JPS61130887A - Laser doppler speedometer - Google Patents

Laser doppler speedometer

Info

Publication number
JPS61130887A
JPS61130887A JP25332684A JP25332684A JPS61130887A JP S61130887 A JPS61130887 A JP S61130887A JP 25332684 A JP25332684 A JP 25332684A JP 25332684 A JP25332684 A JP 25332684A JP S61130887 A JPS61130887 A JP S61130887A
Authority
JP
Japan
Prior art keywords
laser
linearly polarized
inspected
speed
photo detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25332684A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25332684A priority Critical patent/JPS61130887A/en
Publication of JPS61130887A publication Critical patent/JPS61130887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enables the measurement of the speed of an object to be inspected moving at a low speed, by a method wherein a laser light is made incident into an object to be inspected at a specified angle and scattered light therefrom is focused to be splitted into two fluxes, one of which is detected with a photo detector as intact while the other thereof is passed through a polarizer plate to be detected with another photo detector. CONSTITUTION:One photo detector 9' receives scattered lights from the irradiation of linearly polarized laser lights 13 and 13' through a non-polarization beam splitter 14. The linearly polarized scattered lights orthogonal to each other overlap and only the low frequency variation component appears in the output signal of the detector 9' due to the light transmitted through an object 7 to be inspected or changes in the reflectance. The other photo detector 9 receives the scattered lights through a 45 deg. direction polarizer plate 15 via the beam splitter 14. Then, the 45 deg. components of the linearly polarized scattered lights orthogonal to each other are extracted to overlap and as a result, a signal due to a Doppler shift develops together with the low frequency variation component. Them, both signal outputs are inputted into a differential amplifier 16 to obtain a cycle signal of density associated with Doppler shift thereby enabling highly accurate measurement even an low-speed object to be inspected.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、移動する物体や流体の速度を非接触に測定す
る速度計、特にレーザー光の周波数の偏移を検知するレ
ーザードツプラー速度計に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a velocimeter that non-contactly measures the speed of a moving object or fluid, and particularly to a laser Doppler velocimeter that detects a shift in the frequency of laser light.

(2)従来技術 従来から、物体や流体の移動速度を非接触且つ高精度に
測定する装置として、レーザートップツー速度計が使用
されている。レーザードツプラー速度計とは、移動する
物体や流体にレーザー光を照射し、該移動物体もしくは
移動流体くよる散乱光の周波数が、移動速度に比例して
偏移(シフト)する効果(ドツプラー効果)を利用して
、前記移動物体もしくは移動流体の移動速度を測定する
装置である。
(2) Prior Art Conventionally, a laser top-to-speed speed meter has been used as a device for measuring the moving speed of an object or fluid with high accuracy in a non-contact manner. A laser Doppler velocimeter is an effect in which a moving object or fluid is irradiated with a laser beam, and the frequency of the light scattered by the moving object or fluid shifts in proportion to the moving speed (Doppler effect). ) is used to measure the moving speed of the moving object or moving fluid.

従来のレーザードツプラー速度計の一例を第1図に示す
An example of a conventional laser Doppler velocimeter is shown in FIG.

1はレーザー、2はコリメーターレンズ、3は平行光束
、4はビームスプリッタ−16及び6′は反射伊、7は
速度Vで矢印方向く移動している物体もしくは流体、8
は集光し/ズ、9は光検出器である。
1 is a laser, 2 is a collimator lens, 3 is a parallel light beam, 4 is a beam splitter 16 and 6' is a reflection device, 7 is an object or fluid moving in the direction of the arrow at a speed V, 8
9 is a light detector, and 9 is a photodetector.

