JPH0560500B2 - - Google Patents

Info

Publication number
JPH0560500B2
JPH0560500B2 JP62029706A JP2970687A JPH0560500B2 JP H0560500 B2 JPH0560500 B2 JP H0560500B2 JP 62029706 A JP62029706 A JP 62029706A JP 2970687 A JP2970687 A JP 2970687A JP H0560500 B2 JPH0560500 B2 JP H0560500B2
Authority
JP
Japan
Prior art keywords
polyimide
polyimide precursor
modulus
present
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62029706A
Other languages
Japanese (ja)
Other versions
JPS63199237A (en
Inventor
Masao Tomikawa
Masuichi Eguchi
Yoshi Hiramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2970687A priority Critical patent/JPS63199237A/en
Publication of JPS63199237A publication Critical patent/JPS63199237A/en
Publication of JPH0560500B2 publication Critical patent/JPH0560500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリイミド組成物に関するものであ
り、さらに詳しくは、ヤング率の低いポリイミド
を得ることのできるポリイミド組成物に関するも
のである。 [従来の技術] 近年、半導体業界では、半導体素子の集積化が
急速に進んでおり、DRAMの分野では4Mビツト
レベルの製品が試作されるに及んでいる。しか
し、このような高集積化に伴ないシリコン基板と
樹脂封止剤との線膨張係数の差に起因する熱応力
の問題が大きくなり、パツシベーシヨン膜にクラ
ツクが入る、アルミ配線が切断されるといつた事
態が生じている。これらの問題点を解決できない
と品質の安定した製品は得られない。そのため、
熱応力を弱めるために低いヤング率で耐熱性を有
した樹脂コート剤の開発が望まれているが、従来
のポリイミドの場合、ヤング率は最低でも250
Kg/mm2あるというのが実状である。 本発明者はこのような事情に鑑み、ポリイミド
の低ヤング率化対策について鋭意検討した結果、
ポリイミド組成物を2種の特定のポリイミド前駆
体で構成した場合にはヤング率の著しく低く、し
かも強伸度特性の優れたポリイミドが得られるこ
とを知見し、本発明に到達したものである。 [発明が解決しようとする問題点] したがつて、本発明の目的は低いヤング率で、
かつ強度、伸度に優れたポリイミドを得ることの
できるポリイミド組成物を提供することにある。 [問題点を解決するための手段] かかる本発明の目的は、4,4′−ビス(アミノ
フエノキシ)ジフエニルと無水ピロメリツト酸を
反応させて得られるポリイミド前駆体Aと、4,
4′−ジアミノジフエニルエーテルと無水ピロメリ
ツト酸を反応させて得られるポリイミド前駆体B
との混合物からなり、かつ該ポリイミド前駆体A
およびBがモル比でA/B=5/95〜95/5とな
るように配合されてなるポリイミド組成物により
達成される。 本発明におけるポリイミド前駆体Aは、4,
4′−ビス(アミノフエノキシ)ジフエニル(以下
BAPODという)と無水ピロメリツト酸(以下
PMDAという)を反応させて得られるものであ
り、またポリイミド前駆体Bは、4,4′−ジアミ
ノジフエニルエーテル(以下DAEという)と
PMDAを反応させて得られるものである。 本発明のポリイミド組成物は、上述のようなポ
リイミド前駆体AおよびBを含有するとともに、
該前駆体AおよびBが、モル比で、A/B=5/
95〜95/5となるように配合されてなるものであ
る。 ポリイミド前駆体AのBに対するモル比が、
95/5より多くなると、ポリイミド前駆体のワニ
スがゲル化しやすくなり、貯蔵安定性に劣るため
好ましくなく、またモル比が5/95より少なくな
るとヤング率の低いものが得られなくなる。特に
好ましい範囲は、1/9〜4/1の範囲である。 本発明のポリイミド組成物は、ヤング率に影響
を与えない範囲で、他のジアミンやテトラカルボ
ン酸を配合させることができる。このようなジア
ミンの例としては、m−フエニレンジアミン、
3,3′−ジアミノジフエニルメタン、3,3′−ジ
アミノジフエニルスルホン、ベンチジン、4,
4′−ジアミノターフエニル、1,3−ビス(アミ
ノフエノキシ)ベンゼンのような芳香族ジアミ
ン、ヘキサメチレンジアミン、ヘプタメチレンジ
アミンのような脂肪族ジアミンが挙げられる。ま
たテトラカルボン酸の例としては、3,3′,4,
4′−ベンゾフエノンテトラカルボン酸、3,3′,
4,4′−ビフエニルテトラカルボン酸、3,3′4,
4′−ジフエニルエーテルテトラカルボン酸のよう
な芳香族カルボン酸、1,2,3,4−ブタンテ
トラカルボン酸、1,2,3,4−シクロペンタ
ンテトラカルボン酸のような脂肪族テトラカルボ
ン酸が挙げられる。 さらに接着性を改良するために、1,3−ビス
(3−アミノプロピル)テトラメチルジシロキサ
