来の機械的チョッパ
(0〜100KHZ)では対応できない。
With respect to the above-mentioned print quality trouble, the above-mentioned prior art has the following problems. (1) Since the infrared luminous body is not a point light source, it cannot be narrowed down to φ1.5 mm or less without reducing the light quantity. (2) If the measurement area becomes smaller, it is necessary to sample with a high-speed chopper. But not cope with the conventional mechanical chopper (0~100KH Z).

【0005】本発明は、水目のような計測面積が小さな
領域について高速サンプリングを行うことのできる版面
用水膜センサを提供することを目的とするものである。
It is an object of the present invention to provide a water film sensor for a printing plate, which is capable of performing high speed sampling on a region having a small measurement area such as a water drop.

【0006】[0006]

【課題を解決するための手段】印刷品質障害の一つであ
る水目の現象は、版面上の水のパターンが急速する部分
でインキの転移率が変化する為に発生するもので、印刷
物では幅方向に1.5mm以下の筋目(濃度変化)が幾
つも流れ方向に生じる。この水目を計測する手段とし
て、(1)水のパターン変化が測定出来る計測面積にす
る為に、絞り込みが効く半導体レーザを採用する。
(2)印刷速度及び水のパターン変化に遅れないだけの
測定データを得るために、P波とS波のアナログ信号を
用いる。(3)水膜の測定に、レーザの性質である偏光
波(P波、S波)と特殊な現象が生ずる角度(ブリュー
スタ角)を利用する。
[Means for Solving the Problems] The water drop phenomenon, which is one of the problems in print quality, occurs because the ink transfer rate changes at the portion where the water pattern on the plate surface is rapid. A number of streaks (change in concentration) of 1.5 mm or less occur in the width direction in the flow direction. As a means for measuring this water grain, (1) a semiconductor laser that is effective in narrowing down is adopted in order to make a measurement area capable of measuring a water pattern change.
(2) P-wave and S-wave analog signals are used in order to obtain measurement data that is not delayed by changes in printing speed and water pattern. (3) Polarized waves (P-wave, S-wave), which is a property of laser, and an angle (Brewster angle) at which a special phenomenon occurs are used for measuring a water film.

【0007】[0007]

【作用】光源として半導体レーザ光を用いることによ
り、水目のような狭い領域の水膜測定に対処する。アナ
ログ信号制御により、撮影データの高速取り込み(0−
20MHZ)を行う。水のブリュースタ角で生じる現象
(水の界面においてP,S偏光波の進行方向が違う)つ
まり、版面に付着する水の表面で反射する光(S波)と
版面に付着する水の表面でも透過する光(P波)の性質
を利用して、水膜を測定する。
By using the semiconductor laser light as the light source, it is possible to cope with the measurement of the water film in a narrow region such as a water grain. High-speed capture of shooting data (0-
20MH Z) perform. Phenomenon caused by Brewster's angle of water (directions of P and S polarized waves at water interface are different), that is, light reflected on the surface of water (S wave) and water surface attached to the plate surface The water film is measured by utilizing the property of the transmitted light (P wave).

【0008】[0008]

