JPH0560134A - Fluid bearing motor - Google Patents

Fluid bearing motor

Info

Publication number
JPH0560134A
JPH0560134A JP22264091A JP22264091A JPH0560134A JP H0560134 A JPH0560134 A JP H0560134A JP 22264091 A JP22264091 A JP 22264091A JP 22264091 A JP22264091 A JP 22264091A JP H0560134 A JPH0560134 A JP H0560134A
Authority
JP
Japan
Prior art keywords
rotor
fluid
main shaft
bearing motor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22264091A
Other languages
Japanese (ja)
Inventor
Toshinori Hichiya
利法 比知屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP22264091A priority Critical patent/JPH0560134A/en
Publication of JPH0560134A publication Critical patent/JPH0560134A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a fluid bearing motor capable of preventing the occurrence of the vibration of a shaft for pivotally supporting a rotor when the rotor is rotated at a high speed and capable of reducing the outer size of the whole motor. CONSTITUTION:A rotating force generating means formed with rotating magnetic field generation sections 8, 9 and a magnet 6 fixed to the first base 3 to be located in a rotor 5 and a bearing means in the radial direction R supported by the first and second bases 3, 4 and formed with a main spindle 1 having a fluid groove section 1a and a sleeve 2 are provided. A receiving member 7 having a fluid groove section 7b on the face and fixed to the main spindle 1 and a bearing means in the thrust direction T formed with the ceiling section of the rotor 5 are provided. The receiving member 7 is brought into contact with the outside face by the magnetic attraction component (direction A) of the rotating force generating means when the rotor 5 is stationary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体軸受モータに係り、
例えば原稿読み取り装置に用いられるレーザスキャナー
のミラー駆動部、ハード磁気ディスク装置のスピンドル
モータ、ビデオ装置のヘッド駆動用のモータのように特
に小型、かつ高精度、高速回転が要求されるブラシレス
モータに好適に適用される流体軸受モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid dynamic bearing motor,
For example, it is suitable for a brushless motor that is particularly small and requires high precision and high-speed rotation, such as a mirror driving unit of a laser scanner used in a document reading device, a spindle motor of a hard magnetic disk device, and a head driving motor of a video device. The present invention relates to a fluid dynamic bearing motor.

【0002】[0002]

【従来の技術】小型、かつ高精度、高速回転が要求され
るモータの回転軸受部に流体軸受を用いることで優れた
性能のブラシレスモータを実現できるが、本願出願人は
特開昭63−214518号公報の流体軸受において係
る提案をしている。図4は本提案の要部断面図であっ
て、本図に基づいて概略説明すると基台30には外周面
上に多数の流体溝部100aを形成した主軸100が片
支持状態で固定されている。また基台30には回転磁界
発生のために積層されたコア8とコイル9とからなる回
転磁界発生手段が円環状に設けられている。
2. Description of the Related Art A brushless motor having excellent performance can be realized by using a fluid bearing in a rotary bearing portion of a motor which is required to be small in size, high in precision and high in speed. The proposal is made for the fluid bearing of the publication. FIG. 4 is a cross-sectional view of a main part of the present proposal, and a schematic description will be given with reference to this figure. A main shaft 100 having a large number of fluid groove portions 100a formed on the outer peripheral surface is fixed to a base 30 in a single-supported state. .. Further, the base 30 is provided with a rotating magnetic field generating means, which is composed of a core 8 and a coil 9 laminated for generating a rotating magnetic field, in an annular shape.