ン)のようなシロキサンジアミンを全アミン量の
1〜6モル%配合させることもできる。 次に本発明のポリイミド組成物の製造方法の一
例を説明する。すなわち、溶媒中でBAPODに対
してPMDAをモル比で好ましくは90〜110モル%
の配合比で、−20℃〜100℃で反応させることによ
り、本発明のポリイミド前駆体Aを製造する。ま
た、溶媒中でDAEに対してPMDAをモル比で好
ましくは90〜110モル%の配合比で、−20℃〜100
℃で反応させることにより、本発明のポリイミド
前駆体Bを製造する。 以上のようにして製造したポリイミド前駆体A
とポリイミド前駆体Bの溶液をモル比で5/95〜
95/5の範囲で混合することにより本発明のポリ
イミド組成物の前駆体を得ることができる。 上記製造方法で用いる溶媒としては、ポリマー
の溶解性の点から極性溶媒を使用するのが好まし
いく、特に非プロトン性極性溶媒が好適である。
非プロント性極性溶媒としては、N−メチル−2
−ピロリドン、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミド、ヘキサメチルホ
スホロトリアミド、ジメチルスルホキシド、γ−
ブチロラクトンなどが好ましく用いられる。 次に、以上のようにして得たポリイミド前駆体
のワニスを適当な支持体上に塗布し、50〜100℃
で乾燥し、ポリイミド前駆体のフイルムを得る。 このようにして得たポリイミド前駆体のフイル
ムを化学的あるいは熱的に処理して脱水閉環する
ことによりポリイミド製フイルムが得られる。 化学的に処理する場合は、ポリイミド前駆体の
フイルムを、無水酢酸とピリジンの混合溶液に浸
漬処理することにより、ポリイミドフイルムを得
る。また熱的に処理する場合は、ポリイミド前駆
体のフイルムを室温から450℃の範囲で数段階の
温度を選び段階的に昇温するか、ある温度範囲を
選び連続的に昇温しながら、5分〜5時間実施す
るのがよい。例えば、130℃、200℃、300℃、400
℃各々30分づつ熱処理するか、または室温から
400℃まで2時間かけて直線的に昇温してもよい。 (特性の測定方法) ヤング率 本発明のヤング率の測定方法は、JIS−
Z1702に基づき、試料幅10mm、試験長50mmの試
験片を東洋ボールドウイン社製テンシロンで20
mm/分の引張速度で測定した。また同時に強度
と伸度を求めた。 耐湿接着性 シリコンウエハー上に形成したポリイミド膜
に、カツターで2mm間隔の切れ目を縦横6本づ
つ形成して25個の碁盤目を作る。これを120℃、
2.0気圧の飽和水蒸気下、所定の時間湿熱処理
を行なう。この試料にセロハン粘着テープ(ニ
チバン(株)製を貼りつけ、JIS D 0202表13、1
に記載の方法に準じて引き剥す。 粘度 東京精密製E型回転粘度計を用いて、ポリイ
ミド前駆体の溶液1mlを注射器にて計量し25℃
にて粘度を測定した。 [実施例] 以下本発明を実施例に基づいて具体的に説明す
る。 実施例1〜3、比較例1、2 PMDA 102.2g、BAPOD 184.2gをN−メチ
ル−2−ピロリドン(以下NMPという)1450g
中で、30℃で1時間、続いて70℃で2時間反応を
行ない、粘度が100ポイズのポリマー溶液(1)(ポ
リイミド前駆体A)を得た。 また、PMDA 104.7g、DAE 100.1gをNMP
1182.1gで、30℃で1時間、続いて70℃で2時間
反応を行ない、粘度が30ポイズのポリマー溶液(2)
(ポリイミド前駆体B)を得た。 以上のようにして作成したポリマー溶液(1)と(2)
を表1に示す割合でそれぞれ混合してポリイミド
前駆体溶液を得た。 得られたそれぞれのポリイミド前駆体溶液につ
いて、初期粘度および25℃で1週間放置後の粘度
変化を調べ、表1に示した。 次に、前述のポリイミド前駆体の混合溶液をシ
リコンウエハー上にスピナーを用いてイミド化後
の厚さが20μ±2μとなるように塗布した。これを
80℃、200℃、300℃、350℃で各々30分づつ熱処
理してポリイミドのフイルムとなし、ヤング率の
測定を行ない表1に示した。 表1において、実施例1〜3が、本発明のポリ
イミド前駆体Aおよび前駆体Bを混合したポリイ
ミド組成物、比較例1がポリイミド前駆体Aのみ
からなるポリイミドの場合、比較例2がポリイミ
ド前駆体Bのみからなるポリイミドの場合であ
る。 表1から明らかごとく、ポリイミド前駆体Aの
みからなるポリイミドの場合はその前駆体のワニ
スが不安定で、5℃で16時間後、ゲル化した。ま
たポリイミド前駆体Bのみからなるポリイミドの
場合は、ヤング率が高いという欠点がある。これ
に対して、本発明のポリイミド組成物からなるフ
イルムは、ヤング率が低い上、優れた強伸度特性
を有するものである。またポリイミド前駆体のワ
ニスの保存安定性も良好で、5℃で1ケ月以上安
定であつた。 実施例 4 PMDA 102.2g、BAPOD 176.8g、1,3−
ビス(3−アミノプロピル)テトラメチルジシロ
キサン5.0gをNMP 1350g中で、30℃で1時間、
続いて70℃で2時間反応を行ない、粘度が80ポイ
ズのポリマー溶液(3)を得た。 以上のようにして作成したポリマー溶液(3)を8
重量部、ポリマー溶液(2)を2重量部混合撹拌して
50ポイズの混合溶液を得た。 ついで、得られたポリイミド前駆体の混合溶液
をシリコンウエハー上にスピナーを用いてイミド
化後の厚さが20μ±2μとなるように塗布した後、
80℃で1時間、200℃、300℃でそれぞれ30分、さ
らに350℃で1時間熱処理を行なつた。 このフイルムはヤング率200Kg/mm2、強度10
