JPH0560459B2 - - Google Patents

Info

Publication number
JPH0560459B2
JPH0560459B2 JP60047294A JP4729485A JPH0560459B2 JP H0560459 B2 JPH0560459 B2 JP H0560459B2 JP 60047294 A JP60047294 A JP 60047294A JP 4729485 A JP4729485 A JP 4729485A JP H0560459 B2 JPH0560459 B2 JP H0560459B2
Authority
JP
Japan
Prior art keywords
less
catalyst
carbon number
reaction
total carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60047294A
Other languages
Japanese (ja)
Other versions
JPS61207365A (en
Inventor
Akira Yamada
Junko Shigehara
Ryuichiro Kurata
Michiji Hikosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP60047294A priority Critical patent/JPS61207365A/en
Publication of JPS61207365A publication Critical patent/JPS61207365A/en
Publication of JPH0560459B2 publication Critical patent/JPH0560459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の分野〕 本発明は、4−ニトロフタロニトリルと脂肪族
あるいは脂環式あるいはアラルキルあるいは芳香
族の一級または二級または三級のモノオールない
しジオールとを、第三級アミンを触媒として反応
させて下記の一般式で示される4−アルコキシフ
タロニトリル誘導体を製造する方法であつて、該
第三級アミンは、全炭素数が12以下の脂環式アミ
ン、全炭素数が12以下の芳香族アミン及び全炭素
数が12以下の脂肪族アミンからなる群から選ばれ
ることを特徴とする4−アルコキシフタロニトリ
ル誘導体の製造方法に関する。 ここにRはアルキレン、シクロアルキレン、ア
ラルキレンないしアリーレン基より選ばれ、Rの
炭素数は20以下、Xは水素またはヒドロキシル基
または1′,2′−ジシアノ−4′−フエノキシ基を示
す。 〔従来の技術〕 4−ニトロフタロニトリルと前記アルコール類
との反応による式(1)の4−アルコキシフタロニト
リル誘導体の製造方法は、「T.M.ケラー(T.M.
Keller)他シンセシス(Synthesis)613(1980)」
に記載されている。 この反応は次式(2)で表される。
[Field of the Invention] The present invention relates to the reaction of 4-nitrophthalonitrile with an aliphatic, cycloaliphatic, aralkyl, or aromatic primary, secondary, or tertiary monool or diol using a tertiary amine as a catalyst. A method for producing a 4-alkoxyphthalonitrile derivative represented by the following general formula, wherein the tertiary amine is an alicyclic amine having a total carbon number of 12 or less, an aromatic amine having a total carbon number of 12 or less. The present invention relates to a method for producing a 4-alkoxyphthalonitrile derivative, characterized in that the 4-alkoxyphthalonitrile derivative is selected from the group consisting of 4-alkoxyphthalonitrile amines and aliphatic amines having a total carbon number of 12 or less. Here, R is selected from alkylene, cycloalkylene, aralkylene or arylene groups, R has 20 or less carbon atoms, and X represents hydrogen, a hydroxyl group, or a 1',2'-dicyano-4'-phenoxy group. [Prior Art] A method for producing the 4-alkoxyphthalonitrile derivative of formula (1) by reacting 4-nitrophthalonitrile with the alcohols described above is known from "TM Keller (TM
Keller et al. Synthesis 613 (1980)”
It is described in. This reaction is expressed by the following formula (2).

〔発明が解決しようとする問題点) ところでこの反応は、副生したHNO2がHNO3に酸化されて、これが酸化剤として作用するのを防止するために、不活性ガス雰囲気下で行うことが必要である。さらに、HNO2を反応系から除去するために塩基性触媒が使用される。このような塩基性触媒としては、従来、無水K2CO3、無水Na2CO3などのアルカリ金属炭酸塩が使用されている。しかしアルカリ金属炭酸塩は上記溶媒に貧溶であるためHNO2除去能力が低く、HNO2が原因となる副反応、例えば黒褐色タール状物の副生、などを引き起す可能性が高い。特に、式(3)の反応により生ずる可能性の高いMOHが、式(2)の反応を妨害することは上記文献にも述べられている通りである。 HNO2+M2CO3→M・NO2+M・HCO3 M・HCO3→熱MOH+CO2 (3) (ここにMはアルカリ金属イオンを示す。) さらに、塩基性触媒は単にHNO2を除去するのみではなく、式(4)の平衡により、アルコキシドアニオン−R−O-を誘起して式(2)の置換反応を円滑に進行させる役目も果しているが、炭酸塩を用いた場合はその貧溶性および低塩基性のため、式(4)の平衡が起こりにくく、従つて高温かつ長時間の反応が必要となる結果、出発物質である4−ニトロ−1,2−フタロニトリルおよび生成物である4−アルコキシ−1,2−フタロニトリル誘導体の縮合などの副反応が起きるという欠点がある。 Y−R−OH+M・2CO3Y−R−O-+M++MHCO3 または Y−R−OH+BY−R−O-+BH+ (4) (ここにY,Rは式(2)と同義、Mは式(3)と同義、Bは既述の第三級アミン類を示す。) このように触媒としてアルカリ金属炭酸塩を用いる従来法では、反応系が不均一となり、収率を高くするには強力な攪拌と高温を要する。また、触媒表面がしだいに副生成物で覆われて活性を失うため、数回に分けて過剰量を加える必要がある。特に相手反応物がC1〜C3程度の沸点の低い低級アルコールの場合は、不活性ガス気流下にそれらの沸点以下で長時間攪拌するか、あるいは不活性ガス雰囲気の耐圧密閉容器中で高温反応を行なわねばならない。このような反応条件は一般にフタロニトリル誘導体の縮合を引き起し、目的物の収量が低くなるばかりでなく、副生成物が多量に混入してくる欠点がある。 〔問題点を解決するための手段〕[Problem to be solved by the invention] By the way, this reaction can be carried out under an inert gas atmosphere in order to prevent the by-produced HNO 2 from being oxidized to HNO 3 and acting as an oxidizing agent. is necessary. Additionally, a basic catalyst is used to remove HNO2 from the reaction system. As such basic catalysts, alkali metal carbonates such as anhydrous K 2 CO 3 and anhydrous Na 2 CO 3 are conventionally used. However, since alkali metal carbonates are poorly soluble in the above solvents, their ability to remove HNO 2 is low, and there is a high possibility that side reactions caused by HNO 2 will occur, such as the production of dark brown tar-like substances. In particular, as stated in the above literature, MOH, which is likely to be produced by the reaction of formula (3), interferes with the reaction of formula (2). HNO 2 +M 2 CO 3 →M・NO 2 +M・HCO 3 M・HCO 3 →thermal MOH + CO 2 (3) (where M represents an alkali metal ion) Furthermore, basic catalysts simply remove HNO 2 In addition, due to the equilibrium in formula (4), the alkoxide anion -R-O - is induced and the substitution reaction in formula (2) proceeds smoothly. Due to its solubility and low basicity, the equilibrium of formula (4) is difficult to occur, and therefore a high temperature and long reaction time is required. A drawback is that side reactions such as condensation of certain 4-alkoxy-1,2-phthalonitrile derivatives occur. Y−R−OH+M・2 CO 3 Y−R−O +M + +MHCO 3 or Y−R−OH+BY−R−O +BH + (4) (here, Y and R are synonymous with formula (2), M is synonymous with formula (3), and B represents the tertiary amines mentioned above.) In this way, in the conventional method using an alkali metal carbonate as a catalyst, the reaction system becomes heterogeneous, and in order to increase the yield, requires strong stirring and high temperatures. Furthermore, since the surface of the catalyst gradually becomes covered with by-products and loses its activity, it is necessary to add an excessive amount in several portions. In particular, when the partner reactant is a lower alcohol with a low boiling point of about C1 to C3 , it must be stirred for a long time below its boiling point under a stream of inert gas, or stirred at high temperature in a pressure-resistant closed container in an inert gas atmosphere. A reaction must be carried out. Such reaction conditions generally cause condensation of phthalonitrile derivatives, resulting in not only a low yield of the target product but also the disadvantage of contaminating large amounts of by-products. [Means for solving problems]