【0003】一方、外周面に永久磁石60を固定してい
るロータ20は円筒状に形成されるともに多孔質体21
を天井部位に一体的に設けており、主軸100に対して
図示のような挿通状態にされてラジアル方向Rとスラス
ト方向T方向の支持がなされている。以上説明の構成に
おいて、回転磁界発生手段に回転磁場が発生すると、永
久磁石60の吸引にともなってロータ20の高速回転が
開始されるが、これに前後して図中の矢印H方向に空気
など流体が主軸100とロータ20の内径面の間のに導
入される結果、ラジアル方向Rの保持が流体を媒体とし
て行われる。この流体はさらに主軸100の端部と多孔
質体21の間に導入されて余分な流体を矢印K方向に排
気して適度な間隔を維持しながらスラスト方向Tの支持
を行うものである。この提案は特に組み立て性に優れて
おりレーザープリンタ装置のポリゴンミラー回転用など
に実用化されている。
On the other hand, the rotor 20 having the permanent magnet 60 fixed to the outer peripheral surface is formed in a cylindrical shape and has a porous body 21.
Is integrally provided in the ceiling portion, and is inserted into the main shaft 100 as shown in the figure to support the radial direction R and the thrust direction T. In the configuration described above, when a rotating magnetic field is generated in the rotating magnetic field generating means, high-speed rotation of the rotor 20 is started as the permanent magnet 60 is attracted. Before or after this, air or the like is drawn in the direction of arrow H in the figure. As a result of the fluid being introduced between the main shaft 100 and the inner diameter surface of the rotor 20, retention in the radial direction R is performed using the fluid as a medium. This fluid is further introduced between the end portion of the main shaft 100 and the porous body 21 to exhaust the excess fluid in the direction of arrow K to support the thrust direction T while maintaining an appropriate interval. This proposal is particularly easy to assemble and has been put to practical use for rotating a polygon mirror of a laser printer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
提案によれば、主軸は基台に対して片持ち支持されてい
ることから軸剛性を大きくする必要があり、軸剛性を高
めるために軸直径を大きくすると、モータ全体の外形が
大きくなる問題点があった。また、ロータを高速回転す
る場合において、ロータのダイナミックバランス不良な
どがあると軸振動が発生する問題点があった。したがっ
て、本発明の流体軸受モータは上述の問題点に鑑みてな
されたものであり、その目的は、ロータを高速回転する
場合にロータ軸支用の軸振動の発生を防止でき、かつモ
ータ全体の外形寸法を小さくできる流体軸受モータを提
供することにある。
However, according to the above proposal, since the main shaft is cantilevered with respect to the base, it is necessary to increase the shaft rigidity. In order to increase the shaft rigidity, the shaft diameter is increased. However, there is a problem in that the outer shape of the entire motor becomes large when is increased. Further, when the rotor is rotated at a high speed, there is a problem that shaft vibration occurs if there is a poor dynamic balance of the rotor. Therefore, the fluid dynamic bearing motor of the present invention has been made in view of the above problems, and an object thereof is to prevent generation of shaft vibration for rotor shaft support when rotating a rotor at a high speed, and It is an object of the present invention to provide a fluid dynamic bearing motor whose outer dimensions can be reduced.

【0005】[0005]

【課題を解決するための手段】及び[Means for Solving the Problems] and

【作用】上述の課題を解決し、目的を達成するために、
本発明の流体軸受モータは基台の主軸回りに回転する帽
子状体のロータのラジアル方向軸受手段とスラスト方向
軸受手段を流体軸受で構成する流体軸受モータであっ
て、前記ロータの内部に位置するように前記基台に固設
される回転磁界発生部と前記ロータの内周面に設けられ
る磁石とで形成される回転力発生手段と、前記基台によ
り両支持されるとともに外周面上に流体溝部を有した前
記主軸と前記ロータの回転中心部位に固定され前記主軸
により挿通支持されるスリーブとで形成される前記ラジ
アル方向軸受手段と、面上に流体溝部を有するとともに
前記主軸に固定される受け部材と前記ロータの天井部の
外側面部位とで形成される前記スラスト方向軸受手段
と、を具備してなり、前記ロータの静止時には前記回転
力発生手段の磁気吸引分力により前記受け部材と前記外
側面を当接状態にするとともに、ロータの回転時には前
記ラジアル方向軸受手段と、前記スラスト方向軸受手段
に流体が適宜導入されて流体軸受を機能させるように働
く。
In order to solve the above problems and achieve the purpose,
The hydrodynamic bearing motor of the present invention is a hydrodynamic bearing motor in which the radial direction bearing means and the thrust direction bearing means of a hat-shaped rotor that rotates around a main shaft of a base are constituted by fluid bearings, and are located inside the rotor. As described above, the rotating force generating means formed by the rotating magnetic field generating portion fixed to the base and the magnet provided on the inner peripheral surface of the rotor, and the fluid supported on the outer peripheral surface both supported by the base. The radial direction bearing means formed by the main shaft having a groove portion and a sleeve fixed to a rotation center portion of the rotor and inserted and supported by the main shaft; and a fluid groove portion on the surface and fixed to the main shaft. The thrust direction bearing means formed by the receiving member and the outer surface portion of the ceiling portion of the rotor, and the magnetic attraction of the rotational force generating means when the rotor is stationary. As well as the outer surface and the receiving member in the contact state by the force, during rotation of the rotor and the radial bearing means, fluid to the thrust direction bearing means serve to function a fluid bearing is appropriately introduced.