Kg/mm2、伸度30%と良好な特性を示した。 また、得られたポリイミド前駆体の混合溶液を
25℃で1週間放置してから粘度変化を調べたとこ
ろ、1週間後の粘度が62ポイズと大きな変化は見
られず良好な値であつた。 比較例 3 PMDA 10.91g、2,2−ビス(4−(4−ア
ミノフエノキシ)フエニル)プロパン16.26gを
NMP 150g中で、30℃で1時間、続いて70℃で
3時間反応を行ない、粘度が100ポイズのポリマ
ー溶液(4)を得た。 以上のようにして作成したポリマー溶液(4)とポ
リマー溶液(1)を2:1の割合で混合、撹拌し、粘
度100ポイズの混合溶液を得た。 次に、得られた混合溶液をシリコンウエハー上
に実施例1と同様にして塗布、イミド化してポリ
イミドのフイルムとなし、ヤング率の測定を行な
つた。得られたフイルムのヤング率は240Kg/mm2
強度14Kg/mm2、伸度40%と比較的良好であつた
が、このポリマー溶液を25℃で1週間放置したと
ころとゲル化し、使用するには不適当なものであ
つた。 [発明の効果] 本発明のポリイミド組成物は、上述のごとく2
種の特定のポリイミド前駆体を特定の割合で配合
せしめたので、低ヤング率にして強度、伸度に優
れた高機能なポリイミドを得ることができたもの
である。また、この発明のポリイミド組成物によ
ればポリイミド前駆体のワニスの保存安定性が良
好(経時によるワニスの粘度変化が少ないうえゲ
ル化しにくい)であるなど顕著な実用効果を奏す
るものである。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a polyimide composition, and more particularly to a polyimide composition capable of obtaining a polyimide having a low Young's modulus. [Prior Art] In recent years, in the semiconductor industry, the integration of semiconductor elements has progressed rapidly, and in the DRAM field, 4M bit level products are being prototyped. However, with this increase in integration, the problem of thermal stress caused by the difference in linear expansion coefficient between the silicon substrate and the resin encapsulant increases, causing cracks in the passivation film and breakage of the aluminum wiring. A strange situation is occurring. Unless these problems are resolved, products with stable quality cannot be obtained. Therefore,
It is desired to develop a heat-resistant resin coating agent with a low Young's modulus to weaken thermal stress, but in the case of conventional polyimide, the Young's modulus is at least 250.
The actual situation is that there are kg/ mm2 . In view of these circumstances, the inventors of the present invention have conducted intensive studies on measures to reduce the Young's modulus of polyimide, and have found that:
The present invention was achieved based on the finding that when a polyimide composition is composed of two specific polyimide precursors, a polyimide having a significantly low Young's modulus and excellent strength and elongation properties can be obtained. [Problems to be Solved by the Invention] Therefore, an object of the present invention is to achieve a low Young's modulus,
Another object of the present invention is to provide a polyimide composition from which a polyimide having excellent strength and elongation can be obtained. [Means for Solving the Problems] The object of the present invention is to provide a polyimide precursor A obtained by reacting 4,4'-bis(aminophenoxy)diphenyl and pyromellitic anhydride;