レーザー1から出射されたレーザー光は、コリメーター
レンズ2によって平行光束3となす、ビームスプリッタ
−4によって二元束5及び5′に分割されて反射鏡6及
び6′で反射された後、速度Vで移動している物体もし
くは流体7に入射角θで二元束照射される。物体もしく
は流体7による散乱光は、集光レンズ8t−介して光検
出器で検出される。二元束による散乱光の周波数は、移
動速度Vに比例して各々+Δf、−△fのドツプラーシ
フトを受ける。ここで、レーザー光の波長をλとすれば
、△fは次の(1)式で表わすことができる。
A laser beam emitted from a laser 1 is made into a parallel beam 3 by a collimator lens 2, split into two binary beams 5 and 5' by a beam splitter 4, and reflected by reflectors 6 and 6', and then An object or fluid 7 moving at V is irradiated with a binary flux at an incident angle θ. Scattered light by the object or fluid 7 is detected by a photodetector via a condenser lens 8t. The frequency of the light scattered by the binary flux undergoes a Doppler shift of +Δf and −Δf in proportion to the moving speed V, respectively. Here, if the wavelength of the laser beam is λ, Δf can be expressed by the following equation (1).

ΔfヨV sinθ/λ  自・・・(す+Δf、−Δ
fのドツプラーシフトを受は走数乱光は、互いに干渉し
合って光検出器9の受光面での明暗の変化をもたらし、
その周波数1は次の(2)式で与えられる。
Δf yo V sin θ/λ self...(S+Δf, -Δ
The scattered light beams subjected to the Doppler shift of f interfere with each other and cause a change in brightness on the light receiving surface of the photodetector 9.
The frequency 1 is given by the following equation (2).

y=2Δfw2Vainθ/λ−−−−−(2)(2)
式から、スペクトラムアナライザー等で光検出器9の出
力信号の周波数Fを測定すれば、物体もしくは流体7の
移動速度Vが求められることKなる。
y=2Δfw2Vainθ/λ---(2)(2)
From the equation, if the frequency F of the output signal of the photodetector 9 is measured using a spectrum analyzer or the like, the moving speed V of the object or fluid 7 can be determined.

上記従来例のようなレーザードツプラー速度計では、以
下に述べるような理由で、光検出器の出力信号が低周波
変動成分で変調を受けるために、被検物体の移動速度が
遅く(2)式の周波数F(以下、ドツプラー周波数と呼
ぶ)が低い場合、被検物体の速度を測定できなかった。
In laser Doppler velocimeters such as the conventional example described above, the moving speed of the object to be measured is slow because the output signal of the photodetector is modulated by a low frequency fluctuation component for the reasons described below (2). When the frequency F of the equation (hereinafter referred to as Doppler frequency) is low, the velocity of the object to be tested cannot be measured.

一般に、レーザー等の可干渉性の高い光を物体に照射す
ると、物体表面の微細な凹凸によシ散乱光はランダムな
位相変調を受けて、観察面上に斑点模様、いわゆるスペ
ックルパターンを形成することが知られている。
Generally, when an object is irradiated with highly coherent light such as a laser, the scattered light undergoes random phase modulation due to minute irregularities on the object's surface, forming a so-called speckle pattern on the observation surface. It is known to do.

第1図に示したようなレーザードツプラー速度計に訃い
ては、物体もしくは流体が移動することによシ、光検出
器の検出面上でのドツプラーシフトによる明暗の変化が
、スペックルパターンの流れによる不規則な明暗の変化
で変調されることくなる。これに加えて、光検出器の出
力信号は被検物体の透過率(ある    )いは反射率
)の変化によっても変調を受ける。
When using a laser Doppler velocimeter as shown in Figure 1, changes in brightness due to Doppler shift on the detection surface of the photodetector due to the movement of an object or fluid create a speckle pattern. It will be modulated by irregular changes in brightness and darkness due to the flow of water. In addition to this, the output signal of the photodetector is also modulated by changes in the transmittance (or reflectance) of the object under test.