【0006】また、好ましくは、前記受け部材と前記天
井部外側面の間に形成される第1ラビリンス部と、前記
基台と前記ロータの円筒縁部の間に形成される第2ラビ
リンス部をさらに具備してなり、潤滑流体がロータ外部
に飛散することを防止するように働く。また、好ましく
は、前記受け部材の外周縁部において磁性流体の保持手
段を設けるとともに、前記天井部の外側面の縁部に環状
凸部をさらに形成して、磁性シールを形成することで、
潤滑流体が外部に飛散することを防止するように働く。
また、好ましくは、前記ロータの前記外側面部位を前記
スリーブと一体形成することで部品数、組み立て工数の
削減をする。そして、前記外側面部位を前記スリーブと
別部材で形成し、該別部材に流体溝部を形成し一体化し
て、コストダウンを図る。
Further, preferably, a first labyrinth portion formed between the receiving member and the outer surface of the ceiling portion and a second labyrinth portion formed between the base and the cylindrical edge portion of the rotor are provided. Further, it is provided and acts to prevent the lubricating fluid from scattering outside the rotor. Further, preferably, a holding means for the magnetic fluid is provided in the outer peripheral edge portion of the receiving member, and an annular convex portion is further formed at the edge portion of the outer surface of the ceiling portion to form a magnetic seal.
It works to prevent the lubricating fluid from splashing outside.
Further, preferably, the outer surface portion of the rotor is integrally formed with the sleeve to reduce the number of parts and the number of assembling steps. Then, the outer side surface portion is formed by a member different from the sleeve, and a fluid groove portion is formed in the different member to be integrated with each other to reduce the cost.

【0007】[0007]

【実施例】以下に本発明の各実施例について、図面参照
の上で詳細に説明する。図1は第1実施例の流体軸受モ
ータの中心断面であり、ポリゴンミラーや磁気ヘッド、
スピンドル他の所定動作を行う部品は省略して図示し
て、基本構成部分のみ示している。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a central cross section of the fluid dynamic bearing motor of the first embodiment, which includes a polygon mirror, a magnetic head,
The spindle and other parts for performing a predetermined operation are omitted and shown, and only the basic components are shown.

【0008】本図において、主軸1の端部は取付穴部3
aを穿設した第1基台3に圧入などされて一体的に垂設
されている。この主軸1の外周面上にはヘリボーン状の
多数の流体溝1aが特殊加工される一方、この主軸1の
他方端にはネジ部1bが加工形成されており、図示のよ
うに取付穴部4aを穿設した第2基台4に対して、挿通
した後に、ネジ12を用いて固定することで、主軸1を
第1、第2基台に対して固定した両支持状態にしてい
る。このために第1、第2基台は連結部材10などを介
して一体的に構成される。
In the figure, the end of the main shaft 1 has a mounting hole 3
It is press-fitted or the like to the first base 3 having a formed therein and is vertically provided integrally. A large number of helibone-shaped fluid grooves 1a are specially processed on the outer peripheral surface of the main shaft 1, while a threaded portion 1b is formed on the other end of the main shaft 1, and a mounting hole 4a is formed as shown in the drawing. The main shaft 1 is fixed to both the first and second bases by being inserted into the perforated second base 4 and then fixed with the screw 12. Therefore, the first and second bases are integrally configured via the connecting member 10 and the like.

【0009】次に、図2は図1のX−X矢視図であっ
て、主軸1に固定される受け部材7の面上の様子を示し
ており、図2に示すように受け部材7は円環状をなして
おり、主軸1の取付穴部7dに対して同心円状にヘリボ
ーン形状の多数の流体溝部7bを形成する一方、後述の
ラビリンス部を形成する凸部7aを同心円状に形成して
いる。
Next, FIG. 2 is a view taken in the direction of arrow XX in FIG. 1, showing a state on the surface of the receiving member 7 fixed to the main shaft 1. As shown in FIG. Has a circular ring shape, and a large number of helibone-shaped fluid groove portions 7b are formed concentrically with respect to the mounting hole portion 7d of the main shaft 1, while a convex portion 7a forming a labyrinth portion described later is formed concentrically. ing.