【実施例】【Example】

(第1実施例)本発明の第1実施例を図1乃至図5につ
いて説明する。図1に示したようなインキ・水ローラ群
10,11,12等及び版・各種胴で構成される印刷機
械では、版面6上の水膜状態で印刷品質(水目)が左右
される。図1は版面6上の水膜パターンを検出する構成
である。水膜の検出部材は、レーザ投光側と受光側で構
成している。投光光線軸と受光光線軸が版面6の垂直平
面上において、水のブリュースタ角5で対向且つ交わる
様に、レーザ投光側と受光側を設置する。レーザ投光側
の部材は、半導体レーザ1を半導体レーザドライバ28
で駆動し、直線偏光光2を投光する。直線偏光光2はコ
リーメータ3で平行光になり、1/4波長板4を通ると
円偏光光21に変換される。更に、円偏光光21はビー
ムディスプレーシングプリズム22を通過すると、P偏
光波26とS偏光波27に分解すると同時に、P,S偏
光波の光軸が相対ズレした平行なレーザ光26,27が
出来る(レーザ光=S偏光波+P偏光波)。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. In a printing machine composed of the ink / water roller groups 10, 11, 12 and the like and the plate / various cylinders as shown in FIG. 1, the print quality (grain of water) depends on the water film state on the plate surface 6. FIG. 1 shows a structure for detecting a water film pattern on the printing plate 6. The water film detecting member is composed of a laser projecting side and a laser receiving side. The laser projecting side and the laser receiving side are installed so that the projected light ray axis and the received light ray axis face and intersect at the Brewster's angle 5 of water on the plane perpendicular to the plate surface 6. The member on the laser projecting side uses the semiconductor laser 1 as the semiconductor laser driver 28.
And linearly polarized light 2 is projected. The linearly polarized light 2 becomes parallel light by the collimator 3, and is converted into circularly polarized light 21 when passing through the quarter wavelength plate 4. Further, when the circularly polarized light 21 passes through the beam dissipating prism 22, the circularly polarized light 21 is decomposed into a P polarized light wave 26 and an S polarized light wave 27, and at the same time, parallel laser light 26, 27 in which the optical axes of the P and S polarized light waves are relatively deviated. Yes (laser light = S polarized wave + P polarized wave).

【0009】このP偏光波26とS偏光波27の2つの
レーザ光は版面6上に当たり、版面6上の正反射光
(P,S波)は、P・S波共にハーフミラー23で光量
が半分に分岐され、P偏光波26の受光側とS偏光波2
7の受光側に構成が分かれる。P波の受光構成はS波を
遮断する為、偏光子30を具備してP波のみ通過させ、
レシーバレンズ24とレーザ検出素子25でP波成分の
電圧信号31を得る。S波の受光構成も同様に、P波を
遮断する偏光子29を具備してS波のみ通過させ、レシ
ーバレンズ7とレーザ検出素子8でS波成分の電圧信号
32を得る。その電圧信号31,32は信号処理器9で
P波・S波の電圧信号から計算して、図2に示すような
版面上の水膜厚を計測する。
The two laser beams of the P-polarized wave 26 and the S-polarized wave 27 hit the plate surface 6, and the specularly reflected light (P, S waves) on the plate surface 6 has a quantity of light at the half mirror 23 for both P and S waves. Divided in half, the receiving side of P-polarized wave 26 and S-polarized wave 2
The structure is divided into the light receiving side of 7. Since the P-wave receiving structure blocks the S-wave, a polarizer 30 is provided to pass only the P-wave.
A voltage signal 31 of the P wave component is obtained by the receiver lens 24 and the laser detection element 25. Similarly, the S-wave light receiving structure is provided with a polarizer 29 that blocks the P-wave and allows only the S-wave to pass therethrough, and the receiver lens 7 and the laser detection element 8 obtain the voltage signal 32 of the S-wave component. The voltage signals 31 and 32 are calculated by the signal processor 9 from the P-wave and S-wave voltage signals, and the water film thickness on the printing plate as shown in FIG. 2 is measured.

【0010】本発明による版面用水膜センサは、水のブ
リュースタ角で生じる現象(水の界面においてP・S偏
光波の進行方向が違う)つまり、版面に付着する水の表
面で反射する光(S波)と版面に付着する水の表面でも
透過する光(P波)の性質を利用して、水膜を測定する
ものであり、水のブリュースタ角での現象を図3に示
す。
In the water film sensor for a plate according to the present invention, a phenomenon caused by Brewster's angle of water (the traveling directions of P and S polarized waves are different at the interface of water), that is, the light reflected on the surface of the water adhering to the plate ( The water film is measured by utilizing the property of the S wave) and the light (P wave) that is transmitted even on the surface of the water adhering to the plate surface, and the phenomenon at the Brewster angle of water is shown in FIG.