一般に、スペックルパターンの流れによる明暗の変化の
周波数及び被検物体の透過率変化の周波数は、ドツプラ
ー周波数に比べて低周波である之め、光検出器の出力信
号は、第2図のように低周波変動成分によって変調され
ている。従来、変調された信号からドツプラー周波数を
求めるために、光検出器の出力をバイパスフィルターに
通して、低周波成分を電気的に除去する方法等が用いら
れてきた。
In general, the frequency of changes in brightness and darkness caused by the flow of speckle patterns and the frequency of changes in transmittance of the object being tested are lower frequencies than the Doppler frequency, so the output signal of the photodetector is as shown in Figure 2. is modulated by low frequency fluctuation components. Conventionally, in order to obtain the Doppler frequency from a modulated signal, a method has been used in which the output of a photodetector is passed through a bypass filter to electrically remove low frequency components.

しかし、被検物体の速度が遅くてドツプラー周波数が低
い場合、低周波変動成分との周波数差が小さくなシ、バ
イパスフィルターが使えず被検物体の速度が測定できな
いという欠点を生じていた。
However, when the speed of the object to be tested is slow and the Doppler frequency is low, the frequency difference with the low frequency fluctuation component is small, and the bypass filter cannot be used, resulting in the disadvantage that the speed of the object to be measured cannot be measured.

(3)発明の概要 本発明の目的は、上記従来例の欠点を除去し、低速度で
移動する被検物体の速度を高精度で測定することが可能
なレーザードツプラー速度計を提供することにある。
(3) Summary of the Invention An object of the present invention is to provide a laser Doppler velocimeter that eliminates the drawbacks of the above-mentioned conventional examples and is capable of measuring the speed of a test object moving at low speed with high accuracy. It is in.

本発明に係るレーザードツプラー速度計は。The laser Doppler velocimeter according to the present invention is:

光源としてのレーザーと、該レーザーによるレーザー光
を互いに直交する二つの直線偏光した光束に分割し、被
検物体に所定の角度で入射させるjt学系と、被検物体
からの散乱光を集光させ二つの光束に分割し、一方の光
束はそのまま光検出器で検出を行ない、他方は偏光板を
通過させて他の光検出器で検出する検出光学系から溝底
されている。
A laser as a light source, a jt system that splits the laser light from the laser into two linearly polarized beams perpendicular to each other and makes them incident on the test object at a predetermined angle, and a JT system that focuses the scattered light from the test object. The light beam is split into two light beams, one of which is directly detected by a photodetector, and the other is passed through a polarizing plate and detected by another photodetector.

上記構成の装置は、一方の検出器でスペックルパターン
及び被検物体の透過率もしくは反射率の変化による低周
波変動成分によって変調されたドツプラーシフトに伴な
う信号を出力し、他方の検出器で前記低周波変動成分に
よる信号のみを出力する。両信号の出力を差動増幅器に
通すことによって、目的とするドツプラーシフトに伴な
う明暗の周期信号のみを得ることが可能であシ、被検物
体の速度が遅い場合でも高精度に速度を測定することが
できる。
In the device configured as described above, one detector outputs a signal associated with a Doppler shift modulated by a speckle pattern and a low-frequency fluctuation component caused by a change in transmittance or reflectance of the object to be detected, and the other detector The device outputs only the signal due to the low frequency fluctuation component. By passing the outputs of both signals through a differential amplifier, it is possible to obtain only the periodic signals of brightness and darkness associated with the desired Doppler shift. can be measured.