本発明者は、上記反応の触媒として、全炭素数
が12以下の脂環式アミン、全炭素数が12以下の芳
香族アミン及び全炭素数が12以下の脂肪族アミン
からなる群から選ばれる第三級アミンを使用する
ことにより、上記問題点を解決できることを見出
し、本発明を完成するに至つた。 本発明は、4−ニトロフタロニトリルと脂肪族
あるいは脂環式あるいはアラルキルあるいは芳香
族の一級または二級または三級のモノオールない
しジオールとを、第三級アミンを触媒として反応
させて下記の一般式で示される4−アルコキシフ
タロニトリル誘導体を製造する方法であつて、該
第三級アミンは、全炭素数が12以下の脂環式アミ
ン、全炭素数が12以下の芳香族アミン及び全炭素
数が12以下の脂肪族アミンからなる群から選ばれ
ることを特徴とする4−アルコキシフタロニトリ
ル誘導体の製造方法である。 本発明は、炭酸塩を用いた従来技術の欠点を大
巾に改善するものであり、反応溶媒に可溶かつ塩
基性の高い既述の第三級アミン類を触媒とし、低
温たとえば50℃〜100℃、好ましくは60℃〜90℃、
短時間たとえば1時間〜30時間、好ましくは2〜
25時間の温和な条件で収率良く目的物を製造し、
さらに副反応が極めて少ないため未反応の高価な
出発物質である4−ニトロ−1,2−フタロニト
リルをほぼ定量的に回収できることを特徴とす
る。 本発明に用いられる第三級アミン類は、炭素原
子数12以下のものであり、炭素原子数13以上では
分子量が大きくなり、触媒能が低下する。これら
の第三級アミン類はその塩基性度から次の三群に
分けられる。 A 高塩基性群 含二窒素二脂環式化合物:1,4−ジアザビシ
クロ〔2,2,2〕オクタン、1,5−ジア
ザビシクロ〔4,3,0〕ノネン−(5)、1,
8−ジアザビシクロ〔5,4,0〕ウンデセ
ン−(7)、など、 および4−ジメチルアミノピリジン、2−
ジメチルアミノピリジン B 中塩基性群 含窒素脂環式化合物:1,4−ジメチルピペラ
ジン、1−メチルピペリジン、1−メチルモ
ルホリン、など 脂肪族アミン:トリエチルアミン、トリプロピ
ルアミン、など C 低塩基性群 含窒素芳香族化合物:ピリジン、2−または4
−メチルピリジン、2,4−または2,6−
ジメチルピリジン、2,4,6−トリメチル
ピリジンなど これら三群の触媒能には、例えばtert−ブタノ
ールのようにアルコキシドアニオンを形成しやす
いY−R−OHとの反応では著しく差異は認めら
れない。しかし、メタノール等のアルコキシドア
ニオンを形成しにくく、低沸点の、従つて60℃程
度の低温で反応を行わざるを得ないY−R−OH
を対象とするときは、A群の触媒を用いれば比較
的短時間で収率良く目的物を得ることができる。
Y−R−OHと触媒の組合せの好適な例を以下に
示す。 高塩基性触媒群−メタノール、エタノール、n
−プロピルアルコール、など 中塩基性触媒群−エチレングリコール、プロピ
レングリコール、C4以上のn−アルコール、な
ど 低塩基性触媒群−フエノ−ル、ベンジルアルコ
ール、ヒドロキノン、など。 〔発明の効果〕 本発明では、反応溶媒であるDMF,DMSOな
どに可溶な、全炭素数が12以下の脂環式アミン、
全炭素数が12以下の芳香族アミン及び全炭素数が
12以下の脂肪族アミンからなる群から選ばれる第
三級アミンを触媒とするため、反応系が均一とな
り、50〜60℃程度の低温でも円滑に反応が進行し
て目的物の収率が高いだけではなく、フタロニト
リル誘導体の縮合などの副反応が起らないため分
離が容易であり、特に、未反応の高価な4−ニト
ロフタロニトリルをほぼ定量的に回収できる。 このように、本発明の製造方法は、反応条件の
改善、反応時間の短縮、分離精製を容易にし、目
的物収率および未反応出発物質の回収率を極めて
高くできる特徴を有する。 フタロニトリル誘導体は、そのまま、あるいは
アンモニアと反応させてジイミノイソインドリン
誘導体とした後にアルカリ土類ないし遷移金属の
塩の存在下または無存在下に塩基性媒体(例えば
ジメチルアミノ−2−エタノールなど)中での加
熱反応により(金属)フタロシアニン誘導体を与
え、これらは色素、電子材料、酸化還元触媒等に
用いられている。しかしながら、置換基を持たな
い(金属)フタロシアニンは化学的には安定であ
るが、濃硫酸や沸騰DMFなどにわずかに溶解す
るのみであり、昇華法でしか精製できず、利用条
件も極めて限定されている。 本発明で得られる式(1)の化合物より上記と同様
にして得られる該当する(金属)フタロシアニン
誘導体は、式(1)に示すところのR基の存在により
溶剤可溶性となり、精製が容易なばかりでなく、
塗装、キヤスト製膜、蒸着製膜、スパツタ製膜、
他物質との混合、などの種々の手法により成形、
製膜が可能であり、色素、電子材料、酸化還元触
媒等用の部材として極めて有用である。かつ、該
(金属)フタロシアニン誘導体は、均一溶液中各
種試薬と反応させて、種々の化学修飾を行える特
徴を有する。 このように本発明は、溶媒可溶性の(金属)フ
タロシアニン誘導体の重要な中間原料である式(1)
の4−アルコシキフタロニトリル誘導体を収率良
く生産する新規な製造方法を与えるものである。 〔実施例〕 次に本発明を、実施例によりさらに詳細に説明
する。 実施例 1 4−ニトロ−1,2−フタロニトリル(以下
NPNと略す)50g(0.29モル)、メタノール14.23
ml(0.35モル)を100mlの脱水DMFに溶解し、
CaCl2乾燥管付き環流管、窒素導入管、攪拌装置
を備えた300ml4つ口フラスコに入れ、攪拌しな
がら窒素雰囲気下に1,8−ジアザビシクロ
〔5,4,0〕ウンデセン−(7)(以下DBUと略
す)を43.07ml(0.29モル)加え、60℃にて24時
間反応させた。冷却後40℃以下にて溶媒を減圧留
去し、適量のクロロホルムを加えて溶解、600ml
の氷冷6N−HCl中に投じ、クロロホルム相を分
離した。水相を100ml×3回のクロロホルムで抽
出して先のクロロホルム相と合わせ、無水硫酸ナ
トリウムで乾燥、濾過、活性炭脱色処理し、溶媒
を減圧濃縮した。冷却後析出する黄色結晶を濾集
し、母液をさらに濃縮して再結晶し、白色結晶を
濾集した。分析の結果、黄色結晶は原料のNPN
(回収量2.1g、4.2%)であり、白色結晶は目的
の4−メトキシ−1,2−フタロニトリル(収量
42.3g、93.4%)であつた。なお、NPNの回収率
と目的物の収率の和を、以下総回収率(本実施例
では4.2+93.4=97.6%)と称することにする。 4−メトキシ−1,2−フタロニトリル NMR(CDCl3、δppm):Ha7.1、7.2(1H)、
Hb7.2(1H)、Hc7.65、7.7(1H)、CH33.9(3H) IR(KBr錠剤、cm-1):νφ-H3100,3050,3000,
νCH32950,2850,νCN2250 Rf(クロロホルム、シリカゲル薄膜クロマ
ト):0.40 参考例 1 NPN50g(0.29モル)、メタノール14.23ml
(0.35モル)、DMF100mlを実施例1と同様の装置
に入れ、乾燥窒素雰囲気下60℃にて無水K2CO3
を10gずつ加温直後から3時間毎に合計6回加
え、24時間反応させた。この後実施例1と同様に
操作し、目的の4−メトキシ−1,2−フタロニ
トリルを10.6g(22.3%)、未反応のNPNを4.3g
(8.6%)得た。総回収率は30.9%であり、実施例
1の結果よりも著しく低い。また、残りの70%程
は、淡緑色不溶物となり、IR分析によるとニト
リル基を失つた縮合物であると推察された。 実施例 2〜10 第1表に示す通りの各種アルコール類、触媒を
用い、第1表に示す通りの反応条件とした他は、
実施例1と同様に反応を行い、該当する目的物を
得た。目的物の確認は、それらに共通なIRスペ
クトル特性吸収帯:νNO21550,1330cm-1の消失、
2800〜3080cm-1のνCH2、νCH、νCH3の出現、νCN
2250の保持、νC-O-C1210、1100の出現、および
FD−Massスペクトル(第1表中m/e値として
記載)により行つた。
The present inventor provides that the catalyst for the above reaction is selected from the group consisting of alicyclic amines having a total carbon number of 12 or less, aromatic amines having a total carbon number of 12 or less, and aliphatic amines having a total carbon number of 12 or less. The inventors have discovered that the above problems can be solved by using a tertiary amine, and have completed the present invention. The present invention involves the reaction of 4-nitrophthalonitrile with an aliphatic, alicyclic, aralkyl, or aromatic primary, secondary, or tertiary monool or diol using a tertiary amine as a catalyst. A method for producing a 4-alkoxyphthalonitrile derivative represented by the formula, wherein the tertiary amine is an alicyclic amine having a total carbon number of 12 or less, an aromatic amine having a total carbon number of 12 or less, and a total carbon This is a method for producing a 4-alkoxyphthalonitrile derivative, characterized in that the 4-alkoxyphthalonitrile derivative is selected from the group consisting of aliphatic amines having a number of 12 or less. The present invention greatly improves the drawbacks of the conventional technology using carbonates, and uses the above-mentioned tertiary amines, which are soluble in the reaction solvent and highly basic, as a catalyst, and is 100℃, preferably 60℃~90℃,
Short time, for example 1 hour to 30 hours, preferably 2 to 30 hours
The desired product is produced in good yield under mild conditions for 25 hours,
Furthermore, since there are very few side reactions, the unreacted and expensive starting material 4-nitro-1,2-phthalonitrile can be recovered almost quantitatively. The tertiary amines used in the present invention have 12 or less carbon atoms, and if the number of carbon atoms is 13 or more, the molecular weight becomes large and the catalytic ability decreases. These tertiary amines can be divided into the following three groups based on their basicity. A Highly basic group Dinitrogen-containing dialicyclic compounds: 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]nonene-(5), 1,
8-diazabicyclo[5,4,0]undecene-(7), etc., and 4-dimethylaminopyridine, 2-
Dimethylaminopyridine B Medium basic group Nitrogen-containing alicyclic compounds: 1,4-dimethylpiperazine, 1-methylpiperidine, 1-methylmorpholine, etc. Aliphatic amines: triethylamine, tripropylamine, etc. C Low basic group Contains Nitrogen aromatic compound: pyridine, 2- or 4
-methylpyridine, 2,4- or 2,6-
Dimethylpyridine, 2,4,6-trimethylpyridine, etc. There is no significant difference in the catalytic ability of these three groups when reacting with Y-R-OH, which tends to form alkoxide anions, such as tert-butanol. However, it is difficult to form alkoxide anions such as methanol, and Y-R-OH has a low boiling point, so the reaction must be carried out at a low temperature of about 60°C.