Polyimide precursor B obtained by reacting 4'-diaminodiphenyl ether and pyromellitic anhydride
and the polyimide precursor A
This is achieved by a polyimide composition in which B and B are blended in a molar ratio of A/B = 5/95 to 95/5. The polyimide precursor A in the present invention comprises 4,
4'-bis(aminophenoxy)diphenyl (hereinafter
BAPOD) and pyromellitic anhydride (hereinafter referred to as BAPOD) and pyromellitic anhydride (hereinafter referred to as
Polyimide precursor B is obtained by reacting 4,4'-diaminodiphenyl ether (hereinafter referred to as DAE).
It is obtained by reacting PMDA. The polyimide composition of the present invention contains the polyimide precursors A and B as described above, and
The precursors A and B have a molar ratio of A/B=5/
It is formulated to have a ratio of 95 to 95/5. The molar ratio of polyimide precursor A to B is
If the molar ratio is more than 95/5, the polyimide precursor varnish tends to gel, resulting in poor storage stability, which is undesirable. If the molar ratio is less than 5/95, a product with a low Young's modulus cannot be obtained. A particularly preferred range is 1/9 to 4/1. The polyimide composition of the present invention can contain other diamines and tetracarboxylic acids as long as they do not affect the Young's modulus. Examples of such diamines include m-phenylenediamine,
3,3'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, benzidine, 4,
Examples include aromatic diamines such as 4'-diaminoterphenyl and 1,3-bis(aminophenoxy)benzene, and aliphatic diamines such as hexamethylene diamine and heptamethylene diamine. Examples of tetracarboxylic acids include 3, 3', 4,
4'-Benzophenonetetracarboxylic acid, 3,3',
4,4'-biphenyltetracarboxylic acid, 3,3'4,
Aromatic carboxylic acids such as 4'-diphenyl ether tetracarboxylic acid, aliphatic tetracarboxylic acids such as 1,2,3,4-butanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid Examples include acids. In order to further improve the adhesion, a siloxane diamine such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane) may be added in an amount of 1 to 6 mol % based on the total amount of amines. Next, an example of a method for producing the polyimide composition of the present invention will be explained. That is, the molar ratio of PMDA to BAPOD in the solvent is preferably 90 to 110 mol%.