(4)実施例 第3図は本発明に係るレーザードツプラー速度計の構成
例を示し、1はレーザー、2は;リメーターレンズ、6
,6′は反射鏡、7は速度Vで矢印方向に移動している
被検物体、8は集光レンズ、9,9′は光検出器、10
は阿波長板、11は円偏光したレーザー光、12は偏光
ビームスプリッタ−115、13’は互いに直交する直
線偏光レーザー光、14は無偏光ビームスプリッタ−1
15は偏光板、16は差動増幅器、17は周波数解析器
、18は表示装置を示す。レーザー1から出射されたレ
ーザー光は、コリメーターレンズ2を介して平行光束と
なシに波長板10を透過する。一般に、レーザー光は直
線偏光をしている友め、%波長板10t?透過すること
によ〕円偏光し念レーザー光11となる。該レーザー光
11は偏光ビームスプリッタ−12によって、強度が等
しく互いに直交した直線偏光レーザー光15及び13′
に分割される。該レーザ光13゜13′は、各々速度V
で移動している被検物体7に入射角θで照射される。被
検物体7でドツプラーシフトを受けた光は、集光レンズ
8を介して無偏光ビームスプリッタ−14に入シ、一部
は反射して光検出器9′に入シ、残シは透過して偏光板
15を介して光検出器9に入る。この時、偏光板15の
方位は、直交する直線偏光レーザー光13及び13′に
対して45°方向に設定している。
(4) Embodiment FIG. 3 shows a configuration example of a laser Doppler velocimeter according to the present invention, where 1 is a laser, 2 is a remeter lens, and 6 is a laser doppler velocimeter.
, 6' is a reflecting mirror, 7 is a test object moving in the direction of the arrow at a speed V, 8 is a condenser lens, 9 and 9' are photodetectors, 10
11 is a circularly polarized laser beam, 12 is a polarized beam splitter 115, 13' is a linearly polarized laser beam orthogonal to each other, and 14 is a non-polarized beam splitter 1.
15 is a polarizing plate, 16 is a differential amplifier, 17 is a frequency analyzer, and 18 is a display device. Laser light emitted from the laser 1 passes through the wavelength plate 10 via the collimator lens 2 in a parallel beam. In general, laser light is linearly polarized. % wave plate 10t? By passing through the beam, the beam becomes circularly polarized and becomes the optical laser beam 11. The laser beam 11 is divided into linearly polarized laser beams 15 and 13' having equal intensities and orthogonal to each other by a polarizing beam splitter 12.
divided into The laser beams 13° and 13' each have a velocity V
The object to be detected 7, which is moving at , is irradiated at an incident angle θ. The light that has undergone Doppler shift from the test object 7 enters the non-polarizing beam splitter 14 via the condensing lens 8, a portion of which is reflected and enters the photodetector 9', and the remainder is transmitted. The light then enters the photodetector 9 via the polarizing plate 15. At this time, the orientation of the polarizing plate 15 is set at 45 degrees with respect to the orthogonal linearly polarized laser beams 13 and 13'.

上記構成において、光検出器9′は、互いに直交した直
線偏光レーザ光13.13’の照射による散乱光を、無
偏光χビームスグリツタ−14を介して受光し、互いに
直交する直線偏光散乱光の重ね合わせとなる。従って、
光検出器9′の出力信号にはドツプラーシフトによる信
号は現われず、スペックルパターンの流れ及び被検物体
の透過率もしくは反射率の変化(よる低周波変動成分だ
けが現われることKなる。一方、光検出器9は前記散乱
光を無偏光ビームスグリツタ−14f:介した後、45
°方向偏光板1st−通して受光し、直交する直線偏光
散乱光の45°成分を取シ出して重ね合わせている。従
って、If周波変動成分と共にドツプラーシフトによる
信号が現われることになる。ここで、差動増幅器161
C光検出器9′及び9′の出力信号を入力すれば、第4
図に示すようにドツプラーシフトによる信号のみが現わ
れ、スペックルパターンの流れや被検物体の透過率もし
くは反射率の変化による低周波変動成分が除去できるこ
とになる。
In the above configuration, the photodetector 9' receives the scattered light caused by the irradiation of the mutually orthogonal linearly polarized laser beams 13 and 13' via the non-polarized chi beam sinter 14, and receives the mutually orthogonal linearly polarized scattered light. It becomes a superposition of . Therefore,
No signal due to the Doppler shift appears in the output signal of the photodetector 9', and only low-frequency fluctuation components due to the flow of the speckle pattern and changes in transmittance or reflectance of the object to be detected appear.On the other hand, , the photodetector 9 passes the scattered light through a non-polarized beam sinter 14f;
The light is received through the 1st degree direction polarizing plate, and the 45 degree component of the orthogonal linearly polarized scattered light is extracted and superimposed. Therefore, a signal due to Doppler shift appears together with the If frequency fluctuation component. Here, the differential amplifier 161
If the output signals of the C photodetectors 9' and 9' are input, the fourth
As shown in the figure, only the signal due to the Doppler shift appears, and low-frequency fluctuation components due to the flow of the speckle pattern and changes in the transmittance or reflectance of the object to be examined can be removed.