When targeting , the target product can be obtained in a relatively short time and in good yield by using a group A catalyst.
Preferred examples of combinations of Y-R-OH and catalysts are shown below. Highly basic catalyst group - methanol, ethanol, n
- Propyl alcohol, etc. Medium basic catalyst group - Ethylene glycol, propylene glycol, n-alcohols with C4 or more, etc. Low basic catalyst group - Phenol, benzyl alcohol, hydroquinone, etc. [Effects of the Invention] In the present invention, an alicyclic amine having a total carbon number of 12 or less, which is soluble in a reaction solvent such as DMF or DMSO,
Aromatic amines with a total carbon number of 12 or less and
Since the catalyst is a tertiary amine selected from the group consisting of aliphatic amines of 12 or less, the reaction system becomes homogeneous, and the reaction proceeds smoothly even at low temperatures of about 50 to 60 degrees Celsius, resulting in a high yield of the target product. In addition, separation is easy because side reactions such as condensation of phthalonitrile derivatives do not occur, and in particular, unreacted and expensive 4-nitrophthalonitrile can be recovered almost quantitatively. As described above, the production method of the present invention has the characteristics of improving reaction conditions, shortening reaction time, facilitating separation and purification, and making it possible to extremely increase the yield of the target product and the recovery rate of unreacted starting materials. The phthalonitrile derivative can be used as it is or after being reacted with ammonia to form a diiminoisoindoline derivative, it can be reacted with a basic medium (e.g. dimethylamino-2-ethanol) in the presence or absence of an alkaline earth or transition metal salt. The heating reaction inside produces (metal) phthalocyanine derivatives, which are used in pigments, electronic materials, redox catalysts, etc. However, although unsubstituted (metallic) phthalocyanine is chemically stable, it is only slightly soluble in concentrated sulfuric acid or boiling DMF, and can only be purified by sublimation, and its usage conditions are extremely limited. ing. The corresponding (metal) phthalocyanine derivative obtained from the compound of formula (1) obtained in the present invention in the same manner as described above becomes solvent soluble due to the presence of the R group shown in formula (1), and is easy to purify. Not, but
Painting, cast coating, vapor deposition coating, spatter coating,
Molding by various methods such as mixing with other substances,
It is possible to form a film and is extremely useful as a member for dyes, electronic materials, redox catalysts, etc. In addition, the (metal) phthalocyanine derivative has the characteristic that it can be reacted with various reagents in a homogeneous solution to perform various chemical modifications. In this way, the present invention has demonstrated that the formula (1) is an important intermediate raw material for solvent-soluble (metal) phthalocyanine derivatives.
The object of the present invention is to provide a novel manufacturing method for producing 4-alkoxyphthalonitrile derivatives with good yield. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 4-nitro-1,2-phthalonitrile (hereinafter referred to as
(abbreviated as NPN) 50g (0.29mol), methanol 14.23
ml (0.35 mol) in 100 ml dehydrated DMF,
Place CaCl2 into a 300 ml four-necked flask equipped with a reflux tube with a drying tube, a nitrogen inlet tube, and a stirring device, and place 1,8-diazabicyclo[5,4,0]undecene-(7) (hereinafter referred to as 1,8-diazabicyclo[5,4,0]undecene-(7) 43.07 ml (0.29 mol) of DBU (abbreviated as DBU) was added thereto, and the mixture was reacted at 60°C for 24 hours. After cooling, remove the solvent under reduced pressure at 40℃ or less, add an appropriate amount of chloroform and dissolve, 600ml.
of ice-cold 6N-HCl, and the chloroform phase was separated. The aqueous phase was extracted three times with 100 ml of chloroform, combined with the previous chloroform phase, dried over anhydrous sodium sulfate, filtered, and decolorized with activated carbon, and the solvent was concentrated under reduced pressure. After cooling, the precipitated yellow crystals were collected by filtration, the mother liquor was further concentrated and recrystallized, and the white crystals were collected by filtration. As a result of analysis, the yellow crystals are NPN, the raw material.
(Recovered amount: 2.1 g, 4.2%), and the white crystals are the desired 4-methoxy-1,2-phthalonitrile (yield:
42.3g, 93.4%). Note that the sum of the recovery rate of NPN and the yield of the target product will be hereinafter referred to as the total recovery rate (4.2+93.4=97.6% in this example). 4-methoxy-1,2-phthalonitrile NMR (CDCl 3 , δppm): Ha7.1, 7.2 (1H),
Hb7.2 (1H), Hc7.65, 7.7 (1H), CH 3 3.9 (3H) IR (KBr tablet, cm -1 ): νφ -H 3100, 3050, 3000,
ν CH3 2950, 2850, ν CN 2250 Rf (chloroform, silica gel thin film chromatography): 0.40 Reference example 1 NPN 50g (0.29 mol), methanol 14.23ml
(0.35 mol) and 100 ml of DMF were placed in the same apparatus as in Example 1, and anhydrous K 2 CO 3 was added at 60°C under a dry nitrogen atmosphere.
Immediately after heating, 10 g of the solution was added a total of 6 times every 3 hours, and the reaction was allowed to proceed for 24 hours. After that, the same procedure as in Example 1 was carried out to obtain 10.6 g (22.3%) of the target 4-methoxy-1,2-phthalonitrile and 4.3 g of unreacted NPN.
(8.6%) obtained. The total recovery rate was 30.9%, which is significantly lower than the results of Example 1. The remaining 70% was a pale green insoluble material, and IR analysis suggested that it was a condensate that had lost the nitrile group. Examples 2 to 10 Various alcohols and catalysts were used as shown in Table 1, and the reaction conditions were as shown in Table 1.
The reaction was carried out in the same manner as in Example 1, and the corresponding target product was obtained. Confirmation of the target object is through the disappearance of their common IR spectral characteristic absorption band: ν NO2 1550, 1330 cm -1 ,
Appearance of ν CH2 , ν CH , ν CH3 from 2800 to 3080 cm −1 , ν CN
retention of 2250, ν COC 1210, appearance of 1100, and
This was performed using FD-Mass spectrum (described as m/e value in Table 1).