The polyimide precursor A of the present invention is produced by reacting at -20°C to 100°C at a blending ratio of: In addition, the molar ratio of PMDA to DAE in a solvent is preferably 90 to 110 mol%, and
The polyimide precursor B of the present invention is produced by reacting at °C. Polyimide precursor A produced as above
and polyimide precursor B in a molar ratio of 5/95~
A precursor of the polyimide composition of the present invention can be obtained by mixing in a ratio of 95/5. As the solvent used in the above production method, it is preferable to use a polar solvent from the viewpoint of solubility of the polymer, and an aprotic polar solvent is particularly preferable.
As the aprontic polar solvent, N-methyl-2
-pyrrolidone, N,N-dimethylformamide,
N,N-dimethylacetamide, hexamethylphosphorotriamide, dimethyl sulfoxide, γ-
Butyrolactone and the like are preferably used. Next, the varnish of the polyimide precursor obtained as described above is applied onto a suitable support, and heated at 50 to 100°C.
to obtain a polyimide precursor film. A polyimide film is obtained by chemically or thermally treating the polyimide precursor film thus obtained to undergo dehydration and ring closure. In the case of chemical treatment, a polyimide film is obtained by immersing a polyimide precursor film in a mixed solution of acetic anhydride and pyridine. In addition, when thermally processing the polyimide precursor film, the temperature can be increased stepwise by selecting several temperatures in the range from room temperature to 450°C, or by selecting a certain temperature range and increasing the temperature continuously. It is recommended that the treatment be carried out for 5 minutes to 5 hours. For example, 130℃, 200℃, 300℃, 400℃
Heat treatment for 30 minutes each, or from room temperature
The temperature may be increased linearly to 400°C over 2 hours. (Method for measuring properties) Young's modulus The method for measuring Young's modulus of the present invention is as follows:
Based on Z1702, a test piece with a sample width of 10 mm and a test length of 50 mm was prepared using a Tensilon manufactured by Toyo Baldwin Co., Ltd. for 20 minutes.
Measurements were made at a tensile rate of mm/min. At the same time, strength and elongation were determined. Moisture-resistant adhesion A cutter is used to make 25 cuts in the polyimide film formed on a silicon wafer at 2 mm intervals, 6 in length and width, creating 25 grids. This is heated to 120℃.
Humid heat treatment is performed for a predetermined period of time under saturated steam at 2.0 atm. Attach cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) to this sample and apply JIS D 0202 Table 13, 1.
Peel off according to the method described in . Viscosity: Using a Tokyo Seimitsu E-type rotational viscometer, measure 1 ml of the polyimide precursor solution with a syringe and heat to 25°C.
The viscosity was measured. [Examples] The present invention will be specifically described below based on Examples. Examples 1 to 3, Comparative Examples 1 and 2 102.2 g of PMDA and 184.2 g of BAPOD were added to 1450 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP).
The reaction was carried out at 30°C for 1 hour and then at 70°C for 2 hours to obtain a polymer solution (1) (polyimide precursor A) having a viscosity of 100 poise. In addition, PMDA 104.7g and DAE 100.1g were added to NMP.