次に、g5図は被検物体くレーザー光を照射する光学系
の別の実施例を示す。19は無偏光ビームスプリッタ−
120は%波長板であ)、他の番号は第3図と同様であ
る。
Next, Figure g5 shows another embodiment of the optical system for irradiating the object to be inspected with laser light. 19 is a non-polarizing beam splitter
120 is a % wavelength plate), and the other numbers are the same as in FIG.

本実施例では、レーザ1から出射されたレーザ光は、コ
リメーターレンズ2によって平行光束とな)、無偏光ビ
ームスプリッタ−19によって強度及び偏光方向が等し
い直線偏光レーザー光に分割される。該レーザ光の一方
は%波長板20を介して90°偏光方向を変えられ、従
って強度が等しく互いに直交する直線偏光レーザー光1
3及び13′が、入射角θで被検物体7に照射される。
In this embodiment, a laser beam emitted from a laser 1 is converted into a parallel beam by a collimator lens 2), and is split into linearly polarized laser beams having equal intensity and polarization direction by a non-polarizing beam splitter 19. One of the laser beams has its polarization direction changed by 90° through a wavelength plate 20, so that the linearly polarized laser beams 1 have equal intensities and are orthogonal to each other.
3 and 13' are irradiated onto the test object 7 at an incident angle θ.

以下、検出方法は前記実施例と同様である。Hereinafter, the detection method is the same as in the above embodiment.

(5)発明の一1JJ果 以上説明したように、本発明に係るレーザードツプラー
速度計は、簡便な光学的手段によって、被検物体の移動
速度が遅い場合でも、高精度な速度測定を可能にする装
置である。
(5) Effects of the Invention As explained above, the laser Doppler velocimeter according to the present invention is capable of highly accurate velocity measurement using a simple optical means even when the moving speed of the object to be measured is slow. It is a device to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザードツプラー速度計の従来例を示す図。 第2図は低周波変動成分によって変調された光検出器の
出力信号を示す図。1lf13図は本発明に係るレーザ
ードツプラー速度計の構成例を示す図。第4図はトップ
2−シフ)Kよる信号を示す図。第5図はレーザー光照
射光学系の他の実施例を示す図。 1 ・・・レーザー 2 ・・・コリメーターレンズ 3 ・・・平行レーザー光束 4 ・・・ビームスプリッタ− 5,5′  ・・・レーザ光 6.6′ ・・・反射鏡 7 ・・・被検物体(流体) 8 ・・・集光レンズ 9.9′  ・・・光検出器 10  ・・・阿波長板 11 ・・・円偏光レーザー光 12 ・・・偏光ビームスプリッタ− 15、13’・・・直線偏光レーザー光14・・・無偏
光ビームスプリッタ− 15・・・偏光板 16自・差動増幅器 17・・・周波数解析器 18・・・表示装置 19・・・無偏光ビームスプリッタ− 20・・・阿波長板 第1口 M
FIG. 1 is a diagram showing a conventional example of a laser Doppler velocimeter. FIG. 2 is a diagram showing an output signal of a photodetector modulated by a low frequency fluctuation component. 1lf and 13 are diagrams showing an example of the configuration of a laser Doppler velocimeter according to the present invention. FIG. 4 is a diagram showing a signal due to top 2-shift) K. FIG. 5 is a diagram showing another embodiment of the laser beam irradiation optical system. 1...Laser 2...Collimator lens 3...Parallel laser beam 4...Beam splitter 5,5'...Laser beam 6.6'...Reflector 7...Test Object (fluid) 8...Condenser lens 9.9'...Photodetector 10...A wave plate 11...Circularly polarized laser beam 12...Polarized beam splitter 15, 13'...・Linearly polarized laser light 14...Non-polarizing beam splitter 15...Polarizing plate 16 ・Differential amplifier 17...Frequency analyzer 18...Display device 19...Non-polarizing beam splitter 20.・Awakening plate first port M

Claims (1)

【特許請求の範囲】[Claims] (1)互いに直交した直線偏光レーザー光を、移動物体
や移動流体に二方向から各々照射する手段と、該移動物
体や移動流体からの散乱光を二つに分割する手段と、分
割した一方の散乱光を偏光させる手段と、前記散乱光を
検出する手段とを備えた事を特徴とするレーザードップ
ラー速度計。
(1) A means for irradiating linearly polarized laser beams perpendicular to each other onto a moving object or moving fluid from two directions, a means for splitting the scattered light from the moving object or moving fluid into two, and a means for splitting the scattered light from the moving object or moving fluid into two; A laser Doppler velocimeter comprising means for polarizing scattered light and means for detecting the scattered light.
JP25332684A 1984-11-30 1984-11-30 Laser doppler speedometer Pending JPS61130887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25332684A JPS61130887A (en) 1984-11-30 1984-11-30 Laser doppler speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25332684A JPS61130887A (en) 1984-11-30 1984-11-30 Laser doppler speedometer

Publications (1)

Publication Number Publication Date
JPS61130887A true JPS61130887A (en) 1986-06-18

Family

ID=17249746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25332684A Pending JPS61130887A (en) 1984-11-30 1984-11-30 Laser doppler speedometer

Country Status (1)

Country Link
JP (1) JPS61130887A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191085A (en) * 1987-02-03 1988-08-08 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200084A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200085A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
KR20020050831A (en) * 2000-12-22 2002-06-28 신현준 Industrial laser speed measurement apparatus and method using optical fiber
JP2005227077A (en) * 2004-02-12 2005-08-25 Sharp Corp Optical moving information detector, moving information detecting system, electronic equipment, and encoder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191085A (en) * 1987-02-03 1988-08-08 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200084A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
JPS63200085A (en) * 1987-02-16 1988-08-18 Mitsubishi Electric Corp Laser doppler speedometer
KR20020050831A (en) * 2000-12-22 2002-06-28 신현준 Industrial laser speed measurement apparatus and method using optical fiber
JP2005227077A (en) * 2004-02-12 2005-08-25 Sharp Corp Optical moving information detector, moving information detecting system, electronic equipment, and encoder

Similar Documents

Publication Publication Date Title
US4815850A (en) Relative-displacement measurement method
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US3419330A (en) Diffraction grating angular rate sensor
US3915572A (en) Combined dual scatter, local oscillator laser doppler velocimeter
JPS5977319A (en) Method and device for measuring ultrasonic surface wave
JP3450446B2 (en) Optical displacement detector
US3635552A (en) Optical interferometer
JPH0339605A (en) Optical surface shape measuring instrument
EP0078931B1 (en) Angular rate sensor
JPH0882508A (en) Frequency shifter and optical type displacement measuring apparatus using the same
JPS61130887A (en) Laser doppler speedometer
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
EP0426341A2 (en) Particle size and velocity determination
JPS6325285B2 (en)
JPH0612333B2 (en) Automatic birefringence measuring device
JPS58196416A (en) Optical fiber laser gyroscope
JPH07229913A (en) Speedometer
US11365989B2 (en) Method and system for contactless detection of rotational movement
JP3508988B2 (en) Measurement method of phase shift amount for processing phase shift mask
JP2517551B2 (en) Phase distribution measuring device
JPS63186104A (en) Ellipsometer
JPS62263428A (en) Apparatus for measuring phase change
JPH07234171A (en) Reflection efficiency measuring instrument and diffraction efficiency measuring instrument
RU1768967C (en) Surface roughness tester
JPS6097215A (en) Length measuring device