【表】 実施例 11 NPN50g(0.29モル)、エチレングリコール93
g(1.5モル)、ピリジン22.9g(0.29モル)、
DMF100mlを、実施例1と同様に80℃にて2時間
反応させ、同様の塩酸処理、抽出操作を行つて得
た粗生成物を、シリカゲルカラム(φ10×30cm、
100メツシユ、クロロホルム/メタノール=10/1)
にて分割し、Rf=0.95,0.62,0.38の三成分を得
た。分析の結果、第1成分は1,2−ビス〔4′−
(1′,2′−ジシアノフエニルオキシ)〕エタン1.2g
(2.6%)、第2成分は4−(2′−ヒドロキシエチル
オキシ)1,2−フタロニトリル50.8g(93.4
%)、第3成分は未反応のNPN1.1g(2.2%)で
あつた。但し、収率はNPN基準である。 1,2−ビス〔4′−(1′,2′−ジシアノフエニル
オキシ)〕エタン NMR(CDCl3、δppm):φ−H7.1、7.2、7.65、
7.7(6H)、CH24.2(4H) IR(KBr錠剤、cm-1):ν〓-H3100、3050、3000、
νCH22955、2853、νCN2250 元素分析(wt%、カツコ内計算値)::C68.55
(68.78)、H3.18(3.21)、N17.86(17.82) 4−(2′−ヒドロキシエチルオキシ)−1,2−
フタロニトリル NMR(CDCl3、δppm):φ−H7.15、7.22、
7.65、7.7(3H)、CH23.8,4.15(4H)、OH4.7
(1H) IR(KBr錠剤、cm-1):νOH3430,ν〓-H3100、
3055、3025、νCH22950、2845、νCN2245 元素分析(wt%、カツコ内計算値):C63.95
(63.82)、H4.41(4.28)、N14.85(14.89) 実施例 12 エチレングリコールの仕込み量を9g(0.15モ
ル)とした他は、実施例11と全く同様に処理し、
カラムクロマト第1成分に1,2−ビス〔4′−
(1′,2′−ジシアノフエニルオキシ)〕エタン42.43
g(93.1%)、第2成分に4−(2′−ヒドロキシエ
チルオキシ)−1,2−フタロニトリル0.8g
(1.5%)、第3成分に未反応のNPN1,7g(3.4
%)を得た。但し、収率はNPN基準である。 実施例 13 2,5−ヘキサンジオール177g(1.5モル)を
用いた他は、実施例11と同様に処理し、カラムク
ロマト分割によりRf=0.98,0,73,0.38の三成
分を得た。分析の結果、第1成分は2,5−ビス
〔4′−(1′,2′−ジシアノフエニルオキシ)〕ヘキ