A polymer solution (2) with a viscosity of 30 poise obtained by reacting 1182.1 g at 30°C for 1 hour and then at 70°C for 2 hours
(Polyimide precursor B) was obtained. Polymer solutions (1) and (2) created as above
were mixed in the proportions shown in Table 1 to obtain a polyimide precursor solution. For each of the obtained polyimide precursor solutions, the initial viscosity and the change in viscosity after being left at 25° C. for one week were investigated and shown in Table 1. Next, the mixed solution of the polyimide precursor described above was applied onto a silicon wafer using a spinner so that the thickness after imidization was 20μ±2μ. this
A polyimide film was prepared by heat treatment at 80°C, 200°C, 300°C, and 350°C for 30 minutes each, and its Young's modulus was measured as shown in Table 1. In Table 1, Examples 1 to 3 are polyimide compositions in which polyimide precursor A and precursor B of the present invention are mixed, Comparative Example 1 is a polyimide made only of polyimide precursor A, and Comparative Example 2 is a polyimide composition made of polyimide precursor A. This is the case of polyimide consisting only of body B. As is clear from Table 1, in the case of polyimide made only of polyimide precursor A, the varnish of the precursor was unstable and gelled after 16 hours at 5°C. Further, in the case of polyimide made only of polyimide precursor B, there is a drawback that Young's modulus is high. On the other hand, the film made of the polyimide composition of the present invention has a low Young's modulus and excellent strength and elongation properties. Furthermore, the storage stability of the polyimide precursor varnish was good, and it was stable at 5° C. for more than one month. Example 4 PMDA 102.2g, BAPOD 176.8g, 1,3-
5.0 g of bis(3-aminopropyl)tetramethyldisiloxane was dissolved in 1350 g of NMP at 30°C for 1 hour.
Subsequently, a reaction was carried out at 70°C for 2 hours to obtain a polymer solution (3) with a viscosity of 80 poise. Polymer solution (3) prepared as above was added to 8
parts by weight, and 2 parts by weight of polymer solution (2) were mixed and stirred.
A mixed solution of 50 poise was obtained. Next, the obtained polyimide precursor mixed solution was applied onto a silicon wafer using a spinner so that the thickness after imidization was 20μ±2μ,
Heat treatment was performed at 80°C for 1 hour, at 200°C and 300°C for 30 minutes each, and further at 350°C for 1 hour. This film has a Young's modulus of 200Kg/mm 2 and a strength of 10
It showed good properties with Kg/mm 2 and elongation of 30%. In addition, the mixed solution of the obtained polyimide precursor was
When the viscosity change was examined after being left at 25°C for one week, the viscosity after one week was 62 poise, which was a good value with no major change observed. Comparative Example 3 10.91g of PMDA, 16.26g of 2,2-bis(4-(4-aminophenoxy)phenyl)propane
The reaction was carried out in 150 g of NMP at 30°C for 1 hour and then at 70°C for 3 hours to obtain a polymer solution (4) with a viscosity of 100 poise. Polymer solution (4) and polymer solution (1) prepared as described above were mixed at a ratio of 2:1 and stirred to obtain a mixed solution with a viscosity of 100 poise. Next, the obtained mixed solution was applied onto a silicon wafer in the same manner as in Example 1 and imidized to form a polyimide film, and the Young's modulus was measured. The Young's modulus of the obtained film was 240Kg/mm 2 ,
Although the strength was 14 Kg/mm 2 and the elongation was 40%, which were relatively good, the polymer solution gelled when left at 25° C. for one week, making it unsuitable for use. [Effect of the invention] As described above, the polyimide composition of the present invention has 2
By blending a specific type of polyimide precursor in a specific ratio, it was possible to obtain a highly functional polyimide with a low Young's modulus and excellent strength and elongation. Further, the polyimide composition of the present invention has remarkable practical effects such as good storage stability of the polyimide precursor varnish (the varnish shows little change in viscosity over time and is less likely to gel). 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 4,4′−ビス(アミノフエノキシ)ジフエニ
ルと無水ピロメリツト酸を反応させて得られるポ
リイミド前駆体Aと、4,4′−ジアミノジフエニ
ルエーテルと無水ピロメリツト酸を反応させて得
られるポリイミド前駆体Bとの混合物からなり、
かつ該ポリイミド前駆体AおよびBがモル比で
A/B=5/95〜95/5となるように配合されて
なるポリイミド組成物。
1 Polyimide precursor A obtained by reacting 4,4'-bis(aminophenoxy)diphenyl with pyromellitic anhydride, and polyimide precursor B obtained by reacting 4,4'-diaminodiphenyl ether with pyromellitic anhydride. consisting of a mixture of
and a polyimide composition in which the polyimide precursors A and B are blended in a molar ratio of A/B = 5/95 to 95/5.