【0010】再度、図1において受け部材7は主軸1の
軸方向の所定位置に不図示のネジなどを用いて固定され
るものであり、ハブ部7cを一体形成している。次に、
第1基台3には主軸1に対して同心円状にされたコア取
付部3hと、後述のラビリンス部を形成するラビリンス
凹部3bが同心円状に形成されている。また、積層され
た磁性板からなるコア8にはコイル9が巻かれており、
回転磁界発生部を形成する一方、コア取付部3hに位置
決め固定されている。
Again, in FIG. 1, the receiving member 7 is fixed to a predetermined position in the axial direction of the main shaft 1 by using a screw or the like (not shown), and a hub portion 7c is integrally formed. next,
The first base 3 is provided with a core mounting portion 3h that is concentric with the spindle 1, and a labyrinth recess 3b that forms a labyrinth portion, which will be described later, concentrically. A coil 9 is wound around the core 8 made of laminated magnetic plates,
While forming a rotating magnetic field generating part, it is positioned and fixed to the core mounting part 3h.

【0011】次に、上述の主軸1により回転自在に支持
される帽子状のロータ5は上記の回転磁界発生部を内蔵
する形状を有している。一方、このロータ5の回転中心
部位には、主軸1の外形寸法より所定のクリアランス分
大きな内径寸法を有した貫通穴部2aとフランジ部2b
を一体形成したスリーブ2が固定されておりラジアル方
向Rの軸受部を形成するとともに、フランジ部2bが上
述の受け部材7の流体溝部7bに対向するように一体形
成されており、スラスト方向Tの軸受部を形成してい
る。
Next, the hat-shaped rotor 5 rotatably supported by the above-mentioned main shaft 1 has a shape in which the above-mentioned rotating magnetic field generating portion is incorporated. On the other hand, at the center of rotation of the rotor 5, a through hole 2a and a flange 2b having an inner diameter larger than the outer dimension of the main shaft 1 by a predetermined clearance.
The sleeve 2 integrally formed with is fixed to form a bearing portion in the radial direction R, and the flange portion 2b is integrally formed so as to face the fluid groove portion 7b of the receiving member 7 described above. It forms the bearing.

【0012】また、上述の回転磁界発生部の外周に位置
されて回転磁界により吸引される永久磁石6は所定極数
に多極着磁されるとともに、ロータ5の内周面に図示の
ように固定されている。ここで、永久磁石6はコア8よ
りも第1基台3側にややずれて位置されており、永久磁
石6とコア8間に発生する磁気吸引力の分力Aによりロ
ータ5を受け部材7側に移動させる結果、ロータ5の静
止状態ではスリーブ2のフランジ部2bと受け部材7の
流体溝部7bとが当接状態にされる。
Further, the permanent magnet 6 positioned on the outer circumference of the rotating magnetic field generating portion and attracted by the rotating magnetic field is multi-polarized to a predetermined number of poles, and the inner peripheral surface of the rotor 5 is as shown in the figure. It is fixed. Here, the permanent magnet 6 is located slightly displaced from the core 8 on the first base 3 side, and the rotor 5 is supported by the component 7 of the magnetic attraction force generated between the permanent magnet 6 and the core 8. As a result of moving the rotor 5 to the side, the flange portion 2b of the sleeve 2 and the fluid groove portion 7b of the receiving member 7 are brought into contact with each other when the rotor 5 is stationary.

【0013】一方、ロータ5の天井部の外側には上記の
スリーブ2と同心円状にラビリンス溝部bが形成されて
おり、受け部材5の凸部7aに入り込むようにして第1
ラビリンスを形成するとともに、ロータ5の円筒部の縁
部はラビリンス凸部5aを形成しており、第1基台3の
ラビリンス凹部3bに入り込むようにして第2ラビリン
スを形成している。以上の第1、第2ラビリンスによリ
ロータ5内部に収容された流体潤滑剤他が外部に飛散す
ることを防止する一方、外部のゴミなど異物が侵入する
ことを防止している。
On the other hand, a labyrinth groove portion b is formed on the outer side of the ceiling portion of the rotor 5 concentrically with the sleeve 2 so as to enter the convex portion 7a of the receiving member 5.
While forming the labyrinth, the labyrinth convex portion 5a is formed at the edge portion of the cylindrical portion of the rotor 5, and the second labyrinth is formed so as to enter the labyrinth concave portion 3b of the first base 3. The first and second labyrinths prevent the fluid lubricant and the like contained in the rerotator 5 from scattering to the outside, while preventing foreign matter such as dust from entering.