ン6.5g(13.1%)、第2成分は4−〔2′−(5′−ヒ
ドロキシヘキシルオキシ)〕−1,2−フタロニト
リル58.6g(83.0%)、第3成分は未反応の
NPN1.8g(3.6%)であつた。なお、Rf=0.69に
4−〔5′−(2′−ヒドロキシヘキシルオキシ)〕−
1,2−フタロニトリルと推定される物質がわず
かに認められた。 第1成分、第2成分ともに、実施例12で既述の
相当する第1成分及び第2成分のIRと酷似して
おり、νCH2振動帯の深さのみが異なる。 2,5−ビス−〔4′−(1′,2′−ジシアノフエニ
ルオキシ)〕ヘキサン 元素分析(wt%、カツコ内計算値):C71.45
(71.34)、H4.95(4.90)、N14.97(15.13) 4−(2′−(5′−ヒドロキシヘキシルオキシ)〕−
1,2−フタロニトリル 元素分析(wt%、カツコ内計算値):C68.76
(68.83)、H6.60(6.60)、N11.52(11.47) 実施例 14 NPN50g(0.29モル)、ベンジルアルコール
37.63g(0.35モル)、4−メチルピリジン27.0g
(0.29モル)を80℃で2時間実施例1と同様の装
置にて反応させ、同様に分別再結晶した。分析の
結果、白色結晶主生成物63.25g(93.1%)が目
的の4−ベンジルオキシ−1,2−フタロニトリ
ルであり、また淡黄色結晶として未反応の
NPN1.1g(2.2%)が回収された。 4−ベンジルオキシ−1,2−フタロニトリル 元素分析(wt%、カツコ内計算値):C76.55
(76.91)、H4.39(4.30)、N12.20(11.96) 実施例 15 NPN50g(0.29モル)、ヒドロキノン16.52g
(0.15モル)、2−メチルピリジン27.0g(0.29モ
ル)を実施例11と同様に処理し、カラムクロマト
分割によりRf=0.83,0.44,0.38の三成分を得た。
分析の結果、第1成分はp−ジ〔4−(1,2−
ジシアノフエニルオキシ)〕フエニレン47.11g
(89.7%)、第2成分は4−〔4′−(ヒドロキシフエ
ニルオキシ)〕−1,2−フタロニトリル2.36g
(3.4%)、第3成分は未反応のNPN2.2g(4.4%)
であつた。 p−ジ〔4−(1,2−ジシアノフエニルオキ
シ)〕フエニレン 元素分析(wt%、カツコ内計算値):C72.88
(72.92)、H2.69(2.78)、N15.55(15.46) 4−〔4′−(ヒドロキシフエニルオキシ)〕−1,
2−フタロニトリル 元素分析(wt%、カツコ内計算値):C71.36
(71.18)、H3.36(3.41)、N11.92(11.86) 参考例 2 実施例9で得られた4−(オクチルオキシ)−
1,4−フタロニトリル27.2gを、ガス導入管、
乾燥管付還流管、滴下ロートを備えた300ml4ツ
口フラスコに入れ、滴下ロート内に金属ナトリウ
ム0.2g、脱水メタノール200mlを入れる。脱水ア
ンモニアガスを激しく通じながら3分程度でメタ
ノール溶液を加え、室温で2時間、沸点還流下に
1時間攪拌する。氷冷後、析出する結晶を濾集
し、減圧乾燥し、5−(オクチルオキシ)ジイミ
ノイソインドリンを約95%の収率で得た。このも
のは強吸湿性であり、IRよりニトリルの消失、
1570,1650,3450cm-1のイミノイソインドリンに
特有な吸収帯の出現により確認した。 上記ジイミノイソインドリン14.5g(約0.05モ
ル)を80mlのN,N−ジメチルアミノ−2−エタ
ノールに溶解、乾燥窒素を通じながら沸点還流下
に5時間反応させ、冷却後大量のメタノール中に
投じて、緑色沈殿を濾集、減圧乾燥し、テトラ
(オクチルオキシ)フタロシアニン3.2g(20%)
を得た。可視吸収スペクトル(CHCl3)は668、
702nmに最大吸収を有し、それぞれlogε=5.10、
4.98であり、通常の無置換フタロシアニンと酷似
している。また、ジイミノイソインドリンの閉還
反応において、二価金属塩を共存させれば、中心
金属を有するフタロシアニン誘導体が30〜40%の
収率で得られる。 テトラ(オクチルオキシ)フタロシアニンは低
級脂肪族アルコールを除く殆んど全ての有機溶媒
に可溶であり、相当する金属塩もクロロホルム、
ベンゼン、テトラヒドロフラン等に可溶である。
また、アルコキシ置換基がC3以上であれば、中
心金属の有無にかかわらず、少くともクロロホル
ムに可溶である。
[Table] Example 11 NPN 50g (0.29 mol), ethylene glycol 93
g (1.5 mol), pyridine 22.9 g (0.29 mol),
100 ml of DMF was reacted at 80°C for 2 hours in the same manner as in Example 1, and the crude product obtained by performing the same hydrochloric acid treatment and extraction procedure was applied to a silica gel column (φ10 × 30 cm,
100 mesh, chloroform/methanol = 10/1)
to obtain three components of Rf=0.95, 0.62, and 0.38. As a result of analysis, the first component was 1,2-bis[4'-
(1',2'-dicyanophenyloxy)]ethane 1.2g
(2.6%), the second component is 4-(2'-hydroxyethyloxy)1,2-phthalonitrile 50.8g (93.4%)
%), and the third component was 1.1 g (2.2%) of unreacted NPN. However, the yield is based on NPN. 1,2-bis[4'-(1',2'-dicyanophenyloxy)]ethane NMR (CDCl 3 , δppm): φ-H7.1, 7.2, 7.65,
7.7 (6H), CH 2 4.2 (4H) IR (KBr tablet, cm -1 ): ν -H 3100, 3050, 3000,
ν CH2 2955, 2853, ν CN 2250 Elemental analysis (wt%, calculated value in Katsuko):: C68.55
(68.78), H3.18 (3.21), N17.86 (17.82) 4-(2'-hydroxyethyloxy)-1,2-
Phthalonitrile NMR (CDCl 3 , δppm): φ−H7.15, 7.22,
7.65, 7.7 (3H), CH 2 3.8, 4.15 (4H), OH4.7
(1H) IR (KBr tablet, cm -1 ): ν OH 3430, ν〓 -H 3100,
3055, 3025, ν CH2 2950, 2845, ν CN 2245 Elemental analysis (wt%, calculated value in Katsuko): C63.95
(63.82), H4.41 (4.28), N14.85 (14.89) Example 12 Processed in exactly the same manner as in Example 11, except that the amount of ethylene glycol charged was 9 g (0.15 mol),
1,2-bis[4'-
(1′,2′-dicyanophenyloxy)]ethane 42.43
g (93.1%), 4-(2'-hydroxyethyloxy)-1,2-phthalonitrile 0.8 g as the second component
(1.5%), 1.7 g of unreacted NPN (3.4
%) was obtained. However, the yield is based on NPN. Example 13 The same procedure as in Example 11 was carried out except that 177 g (1.5 mol) of 2,5-hexanediol was used, and three components with Rf=0.98, 0.73, and 0.38 were obtained by column chromatography separation. As a result of analysis, the first component was 6.5 g (13.1%) of 2,5-bis[4'-(1',2'-dicyanophenyloxy)]hexane, and the second component was 4-[2'-(5 '-Hydroxyhexyloxy)]-1,2-phthalonitrile 58.6g (83.0%), the third component is unreacted