JP2970687A 1987-02-13 1987-02-13 Polyimide composition Granted JPS63199237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2970687A JPS63199237A (en) 1987-02-13 1987-02-13 Polyimide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2970687A JPS63199237A (en) 1987-02-13 1987-02-13 Polyimide composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5050992A Division JPH0578484A (en) 1992-03-09 1992-03-09 Polyimide copolymer

Publications (2)

Publication Number Publication Date
JPS63199237A JPS63199237A (en) 1988-08-17
JPH0560500B2 true JPH0560500B2 (en) 1993-09-02

Family

ID=12283551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2970687A Granted JPS63199237A (en) 1987-02-13 1987-02-13 Polyimide composition

Country Status (1)

Country Link
JP (1) JPS63199237A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574162B2 (en) * 1988-01-06 1997-01-22 チッソ株式会社 Low melting point polyimide copolymer
DE4020184A1 (en) * 1990-06-25 1992-01-02 Hoechst Ag PARTIAL FLUORINE BIPHENYLE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JPH04270763A (en) * 1990-12-19 1992-09-28 Mitsui Toatsu Chem Inc Resin composition
JPH0578484A (en) * 1992-03-09 1993-03-30 Toray Ind Inc Polyimide copolymer
JP4967465B2 (en) * 2006-06-08 2012-07-04 三菱瓦斯化学株式会社 Polyimide resin, polyimide film and polyimide laminate
WO2013136807A1 (en) * 2012-03-14 2013-09-19 三井化学株式会社 Polyimide precursor varnish and polyimide resin, and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203638A (en) * 1984-03-29 1985-10-15 Nitto Electric Ind Co Ltd Polyimide film
JPS61143478A (en) * 1984-12-18 1986-07-01 Mitsui Toatsu Chem Inc Heat-resistant adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203638A (en) * 1984-03-29 1985-10-15 Nitto Electric Ind Co Ltd Polyimide film
JPS61143478A (en) * 1984-12-18 1986-07-01 Mitsui Toatsu Chem Inc Heat-resistant adhesive

Also Published As

Publication number Publication date
JPS63199237A (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US9334368B2 (en) Polyimide precursor solution composition
KR101948819B1 (en) Polyimide precursor composition, preparation method thereof and polyimide substrate prepared from the composition
JPS6270423A (en) Production of organosilicon-terminated polyimide precursor and polyimide
JPH05178992A (en) Polyimide-siloxane extended block copolymer
TWI714944B (en) Polyamic acid composition with improved storage stability, method for preparing polyimide film by using the same, polyimide film prepared by the same and electronic device
US4876329A (en) Polyimide polymers and copolymers using 3,5-diaminobenzotrifluoride
JPS5813087B2 (en) Method for producing siloxane-modified polyimide precursor
TWI723360B (en) Polyimide precursor composition comprising crosslinkable dianhydride compound and antioxidant, polyimide film prepared therefrom and preparation method thereof, and electronic device comprising the same
JPS5813088B2 (en) Method for producing siloxane-modified polyimide precursor
JPS63317554A (en) Liquid polyimide polymer composition
JPH0560500B2 (en)
JPH07500625A (en) Low thermal expansion polyimide with improved elongation
JP3608929B2 (en) Polyimide composition
US3853813A (en) Polyimide precursor and method and composition for preparing it
JPH0347838A (en) Manufacture of end-treated polyamic acid polyimide
JPH01121325A (en) Polyimidesiloxane and composition containing same
CN109384921A (en) The preparation method of polyimide precursor composition and the polyimide film using it
JPS5837326B2 (en) Nendo Anteiseino Polyamide Imide Equino Seihou
JPS62135529A (en) Polyimide precursor
JPH0578483A (en) Polyimide copolymer
JP2003176354A (en) Transparent and heat resistant polyimide film
JPH0553180B2 (en)
JPH0578484A (en) Polyimide copolymer
JPH02209923A (en) New polyamide
JPS63305129A (en) Polyimide composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees