JPS62258351A - Production of tetraethylurea - Google Patents

Production of tetraethylurea

Info

Publication number
JPS62258351A
JPS62258351A JP61098292A JP9829286A JPS62258351A JP S62258351 A JPS62258351 A JP S62258351A JP 61098292 A JP61098292 A JP 61098292A JP 9829286 A JP9829286 A JP 9829286A JP S62258351 A JPS62258351 A JP S62258351A
Authority
JP
Japan
Prior art keywords
palladium
diethylamine
reaction
solvent
triphenylphosphine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61098292A
Other languages
Japanese (ja)
Other versions
JPH0231065B2 (en
Inventor
Michio Yamato
道雄 大和
Yoshiaki Morimoto
森本 好昭
Yuzo Fujiwara
藤原 祐三
Hiroshi Taniguchi
谷口 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP61098292A priority Critical patent/JPS62258351A/en
Publication of JPS62258351A publication Critical patent/JPS62258351A/en
Publication of JPH0231065B2 publication Critical patent/JPH0231065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a compound useful as a synthetic raw material for high polymers, medicines, agricultural chemicals and various organic chemicals in good yield, by reacting diethylamine with carbon dioxide in the presence of a palladium based catalyst in a solvent, e.g. carbon tetrachloride, etc. CONSTITUTION:Diethylamine is reacted with carbon dioxide in the presence of a palladium based catalyst, e.g. dichlorobis(triphenylphosphine)palladium, in a solvent, e.g. carbon tetrachloride or carbon tetrachloride and acetonitrile, at 10-150 deg.C under 0-100kg/cm<2>G pressure for 10-100hr to afford the aimed substance. The solvent is used in a volume of 0.2-20l based on 1mol diethylamine and the catalyst is used in an amount of 0.005-0.100mol palladium metal atom based on 1mol diethylamine to carry out the reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテトラエチルウレアの改良された製造方法に関
するものである。さらに詳しくいえば、本発明は、高分
子、医薬品、農薬、その他有機薬品の合成原料などとし
て重要なテトラエチルウレアを極めて収率よく工業的に
有利に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for producing tetraethylurea. More specifically, the present invention relates to an industrially advantageous method for producing tetraethyl urea, which is important as a raw material for the synthesis of polymers, pharmaceuticals, agricultural chemicals, and other organic chemicals, with extremely high yield.

〔従来の技術〕[Conventional technology]

テトラエチルウレアは、高分子、医薬品、農薬、その他
各種有機薬品の合成原料として用いられている。
Tetraethylurea is used as a synthetic raw material for polymers, pharmaceuticals, agricultural chemicals, and various other organic chemicals.

従来、このテトラエチルウレアの製造方法としては、メ
タノール、テトラヒドロフラン、ヘキサンなどの溶媒中
において、パラジウム系触媒の存在下、ジエチルアミン
に二酸化炭素を反応させる方法が知られている。しかし
ながら、これら溶媒中で反応して得られるテトラエチル
ウレアの収率は極めて低く、その向上が望まれていた。
Conventionally, as a method for producing this tetraethylurea, a method is known in which diethylamine is reacted with carbon dioxide in the presence of a palladium catalyst in a solvent such as methanol, tetrahydrofuran, or hexane. However, the yield of tetraethyl urea obtained by reaction in these solvents is extremely low, and improvement has been desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような要望にこたえ、パラジウム系触媒
の存在下、ジエチルアミンに二酸化炭素を反応させて、
収率よくテトラエチルウレアを製造する方法の提供を目
的とするものである。
In response to such demands, the present invention involves reacting diethylamine with carbon dioxide in the presence of a palladium-based catalyst.
The object of the present invention is to provide a method for producing tetraethyl urea with good yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記目的を達成すべく鋭意研究を重ねた
結果、反応溶媒としである特定な溶媒を用いることによ
り、その目的を達成しうろことを見出し、この知見に基
づいて本発明を完成するに至った。
As a result of intensive research to achieve the above object, the present inventors discovered that the object could be achieved by using a specific solvent as a reaction solvent, and based on this knowledge, the present invention was developed. It was completed.

すなわち、本発明は、パラジウム系触媒の存在下、四塩
化炭素または四塩化炭素とアセトニトリル中において、
ジエチルアミンに二酸化炭素を反応させることを特徴と
するテトラエチルウレアの製造方法を提供するものであ
る。
That is, the present invention provides carbon tetrachloride or carbon tetrachloride and acetonitrile in the presence of a palladium-based catalyst,
The present invention provides a method for producing tetraethylurea, which is characterized by reacting diethylamine with carbon dioxide.

本発明方法において、原料として用いるジエチルアミン
は、エチルアルコールにアンモニアを反応させる方法や
アセトアルデヒドに水素の存在下アンモニアを反応させ
る方法などによって容易に製造することができる。この
際、いずれの方法においても、ジエチルアミン以外に、
モノエチルアミンおよびトリエチルアミンが副生ずるの
で、蒸留などの手段によってジエチルアミンは単離され
る。
In the method of the present invention, diethylamine used as a raw material can be easily produced by a method of reacting ethyl alcohol with ammonia or a method of reacting acetaldehyde with ammonia in the presence of hydrogen. At this time, in any method, in addition to diethylamine,
Since monoethylamine and triethylamine are produced as by-products, diethylamine is isolated by means such as distillation.

本発明方法においては、反応溶媒として四塩化炭素また
は四塩化炭素とアセトニトリルを用いることが必要であ
る。また本発明の目的を損なわない範囲で、これらに対
し、相溶性のある他の溶媒と併用してもよい。
In the method of the present invention, it is necessary to use carbon tetrachloride or carbon tetrachloride and acetonitrile as reaction solvents. In addition, other solvents having compatibility with these may be used in combination within the range that does not impair the purpose of the present invention.

本発明方法において用いられるパラジウム系触媒として
は、無機パラジウム化合物、有機パラジウム化合物、パ
ラジウム錯体化合物などが用いられる。このパラジウム
系触媒の具体例としては、ジクロロビス(トリフェニル
ホスフィン)パラジウム、カルボニルトリス(トリフェ
ニルホスフィン)パラジウム、ジクロロビス(アセトニ
トリル)パラジウム、ジ−μmクロロ−ジクロロビス(
トリフェニルホスフィン)ニパラジウム、ジクロロビス
〔1,2−ビス(ジフェニルホスフィノ)エタン〕パラ
ジウム、塩化パラジウム、テトラキス(トリフェニルホ
スフィン)パラジウムなどが好ましく挙げられる。これ
らの触媒はそれぞれ単独で用いてもよいし、2種以上組
み合わせて用いてもよく、また、その調整方法について
は、特に制限はなく、従来慣用されている方法を用いて
調整することができる。
As the palladium-based catalyst used in the method of the present invention, inorganic palladium compounds, organic palladium compounds, palladium complex compounds, etc. are used. Specific examples of this palladium-based catalyst include dichlorobis(triphenylphosphine)palladium, carbonyltris(triphenylphosphine)palladium, dichlorobis(acetonitrile)palladium, di-μm chloro-dichlorobis(
Preferred examples include dipalladium (triphenylphosphine), dichlorobis[1,2-bis(diphenylphosphino)ethane]palladium, palladium chloride, and tetrakis(triphenylphosphine)palladium. These catalysts may be used alone or in combination of two or more, and there are no particular restrictions on the method of preparation, and they can be prepared using conventionally used methods. .

本発明方法においては、前記溶媒をもちいることが必須
条件であり、その使用量については、特に制限はないが
、ジエチルアミン1モルに対し、通常0.2〜2011
好ましくは0.5〜1(lの範囲で選ばれる。この使用
量が0.21未満では本発明の効果が有効に発揮されず
、また2ONを超えるとその量の割には収率は向上せず
、むしろ容積効率や回収コストの点で経済的に不利とな
り好ましくない。
In the method of the present invention, it is essential to use the above-mentioned solvent, and there is no particular restriction on the amount used, but it is usually 0.2 to 2,011 mol per mol of diethylamine.
It is preferably selected in the range of 0.5 to 1 (l). If the amount used is less than 0.21, the effect of the present invention will not be effectively exhibited, and if it exceeds 2ON, the yield will improve relative to the amount. Rather, it is unfavorable because it is economically disadvantageous in terms of volumetric efficiency and recovery cost.

また、パラジウム系触媒は、パラジウム金属原子の量が
ジエチルアミン1モルに対し、通常、0゜005〜0.
100モル、好ましくは0.010〜0゜050モルに
なるような割合で用いることが望ましい。この量が0.
005モル未満では反応がスムースに進行せず、一方0
.100モルを超えるとその量の割には反応速度や収率
は向上せず、むしろ触媒の回収ロスなどの点で経済的に
不利となり好ましくない。
Further, in the palladium-based catalyst, the amount of palladium metal atoms is usually 0.005 to 0.005 to 1 mole of diethylamine.
It is desirable to use the amount in a proportion of 100 mol, preferably 0.010 to 0.050 mol. This amount is 0.
If the amount is less than 0.005 mol, the reaction will not proceed smoothly;
.. If the amount exceeds 100 moles, the reaction rate and yield will not improve in proportion to the amount, but rather it will be economically disadvantageous in terms of recovery loss of the catalyst, etc., which is not preferable.

反応温度については、通常10〜150℃、好ましくは
10〜120℃の範囲で選ばれる。この温度が10℃未
満では反応速度が遅くて実用的でなく、一方150℃を
超えると副反応が生じやすく好ましくない。また、反応
圧力については特に制限はないが、通常、O〜100k
g/cIliGまでの範囲、好ましくは0〜80kg、
/adGまでの範囲で反応が行われる。反応時間につい
ては、触媒の種類や量、反応温度、反応圧力などによっ
て左右されるが、通常10〜200時間程度、好ましく
は20〜100時間程度で十分である。
The reaction temperature is usually selected within the range of 10 to 150°C, preferably 10 to 120°C. If this temperature is less than 10°C, the reaction rate is slow and it is not practical, while if it exceeds 150°C, side reactions tend to occur, which is undesirable. In addition, there is no particular restriction on the reaction pressure, but it is usually O~100k.
g/cIliG, preferably from 0 to 80 kg,
The reaction is carried out in the range up to /adG. The reaction time depends on the type and amount of catalyst, reaction temperature, reaction pressure, etc., but usually about 10 to 200 hours, preferably about 20 to 100 hours is sufficient.

本発明方法において用いられる二酸化炭素は、純粋なも
のであってもよいし、また、この反応に対して不活性な
ガス、例えば窒素やアルゴンなどとの混合ガスであって
もよい。さらに、本発明方法においては、より収率を向
上させるために、反応系にトリフェニルホスフィンなど
を添加することが好ましい。この際、トリフェニルホス
フィンの使用量については、ジエチルアミン1モルに対
し、通常0.01〜5.00モル、好ましくは0.05
〜3.00モルの範囲で選ばれる。
The carbon dioxide used in the method of the present invention may be pure or may be a mixed gas with a gas inert to this reaction, such as nitrogen or argon. Furthermore, in the method of the present invention, it is preferable to add triphenylphosphine or the like to the reaction system in order to further improve the yield. At this time, the amount of triphenylphosphine used is usually 0.01 to 5.00 mol, preferably 0.05 mol, per 1 mol of diethylamine.
-3.00 mol.

このようにして得られた反応終了液は、通常行われてい
る方法に従って、パラジウム系触媒を分離回収したのち
、分留などの手段によって、生成したテトラエチルウレ
アを単離することができる。
After the palladium-based catalyst is separated and recovered from the reaction-completed liquid thus obtained according to a commonly used method, the produced tetraethylurea can be isolated by means such as fractional distillation.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

塩化パラジウム1.08 g (6,1mmol)と塩
化ナトリウム0.81 g (13,4mmol)をメ
タノール18ccに溶かし、室温で1時間攪拌した。次
いで、赤褐色溶液をろ過し、この溶液にトリフェニルホ
スフィン3.01 g (11,4+mn+ol)を加
え、2時間還流したのち、室温でさらに1晩攪拌した。
1.08 g (6.1 mmol) of palladium chloride and 0.81 g (13.4 mmol) of sodium chloride were dissolved in 18 cc of methanol and stirred at room temperature for 1 hour. Next, the reddish-brown solution was filtered, and 3.01 g (11,4+mn+ol) of triphenylphosphine was added to this solution, and after refluxing for 2 hours, the mixture was further stirred at room temperature overnight.

生じた黄色の沈殿を吸引ろ過し、メタノールで洗浄後乾
燥すせ、ジクロロビス(トリフェニルホスフィン)パラ
ジウム・PdC1z (P(CbHs)*) z 3.
57 gを得た。
The resulting yellow precipitate was suction-filtered, washed with methanol and dried, and dichlorobis(triphenylphosphine)palladium PdC1z (P(CbHs)*) z 3.
57 g was obtained.

窒素気流下、PdC1z(PPhz)z  O,70g
 (1,0mmo1)とトリフェニルホスフィン0.2
8 g (1,1mmo1)をエタノール30ccに懸
濁した。これを−45℃に冷却してNaBH40,24
g (6,3mm。
Under nitrogen flow, PdC1z(PPhz)z O, 70g
(1.0 mmol) and triphenylphosphine 0.2
8 g (1.1 mmol) was suspended in 30 cc of ethanol. This was cooled to -45℃ and NaBH40,24
g (6.3mm.

1)を加え、ただちに−酸化炭素を溶液中に流しはじめ
反応液の温度を4時間かけて徐々に室温まであげ、さら
に2時間室温で反応を続けた。反応が進むにつれて、も
との黄色の懸濁液の色は薄くなり、クリーム色の沈澱が
生じた。これをエノール−水(1: 1)溶液で数回線
状したのち、減圧乾燥し、カルボニルビス(トリフェニ
ルホスフィン)パラジウム・Pd(Go) CP(Ca
lls)3) t 0.57 gを得た。
1) was added, carbon oxide was immediately started to flow into the solution, and the temperature of the reaction solution was gradually raised to room temperature over 4 hours, and the reaction was continued at room temperature for an additional 2 hours. As the reaction proceeded, the original yellow suspension became lighter in color and a cream-colored precipitate formed. This was linearized several times with an enol-water (1:1) solution and then dried under reduced pressure to obtain carbonylbis(triphenylphosphine)palladium.Pd(Go)CP(Ca
lls) 3) t 0.57 g was obtained.

調製例3 乏え旦旦旦ス」二丸上三上ユ土しパ立塩化パ
ラジウム1.08 g (6,1mmol)をアセトニ
トリル130m1に添加し、約1時間還流させたところ
、塩化パラジウムは溶解して赤色溶液となった。次いで
温かい間に反応液をろ過し、ろ液を石油エーテル30c
cに注ぐと、黄色の沈殿が生じたので、この沈殿をろ別
後、石油エーテルで洗浄し、乾燥させ、ジクロロビス(
アセトニトリル)パラジウム・PdC1z(CH:+C
N)g 1.17 gを得た。
Preparation Example 3 When 1.08 g (6.1 mmol) of palladium chloride was added to 130 ml of acetonitrile and refluxed for about 1 hour, the palladium chloride was dissolved. The mixture turned into a red solution. The reaction solution was then filtered while still warm, and the filtrate was dissolved in petroleum ether 30c.
When poured into c, a yellow precipitate was formed, so this precipitate was filtered off, washed with petroleum ether, dried, and dichlorobis(
acetonitrile) palladium/PdC1z (CH:+C
1.17 g of N)g was obtained.

塩化パラジウム0.71 g (4,0mmol)と塩
化ナトリウム0.57 g  (9,8mmol)をエ
タノール50cc中 室温で1日攪拌した。赤褐色溶液
をろ過し、これにPdC1z(PPhz)zl、 55
 g  (2,2mmol)のクロロホルム溶液170
ccを加え、1時間還流したのち、結晶を吸引ろ過し、
水、エタノール、クロロホルムで洗浄後、乾燥させジ−
μmクロロ−ジクロロビス(トリフェニルホスフィン)
ニパラジウム・PdzClt (P(C6ns)s) 
t 1.39 gを得た。
0.71 g (4.0 mmol) of palladium chloride and 0.57 g (9.8 mmol) of sodium chloride were stirred in 50 cc of ethanol at room temperature for one day. Filter the reddish-brown solution and add PdC1z(PPhz)zl, 55
g (2.2 mmol) in chloroform solution 170
After adding cc and refluxing for 1 hour, the crystals were filtered with suction.
After washing with water, ethanol, and chloroform, dry the
μm chloro-dichlorobis(triphenylphosphine)
Nipalladium・PdzClt (P(C6ns)s)
t 1.39 g was obtained.

1.2−ビス(ジフェニルホスフィノ)エタン3、94
 g (9,9mmol)のエタノール溶液100 c
cに塩化パラジウム0.9 g (5,1mmol)を
加え30、分間還流した。次いで溶媒を除去後、固形物
をエタノールより再結晶し、乾燥させ、ジクロロビス〔
l、2−ビス(ジフェニルホスフィノ)エタン〕パラジ
ウム・PdC1z ((CJS)2PCI2C!hP(
C6Hs)z)、z  1.65gを得た。
1.2-bis(diphenylphosphino)ethane 3,94
g (9.9 mmol) in ethanol solution 100 c
0.9 g (5.1 mmol) of palladium chloride was added to c and the mixture was refluxed for 30 minutes. After removing the solvent, the solid was recrystallized from ethanol, dried, and dichlorobis[
l,2-bis(diphenylphosphino)ethane] palladium PdC1z ((CJS)2PCI2C!hP(
1.65 g of C6Hs)z),z was obtained.

調製例6 声ヒバラジウム触媒の調−11パラジウムブ
ラック5.22 g (49,1mmol)を王水80
ccに溶かし、蒸発皿に入れて王水をゆっくり蒸発させ
たのち、乾固させないように、これに濃塩酸を少しずつ
加えていき、蒸発を続けた。
Preparation Example 6 Hybaradium Catalyst Preparation-11 5.22 g (49.1 mmol) of palladium black was added to 80 g of aqua regia.
After dissolving the aqua regia in an evaporating dish and slowly evaporating the aqua regia, concentrated hydrochloric acid was added little by little to prevent it from drying out, and evaporation was continued.

ついで、数回この操作を繰り返したのち、濃塩酸をゆっ
くり注意深くとばして乾固し、さらに乾固物をすりつぶ
して水酸化カリウムデシケータ−中で乾燥させ、塩化パ
ラジウム・PdC1z 5.68 gを得た。
After repeating this operation several times, the concentrated hydrochloric acid was slowly and carefully blown off to dryness, and the dried product was ground and dried in a potassium hydroxide dessicator to obtain 5.68 g of palladium chloride/PdC1z. .

窒素気流下、塩化パラジウム0.59 g (3,3m
m01)、トリフェニルホスフィン4.44g(16,
9mmo 1 )およびジメチルスルホキシド40cc
を完全な溶液になるまでかきまぜながら加熱したのち、
油浴をとり、約15分間さらに激しくかきまぜた。
Palladium chloride 0.59 g (3.3 m
m01), triphenylphosphine 4.44g (16,
9 mmo 1 ) and dimethyl sulfoxide 40 cc
After stirring and heating until it becomes a complete solution,
Take the oil bath and stir more vigorously for about 15 minutes.

次いで、これにヒドラジン水和物0.67g(13゜4
mmol)を約1分間以上かけて滴下した。この暗色溶
液を水浴上で冷却すると、約125℃で結晶が析出しは
じめた。その後ゆっくりと室温まで冷却し、生成した固
体をろ別してエタノールおよびエーテルで洗浄したのち
、減圧乾燥して、黄色結晶のテトラキス(トリフェニル
ホスフィン)パラジウム・Pd (P(Calls)3
) a  2.86 gを得た。
Next, 0.67 g of hydrazine hydrate (13°4
mmol) was added dropwise over about 1 minute or more. The dark solution was cooled on a water bath and crystals began to precipitate at about 125°C. Thereafter, it was slowly cooled to room temperature, and the formed solid was filtered, washed with ethanol and ether, and then dried under reduced pressure to form yellow crystals of tetrakis(triphenylphosphine)palladium Pd (P(Calls)3).
) a 2.86 g was obtained.

実施例1〜14、比較例1〜3 50ccカリウス管に、ジエチルアミン、次表に示すよ
うな種類の触媒と溶媒およびトリフェニルホスフィンを
線表に示す割合で入れ、さらに二酸化炭素を入れて封管
し、該表に示す条件で反応させた。 反応終了後、反応
液をろ過して触媒を取り除き、ろ液をガスクロマトグラ
フィー法により分析し、生成したテトラエチルウレアを
定量した。
Examples 1 to 14, Comparative Examples 1 to 3 Into a 50 cc Carius tube, diethylamine, the types of catalysts and solvents shown in the following table, and triphenylphosphine were put in the proportions shown in the table, carbon dioxide was added, and the tube was sealed. The reaction was carried out under the conditions shown in the table. After the reaction was completed, the reaction solution was filtered to remove the catalyst, and the filtrate was analyzed by gas chromatography to quantify the produced tetraethylurea.

テトラエチルウレアの収量を線表に示す。The yield of tetraethyl urea is shown in the chart.

この表かられかるように、反応溶媒としてメタノール、
テトラヒドロフラン、ヘキサンを用いる従来の方法に比
べて、本発明方法においては、テトラエチルウレアの生
成収率が著しく高い。
As can be seen from this table, methanol and
Compared to conventional methods using tetrahydrofuran and hexane, the method of the present invention has a significantly higher production yield of tetraethylurea.

〔発明の効果〕〔Effect of the invention〕

本発明方法によると、従来の方法に比べて、テトラエチ
ルウレアが著しく高い収率で得られ、そん工業的価値は
大である。
According to the method of the present invention, tetraethyl urea can be obtained in a significantly higher yield than in conventional methods, and has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1、パラジウム系触媒の存在下、四塩化炭素または四塩
化炭素とアセトニトリル中において、ジエチルアミンに
二酸化炭素を反応させることを特徴とするテトラエチル
ウレアの製造方法。
1. A method for producing tetraethyl urea, which comprises reacting diethylamine with carbon dioxide in carbon tetrachloride or carbon tetrachloride and acetonitrile in the presence of a palladium-based catalyst.
JP61098292A 1986-04-30 1986-04-30 Production of tetraethylurea Granted JPS62258351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098292A JPS62258351A (en) 1986-04-30 1986-04-30 Production of tetraethylurea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098292A JPS62258351A (en) 1986-04-30 1986-04-30 Production of tetraethylurea

Publications (2)

Publication Number Publication Date
JPS62258351A true JPS62258351A (en) 1987-11-10
JPH0231065B2 JPH0231065B2 (en) 1990-07-11

Family

ID=14215848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098292A Granted JPS62258351A (en) 1986-04-30 1986-04-30 Production of tetraethylurea

Country Status (1)

Country Link
JP (1) JPS62258351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111711A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Method for preparing urea compound by fixing carbon dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461885U (en) * 1990-10-08 1992-05-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111711A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Method for preparing urea compound by fixing carbon dioxide

Also Published As

Publication number Publication date
JPH0231065B2 (en) 1990-07-11

Similar Documents

Publication Publication Date Title
CN107880079B (en) Cyclic N-heterocyclic bis-carbene-palladium complex and preparation method and application thereof
KR100768027B1 (en) Method for producing olefin-substituted aromatic or heteroaromatic compounds
CN104098607A (en) Complex and application of monophosphine monoazacyclo-carben nickel containing tricyclic hexyl phosphine
CN112210056B (en) Porous covalent organic framework material and synthesis method and application thereof
JPH0481975B2 (en)
CN109810147B (en) Pyrene-labeled benzimidazole nitrogen heterocyclic carbene palladium metal complex, and preparation and application thereof
JPS62258351A (en) Production of tetraethylurea
US6476250B1 (en) Optically active fluorinated binaphthol derivative
JPS62255456A (en) Production of diethylformamide
JP2003522744A (en) Method for producing polycyclic aromatic compound
CN113372281A (en) Synthetic method of metronidazole
CN107935803B (en) Synthetic method of 1, 2-diketone compound
CN114874127B (en) Preparation method of difluoro carbonyl indolone compound
US20090118522A1 (en) Synthesis of Cyclopentadienedithiophene Derivatives
JP2564141B2 (en) Method for producing alkylbenzothiazoles
CN115340475B (en) Preparation method of 1-diphenyl diazene oxide or derivative thereof
CN115010593B (en) Synthesis method of 3-methyl bicyclo [1.1.1] pentane-1-carboxylic acid
CN115232047B (en) Preparation method of 3-phenylseleno-1-acetone derivatives
CN115340474B (en) Application of zirconium hydroxide as catalyst in catalyzing aniline or derivative thereof to prepare 1-diphenyl diazene oxide or derivative thereof
CN108586369B (en) Process for producing phenyltriazine compound and process for producing phenylpyridine compound
JP3505991B2 (en) Process for producing 4,5-disubstituted anthranilamide
JPH03271273A (en) Production of 2-chloro-5-(aminomethyl)pyridine
JP2688226B2 (en) Process for producing 1,3-dithiane derivative
JPH01186852A (en) Amide group-containing diphenyldiacetylene
JP2662162B2 (en) Method for producing 3-alkylpyrrole