The amount of NPN was 1.8g (3.6%). In addition, 4-[5′-(2′-hydroxyhexyloxy)]-
A slight amount of a substance presumed to be 1,2-phthalonitrile was observed. Both the first component and the second component are very similar to the corresponding first and second component IRs already described in Example 12, and differ only in the depth of the ν CH2 vibration band. 2,5-bis-[4'-(1',2'-dicyanophenyloxy)]hexane Elemental analysis (wt%, calculated value in cutlet): C71.45
(71.34), H4.95 (4.90), N14.97 (15.13) 4-(2'-(5'-hydroxyhexyloxy)]-
1,2-phthalonitrile Elemental analysis (wt%, calculated value in Katsuko): C68.76
(68.83), H6.60 (6.60), N11.52 (11.47) Example 14 NPN50g (0.29mol), benzyl alcohol
37.63g (0.35mol), 4-methylpyridine 27.0g
(0.29 mol) was reacted at 80°C for 2 hours in the same apparatus as in Example 1, and fractionally recrystallized in the same manner. As a result of the analysis, 63.25g (93.1%) of the main product as white crystals was the desired 4-benzyloxy-1,2-phthalonitrile, and unreacted as pale yellow crystals.
1.1 g (2.2%) of NPN was recovered. 4-Benzyloxy-1,2-phthalonitrile Elemental analysis (wt%, calculated value in Katsuko): C76.55
(76.91), H4.39 (4.30), N12.20 (11.96) Example 15 NPN50g (0.29mol), Hydroquinone 16.52g
(0.15 mol) and 27.0 g (0.29 mol) of 2-methylpyridine were treated in the same manner as in Example 11, and three components with Rf = 0.83, 0.44, and 0.38 were obtained by column chromatography separation.
As a result of the analysis, the first component was p-di[4-(1,2-
Dicyanophenyloxy) Phenylene 47.11g
(89.7%), the second component is 4-[4'-(hydroxyphenyloxy)]-1,2-phthalonitrile 2.36g
(3.4%), the third component is unreacted NPN2.2g (4.4%)
It was hot. p-di[4-(1,2-dicyanophenyloxy)]phenylene Elemental analysis (wt%, calculated value in cutlet): C72.88
(72.92), H2.69 (2.78), N15.55 (15.46) 4-[4′-(hydroxyphenyloxy)]-1,
2-phthalonitrile Elemental analysis (wt%, calculated value in Katsuko): C71.36
(71.18), H3.36 (3.41), N11.92 (11.86) Reference Example 2 4-(octyloxy)- obtained in Example 9
27.2 g of 1,4-phthalonitrile was added to the gas introduction pipe,
Place in a 300ml four-necked flask equipped with a reflux tube with a drying tube and a dropping funnel, and add 0.2g of metallic sodium and 200ml of dehydrated methanol into the dropping funnel. A methanol solution was added over about 3 minutes while vigorously passing dehydrated ammonia gas through the mixture, and the mixture was stirred at room temperature for 2 hours and under boiling reflux for 1 hour. After cooling on ice, the precipitated crystals were collected by filtration and dried under reduced pressure to obtain 5-(octyloxy)diiminoisoindoline in a yield of about 95%. This material is strongly hygroscopic, and nitrile disappears under IR.
This was confirmed by the appearance of absorption bands specific to iminoisoindoline at 1570, 1650, and 3450 cm -1 . 14.5 g (approximately 0.05 mol) of the above diiminoisoindoline was dissolved in 80 ml of N,N-dimethylamino-2-ethanol, reacted for 5 hours under boiling reflux while passing dry nitrogen, and after cooling, the mixture was poured into a large amount of methanol. The green precipitate was collected by filtration and dried under reduced pressure to obtain 3.2 g (20%) of tetra(octyloxy)phthalocyanine.
I got it. The visible absorption spectrum (CHCl 3 ) is 668,
The maximum absorption is at 702 nm, logε=5.10, respectively.
4.98, which is very similar to ordinary unsubstituted phthalocyanine. Furthermore, in the closure reaction of diiminoisoindoline, if a divalent metal salt is present, a phthalocyanine derivative having a central metal can be obtained in a yield of 30 to 40%. Tetra(octyloxy)phthalocyanine is soluble in almost all organic solvents except lower aliphatic alcohols, and the corresponding metal salts are also soluble in chloroform,
Soluble in benzene, tetrahydrofuran, etc.
Furthermore, if the alkoxy substituent is C 3 or more, it is soluble at least in chloroform regardless of the presence or absence of a central metal.

Claims (1)

【特許請求の範囲】 1 4−ニトロフタロニトリルと脂肪族あるいは
脂環式あるいはアラルキルあるいは芳香族の一級
または二級または三級のモノオールないしジオー
ルとを、第三級アミンを触媒として反応させて下
記の一般式で示される4−アルコキシフタロニト
リル誘導体を製造する方法であつて、該第三級ア
ミンは、全炭素数が12以下の脂環式アミン、全炭
素数が12以下の芳香族アミン及び全炭素数が12以
下の脂肪族アミンからなる群から選ばれることを
特徴とする4−アルコキシフタロニトリル誘導体
の製造方法。 (ここにRはアルキレン、シクロアルキレン、
アラルキレンまたはアリーレン基より選ばれ、R
の炭素数は20以下、Xは水素またはヒドロキシル
基または1′,2′−ジシアノ−4′−フエノキシ基を
示す。) 2 触媒がピリジン誘導体であることを特徴とす
る特許請求の範囲第1項に記載の方法。 3 ピリジン誘導体が、ピリジン、2−メチルピ
リジン、4−メチルピリジン、2,4−ジメチル
ピリジン、2,6−ジメチルピリジン、2,4,
6−トリメチルピリジンまたは4−ジメチルアミ
ノピリジンより選ばれることを特徴とする特許請
求の範囲第1項または第2項に記載の方法。 4 触媒が1,4−ジアザビシクロ〔2,2,
2〕オクタン、1,5−ジアザビシクロ〔4,
3,0〕ノネン−5または1,8−ジアザビシク
ロ〔5,4,0〕ウンデセン−(7)より選ばれるこ
とを特徴とする特許請求の範囲第1項に記載の方
法。
[Claims] 1 4-nitrophthalonitrile and an aliphatic, alicyclic, aralkyl, or aromatic primary, secondary, or tertiary monool or diol are reacted using a tertiary amine as a catalyst. A method for producing a 4-alkoxyphthalonitrile derivative represented by the following general formula, wherein the tertiary amine is an alicyclic amine having a total carbon number of 12 or less, an aromatic amine having a total carbon number of 12 or less and aliphatic amines having a total carbon number of 12 or less. (Here, R is alkylene, cycloalkylene,
selected from aralkylene or arylene group, R
has 20 or less carbon atoms, and X represents hydrogen, a hydroxyl group, or a 1',2'-dicyano-4'-phenoxy group. 2. The method according to claim 1, wherein the catalyst is a pyridine derivative. 3 Pyridine derivatives include pyridine, 2-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, 2,4,
The method according to claim 1 or 2, characterized in that the pyridine is selected from 6-trimethylpyridine or 4-dimethylaminopyridine. 4 The catalyst is 1,4-diazabicyclo[2,2,
2] Octane, 1,5-diazabicyclo[4,
3,0]nonene-5 or 1,8-diazabicyclo[5,4,0]undecene-(7).
JP60047294A 1985-03-09 1985-03-09 Production of 4-alkoxyphthalonitrile derivative Granted JPS61207365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047294A JPS61207365A (en) 1985-03-09 1985-03-09 Production of 4-alkoxyphthalonitrile derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047294A JPS61207365A (en) 1985-03-09 1985-03-09 Production of 4-alkoxyphthalonitrile derivative

Publications (2)

Publication Number Publication Date
JPS61207365A JPS61207365A (en) 1986-09-13
JPH0560459B2 true JPH0560459B2 (en) 1993-09-02

Family

ID=12771258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047294A Granted JPS61207365A (en) 1985-03-09 1985-03-09 Production of 4-alkoxyphthalonitrile derivative

Country Status (1)

Country Link
JP (1) JPS61207365A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951064B (en) * 2019-12-11 2021-08-27 南通北风橡塑制品有限公司 Phthalocyanine metal salt modified polyurethane elastomer and preparation method thereof

Also Published As

Publication number Publication date
JPS61207365A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
WO2007125736A1 (en) Process for production of methylene disulfonate compound
AU2002224131A1 (en) Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound
JPH0560459B2 (en)
JPS63122644A (en) Production of 3,5,5-trimethylcyclohex-2-ene-1,4-dione
JPS62255456A (en) Production of diethylformamide
JPH035449A (en) Synthesis of acyl cyanide
JPS597699B2 (en) Method for producing indolines
JP3836177B2 (en) Method for producing aldehyde derivative
JPH0525876B2 (en)
JP4004082B2 (en) Method for producing cyclic nitroguanidine derivatives
JP2507942B2 (en) Novel cyclobutenedione derivative
JPS62258351A (en) Production of tetraethylurea
JP2743198B2 (en) Cyclopentanes
JP2715693B2 (en) Method for producing naphthophthalocyanine derivative
CN117964583A (en) Preparation method of Engliclazide chiral intermediate
JP3515257B2 (en) Method for producing 2,3,6,7,10,11-hexaacetoxytriphenylene
CN116162027A (en) Method for synthesizing alpha, beta-unsaturated ketone by iron-catalyzed carbonylation three-component coupling reaction
JP3780436B2 (en) Process for producing α-tetrasubstituted phthalocyanine
JP4491104B2 (en) Method for producing carbonyl compound
JPS588388B2 (en) Jibenza Middle Ino Seizouhouhou
JPS5939884A (en) Novel manufacture of 1,2,3-thiadiazole derivative
JPS6157529A (en) Production of glycol aldehyde
JPS6126902B2 (en)
JPH0328432B2 (en)
JPH01294661A (en) Production of 4-acetoxyazetidinone derivative