【0011】S波の入射角と反射率を図4に示し、P波
の入射角の反射率を図5に示す。図2にレーザ検出素子
8,25の検出信号と水膜厚(S波とP波の受光量差)
の関係を示す。ここで、水の表面で透過する光(P波)
は版面の粗さで乱反射するので、検出光量としては小さ
い。一方、水の表面で反射する光(S波)は水表面で正
反射するので、検出光量としては大きい。S波とP波の
受光量を差引く理由は水膜測定部の版面粗さをキャンセ
ルする為である。
FIG. 4 shows the S-wave incident angle and reflectance, and FIG. 5 shows the P-wave incident angle reflectance. Fig. 2 shows the detection signals of the laser detection elements 8 and 25 and the water film thickness (difference in the amount of light received between S and P waves).
Shows the relationship. Here, the light transmitted on the surface of the water (P wave)
Is diffused due to the roughness of the plate surface, so the detected light amount is small. On the other hand, the light (S wave) reflected on the surface of the water is specularly reflected on the surface of the water, so the detected light amount is large. The reason for subtracting the received light amounts of the S wave and P wave is to cancel the plate surface roughness of the water film measuring unit.

【0012】なお、版面に投射されるレーザ光径は、数
ミクロンオーダでも絞り込み可能であり、本実施例で
は、φ1.0を使用した。また、従来の機械的チョッパ
では0HZ〜100HZの範囲であるが、発明では0HZ
〜20MHZの範囲で使用可能であり、本実施例の水膜
センサは30KHZで適用した。 (第2実施例)本発明の第2実施例を図6,図7につい
て説明する。
The laser beam diameter projected on the plate surface can be narrowed down even on the order of several microns, and in this embodiment, φ1.0 was used. Further, although the conventional mechanical chopper in the range of 0H Z ~100H Z, the invention 0H Z
It may be used in a range of ~20MH Z, the water film sensor of this Example was applied by 30KH Z. (Second Embodiment) A second embodiment of the present invention will be described with reference to FIGS.

【0013】第2実施例は、第1実施例では投光側で行
っていたP偏光波とS偏光波の分解を受光側で行うよう
にしたものであり、このため第1実施例におけるビーム
ディスプレーシングプリズム22を削除し、ハールミラ
ー23に替わり、偏光ビームスプリッタ(PBS)23
aを設置する。レーザ投光側の部材は、半導体レーザ1
を半導体レーザドライバ28で駆動し、直線偏光光を投
光する。直線偏光光2はコリーメータ3で平行光にな
り、1/4波長板4を通ると円偏光波21に変換され
る。この円偏光波21は版面6上にあたり、版面6上の
正反射光は偏光ビームスプリッタ(PBS)23aによ
ってP偏光波26とS偏光波27に分岐される。分岐さ
れたP波は集光レンズ30aで集光され、レーザ検出素
子25でP波成分の電圧信号31を得る。S波も同様に
集光レンズ29aで集光され、レーザ検出素子8でS波
成分の電圧信号32を得る。その電圧信号31,32は
信号処理器9でP波・S波の電圧信号から計算して、版
面上の水膜厚を計測する。なお、水膜厚計測用の光源と
しては半導体レーザの他にLEDを用いてもよい。
In the second embodiment, the P-polarized wave and the S-polarized wave are decomposed on the light receiving side, which has been performed on the light projecting side in the first embodiment, and therefore the beam in the first embodiment is used. Polarizing beam splitter (PBS) 23 is used instead of display mirror 22 instead of Haar mirror 23.
Install a. The member on the laser projecting side is the semiconductor laser 1
Is driven by the semiconductor laser driver 28 to project linearly polarized light. The linearly polarized light 2 is collimated by the collimator 3 and is converted into a circularly polarized wave 21 when passing through the quarter wavelength plate 4. The circularly polarized wave 21 hits the plate surface 6, and the regularly reflected light on the plate surface 6 is split into a P polarized wave 26 and an S polarized wave 27 by a polarization beam splitter (PBS) 23a. The branched P wave is condensed by the condenser lens 30a, and the laser detection element 25 obtains the voltage signal 31 of the P wave component. Similarly, the S wave is also condensed by the condenser lens 29a, and the laser detection element 8 obtains the voltage signal 32 of the S wave component. The voltage signals 31 and 32 are calculated by the signal processor 9 from the P-wave and S-wave voltage signals to measure the water film thickness on the printing plate. In addition to the semiconductor laser, an LED may be used as the light source for measuring the water film thickness.

【0014】[0014]

【発明の効果】本発明による印刷機版面用水膜センサは
(1)直線偏光光を発光する半導体レーザ、同直線偏光
光を平行光とするコリーメータ、同平行光を円偏光光に
変換する波長板及び同円偏光光をP偏光波とS偏光波に
分解するプリズムからなるレーザ光投光手段と、前記P
偏光波及びS偏光波を分岐するハーフミラーと、分岐さ
れた一方のP偏光波及びS偏光波のうちS偏光波を遮断
する偏光子と、通過したP偏光波を受光し、電圧信号を
発生するP偏光波検出手段と、分岐された他方のP偏光
波及びS偏光波のうちP偏光波を遮断する偏光子と、通
過したS偏光波を受光し、電圧信号を発生するS偏光波
検出手段と、P偏光波とS偏光波の電圧信号から水膜厚
を演算する手段とを具えたことにより、また(2)直線
偏光光を発光する半導体レーザ、同直線偏光光を平行光
とするコリーメータ、同平行光を円偏光光に変換する1
/4波長板からなるレーザ光投光手段と、版面上の水膜
表面の正反射光をP偏光波とS偏光波に分解し分岐する
偏光ビームスプリッタと、P偏光波を受光し電圧信号を
発生するP偏光波検出手段と、S偏光波を受光し電圧信
号を発生するS偏光波検出手段と、P偏光波とS偏光波
の電圧信号の差に基づいて水膜厚を演算する手段とを具
えたことにより、次の効果を有する。 (1)水膜の計測面積を縮小できる。 (2)サンプリングの速度を高速化できる。 (3)機械的チョッパに比べ、半導体レーザは安価で且
つ小型であり、装置全体を小型に且つ安価にできる。 (4)網点レベル(数十μm)の微細水膜パターンの計
測も可能である。
EFFECTS OF THE INVENTION A water film sensor for a printing press plate according to the present invention includes (1) a semiconductor laser that emits linearly polarized light, a collimator that converts the linearly polarized light into parallel light, and a wavelength that converts the parallel light into circularly polarized light. A laser light projecting means comprising a plate and a prism for decomposing the circularly polarized light into P-polarized light and S-polarized light;
A half mirror that splits a polarized wave and an S polarized wave, a polarizer that blocks the S polarized wave of one of the split P polarized waves and an S polarized wave, and a passed P polarized wave is received to generate a voltage signal. P polarization wave detection means, a polarizer that blocks the P polarization wave of the other branched P polarization wave and the S polarization wave, and an S polarization wave detection that receives the passed S polarization wave and generates a voltage signal. By including means and means for calculating the water film thickness from the voltage signals of the P-polarized wave and the S-polarized wave, (2) a semiconductor laser which emits linearly polarized light, and the linearly polarized light is made parallel light. Collimator, convert parallel light into circularly polarized light 1
/ 4 wavelength plate laser light projecting means, a polarizing beam splitter that splits the specularly reflected light from the surface of the water film on the plate surface into P-polarized waves and S-polarized waves, and splits the P-polarized waves into voltage signals. A P-polarized wave detecting means for generating, an S-polarized wave detecting means for receiving an S-polarized wave and generating a voltage signal, and a means for calculating a water film thickness based on a difference between voltage signals of the P-polarized wave and the S-polarized wave. By having the following, the following effects can be obtained. (1) The measurement area of the water film can be reduced. (2) The sampling speed can be increased. (3) A semiconductor laser is cheaper and smaller than a mechanical chopper, and the entire device can be made smaller and cheaper. (4) It is also possible to measure a fine water film pattern at a halftone dot level (tens of μm).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】第1実施例における検出信号と版面非画線部の
水膜厚さとの関係図である。
FIG. 2 is a relationship diagram between a detection signal and a water film thickness of a non-image area of a printing plate in the first embodiment.

【図3】水のブリュースタ角における現象を示す図であ
る。
FIG. 3 is a diagram showing a phenomenon at a Brewster angle of water.

【図4】S偏光の反射率を条件とした入射光と偏光エネ
ルギー比との関係図である。
FIG. 4 is a relationship diagram of incident light and polarization energy ratio under the condition of the reflectance of S-polarized light.

【図5】P偏光の反射率を条件とした入射光と偏光エネ
ルギー比との関係図である。
FIG. 5 is a relationship diagram between incident light and polarization energy ratio under the condition of the reflectance of P-polarized light.

【図6】本発明の第2実施例の構成図である。FIG. 6 is a configuration diagram of a second embodiment of the present invention.

【図7】第2実施例における検出信号と版面非画線部の
水膜厚さとの関係図である。
FIG. 7 is a relationship diagram between a detection signal and a water film thickness of a non-image area of a printing plate in the second embodiment.

【図8】従来の赤外線吸収法による水膜計の構成図であ
る。
FIG. 8 is a configuration diagram of a conventional water film meter by an infrared absorption method.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 3 コリーメータ 4 1/4波長板 6 版 7 レシーバレンズ(S偏光波用) 8 レーザ検出素子(S偏光波用) 9 信号処理器 22 ビームディスプレーシングプリズム 23 ハーフミラー 24 レシーバレンズ(P偏光波用) 25 レーザ検出素子(P偏光波用) 29 偏光子 30 偏光子 1 semiconductor laser 3 collimator 4 1/4 wavelength plate 6 version 7 receiver lens (for S polarized wave) 8 laser detection element (for S polarized wave) 9 signal processor 22 beam displaying prism 23 half mirror 24 receiver lens (P Polarized wave) 25 Laser detector (for P polarized wave) 29 Polarizer 30 Polarizer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直線偏光光を発行する半導体レーザ、同
直線偏光光を平行光とするコリーメータ、同平行光を円
偏光光に変換する1/4波長板及び同円偏光光をP偏光
波とS偏光波に分解するプリズムからなるレーザ光投光
手段と、前記P偏光波及びS偏光波を分岐するハーフミ
ラーと、分岐された一方のP偏光波及びS偏光波のうち
S偏光波を遮断する偏光子と、通過したP偏光波を受光
し、電圧信号を発生するP偏光波検出手段と、分岐され
た他方のP偏光波及びS偏光波のうちP偏光波を遮断す
る偏光子と、通過したS偏光波を受光し、電圧信号を発
生するS偏光波検出手段と、P偏光波とS偏光波の電圧
信号から水膜厚を演算する手段とを具えたことを特徴と
する印刷機版面用水膜センサ。
1. A semiconductor laser for emitting linearly polarized light, a collimator for converting the linearly polarized light into parallel light, a quarter-wave plate for converting the parallel light into circularly polarized light, and a P-polarized wave for the circularly polarized light. And a laser light projecting means composed of a prism for decomposing into S-polarized waves, a half mirror for branching the P-polarized waves and S-polarized waves, and an S-polarized wave of one of the branched P-polarized waves and S-polarized waves. A polarizer for blocking, a P-polarized wave detecting means for receiving the P-polarized wave that has passed and generating a voltage signal, and a polarizer for blocking the P-polarized wave of the other branched P-polarized wave and S-polarized wave. , S-polarized wave detection means for receiving the passed S-polarized wave and generating a voltage signal, and means for calculating the water film thickness from the voltage signals of the P-polarized wave and the S-polarized wave Water film sensor for machine plate.
【請求項2】 直線偏光光を発光する半導体レーザ、同
直線偏光光を平行光とするコリーメータ、同平行光を円
偏光光に変換する1/4波長板からなるレーザ光投光手
段と、版面上の水膜表面の正反射光をP偏光波とS偏光
波に分解し分岐する偏光ビームスプリッタと、P偏光波
を受光し電圧信号を発生するP偏光波検出手段と、S偏
光波を受光し電圧信号を発生するS偏光波検出手段と、
P偏光波とS偏光波の電圧信号の差に基づいて水膜厚を
演算する手段とを具えたことを特徴とする印刷機版面用
水膜センサ。
2. A semiconductor laser that emits linearly polarized light, a collimator that converts the linearly polarized light into parallel light, and a laser light projecting means that includes a quarter-wave plate that converts the parallel light into circularly polarized light. A polarization beam splitter that decomposes the specularly reflected light on the surface of the water film on the plate surface into P-polarized waves and S-polarized waves and splits it, P-polarized wave detection means that receives the P-polarized waves and generates a voltage signal, and S-polarized waves S-polarized wave detection means for receiving light and generating a voltage signal,
A water film sensor for a printing plate surface, comprising means for calculating a water film thickness based on a difference between voltage signals of P-polarized wave and S-polarized wave.
JP4009287A 1991-07-02 1992-01-22 Water screen sensor for printing plate of printer Withdrawn JPH0560521A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-161642 1991-07-02
JP16164291 1991-07-02

Publications (1)

Publication Number Publication Date
JPH0560521A true JPH0560521A (en) 1993-03-09

Family

ID=15739067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009287A Withdrawn JPH0560521A (en) 1991-07-02 1992-01-22 Water screen sensor for printing plate of printer

Country Status (1)

Country Link
JP (1) JPH0560521A (en)

Similar Documents

Publication Publication Date Title
US4660980A (en) Apparatus for measuring thickness of object transparent to light utilizing interferometric method
EP0689030B1 (en) Displacement measuring method and apparatus
JP2691056B2 (en) Water film detector on plate of printing machine
JPH112512A (en) Optical configuration measuring instrument for wafer
US5212535A (en) Spatial filter type speed measuring apparatus
US5754282A (en) Optical device detecting displacement information using a device for frequency-shifting an incident beam and a system for reducing beam diameter in an application direction
CA1302700C (en) Method and apparatus for optical distance measurement
US4681447A (en) Interferometer apparatus and method for determining the spatial relationship of two or more objects
JPS6486518A (en) Reduction projection type position detection and device therefor
JP3109900B2 (en) measuring device
JPH0882508A (en) Frequency shifter and optical type displacement measuring apparatus using the same
JPH0467889B2 (en)
JPH0560521A (en) Water screen sensor for printing plate of printer
US4105335A (en) Interferometric optical phase discrimination apparatus
GB2237950A (en) Particle size and velocity determination
JPH0118371B2 (en)
JP3739121B2 (en) Laser measuring machine
JPS5948668A (en) Optical fiber speedometer
JPH0729445Y2 (en) Transparent object thickness measuring device
SU1469346A1 (en) Surface autocollimator surface roughness meter
JP3714490B2 (en) Surface condition measurement method
JPS61130887A (en) Laser doppler speedometer
JPH01147306A (en) Film thickness measuring instrument
JPH0653938U (en) Spectroscopic device
JP2003329422A (en) Shape measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408