【0014】以上説明の構成において、回転磁界発生部
に回転磁界が作用するとロータ5が回転されるが、この
回転にともない上述のスラスト軸受部の内圧が流体溝部
の作用により上昇する結果、スリーブ2と受け部材7の
当接状態から離間状態にバランスしてスラスト方向Tの
流体軸受を形成する。また、主軸1の外周面とスリーブ
2の貫通穴2aの間の内圧も流体溝部1aの作用により
上昇する結果、スリーブ2と主軸1は離間状態にバラン
スしてラジアル方向Rの流体軸受を形成する。以上のよ
うに構成した結果、ロータ5の高速度回転に伴って発生
する主軸1の振動発生を防止できた。また、主軸1の直
径を小さくしても軸の剛性を確保できるので設計上の自
由度を大きくできるようになり、モータ全体の外形を小
さくできた。
In the structure described above, when the rotating magnetic field acts on the rotating magnetic field generating portion, the rotor 5 is rotated. With this rotation, the internal pressure of the thrust bearing portion rises due to the action of the fluid groove portion. The fluid bearing in the thrust direction T is formed by balancing the contact state and the receiving member 7 from the contact state. Further, the internal pressure between the outer peripheral surface of the main shaft 1 and the through hole 2a of the sleeve 2 also rises due to the action of the fluid groove portion 1a. As a result, the sleeve 2 and the main shaft 1 are balanced in a separated state to form a fluid bearing in the radial direction R. .. As a result of the above configuration, it is possible to prevent the vibration of the spindle 1 from occurring due to the high speed rotation of the rotor 5. Further, even if the diameter of the main shaft 1 is reduced, the rigidity of the shaft can be secured, so that the degree of freedom in design can be increased and the outer shape of the entire motor can be reduced.

【0015】次に、図3(a)は第2実施例の中心断面
図であり、上述の構成と略同一の構成であるので、同一
部分には図1と同様の符号を付して説明を割愛して、相
違部分に限定して説明する。先ず、第1基台3のラビリ
ンス溝3bは図示のように2列分が設けられており、こ
の溝にロータ5の2列のラビリンス凸部5aが図示のよ
うに潜入して、より気密性の高いラビリンスを形成して
いる。また、受け部材7にはラビリンス凹部7fが形成
される一方、ロータ5側にはラビリンス凸部5fが形成
されており、ラビリンス凹部7fにロータ5側のラビリ
ンス凸部5fが潜入することでラビリンスを形成してい
る。
Next, FIG. 3 (a) is a central sectional view of the second embodiment, and since it has substantially the same structure as the above-mentioned structure, the same portions as those in FIG. Will be omitted and only the differences will be described. First, the labyrinth grooves 3b of the first base 3 are provided in two rows as shown in the drawing, and the two rows of the labyrinth convex portions 5a of the rotor 5 are infiltrated into the grooves as shown in the drawing to improve airtightness. Form a high labyrinth. Further, while the labyrinth concave portion 7f is formed in the receiving member 7, the labyrinth convex portion 5f is formed on the rotor 5 side, and the labyrinth convex portion 5f on the rotor 5 side infiltrates into the labyrinth concave portion 7f to prevent the labyrinth. Is forming.

【0016】一方、受け部材7の外周縁部には磁性流体
を吸着保持する鉄板と磁石とからなる磁性流体保持部1
1が設けられるとともに、ロータ5の天井部の外周縁部
からは円環状に凸部5eが一体形成されている。この磁
性流体保持部11と凸部5eの間に磁性流体を流入する
ことで内部をより気密状態に保持できる。また、図3
(b)に示すように、スリーブ2の受け部材7側に対向
する面を別部材22で形成して、この別部材22に上述
の流体溝部を形成して、受け部材7側を平滑面状に加工
してスラスト軸受部を形成しても良い。以上説明の第2
実施例においても、第1実施例の動作と同様に機能する
とともに、内部に蓄えられた液体潤滑剤の消耗を大幅に
削減できた。
On the other hand, on the outer peripheral edge of the receiving member 7, a magnetic fluid holding portion 1 composed of an iron plate for adsorbing and holding a magnetic fluid and a magnet.
1 is provided, and an annular convex portion 5e is integrally formed from the outer peripheral edge portion of the ceiling portion of the rotor 5. By flowing the magnetic fluid between the magnetic fluid holding portion 11 and the convex portion 5e, the inside can be kept more airtight. Also, FIG.
As shown in (b), the surface of the sleeve 2 facing the receiving member 7 side is formed by another member 22, and the above-mentioned fluid groove portion is formed in this other member 22, and the receiving member 7 side is formed into a smooth surface. Alternatively, the thrust bearing portion may be formed by processing. Second of the above
Also in the embodiment, the same function as the operation of the first embodiment is performed, and the consumption of the liquid lubricant stored inside can be greatly reduced.

【0017】[0017]

【発明の効果】以上説明したように本発明の流体軸受モ
ータによれば、ロータを高速回転する場合にロータ軸支
用の軸振動の発生を防止でき、かつモータ全体の外形寸
法を小さくできる効果がある。
As described above, according to the fluid dynamic bearing motor of the present invention, it is possible to prevent the shaft vibration for the rotor shaft support from occurring when the rotor is rotated at a high speed and to reduce the outer dimensions of the entire motor. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の流体軸受モータの中心断面であ
る。
FIG. 1 is a central cross section of a fluid dynamic bearing motor according to a first embodiment.

【図2】図1のX−X矢視図である。FIG. 2 is a view on arrow XX in FIG.

【図3】(a)は第2実施例の中心断面図、(b)はス
リーブ2の中心断面図である。
3A is a center sectional view of the second embodiment, and FIG. 3B is a center sectional view of a sleeve 2. FIG.

【図4】本願出願人の特開昭63−214518号公報
の流体軸受である。
FIG. 4 is a hydrodynamic bearing disclosed in Japanese Patent Laid-Open No. 63-214518 of the applicant of the present application.

【符号の説明】[Explanation of symbols]

1 主軸、 2 スリーブ、 3 第1基台、 4 第2基台、 5 ロータ、 6 永久磁石、 7 受け部材、 8 コア、 9 コイル、 11 磁性流体保持部、 12 ネジである。 1 main shaft, 2 sleeves, 3 1st base, 4 2nd base, 5 rotors, 6 permanent magnets, 7 receiving members, 8 cores, 9 coils, 11 magnetic fluid holding | maintenance parts, 12 screws.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基台の主軸回りに回転する帽子状体のロ
ータのラジアル方向軸受手段とスラスト方向軸受手段を
流体軸受で構成してなる流体軸受モータであって、 前記ロータの内部に位置するように前記基台に固設され
る回転磁界発生部と前記ロータの内周面に設けられる磁
石とで形成される回転力発生手段と、 前記基台により両支持されるとともに外周面上に流体溝
部を有した前記主軸と前記ロータの回転中心部位に固定
され前記主軸により挿通支持されるスリーブとで形成さ
れる前記ラジアル方向軸受手段と、 面上に流体溝部を有するとともに前記主軸に固定される
受け部材と前記ロータの天井部の外側面部位とで形成さ
れる前記スラスト方向軸受手段と、 を具備してなり、 前記ロータの静止時には前記回転力発生手段の磁気吸引
分力により前記受け部材と前記外側面を当接状態にする
ことを特徴とする流体軸受モータ。
1. A hydrodynamic bearing motor comprising a radial bearing means and a thrust bearing means of a hat-shaped rotor that rotates around a main shaft of a base, which are fluid bearings. The hydrodynamic bearing motor is located inside the rotor. As described above, the rotating force generating means is formed by the rotating magnetic field generating portion fixed to the base and the magnet provided on the inner peripheral surface of the rotor, and both are supported by the base and the fluid is formed on the outer peripheral surface. The radial direction bearing means formed by the main shaft having a groove portion and a sleeve fixed to the rotation center portion of the rotor and inserted and supported by the main shaft; and a fluid groove portion on the surface and fixed to the main shaft. A thrust direction bearing means formed by a receiving member and an outer surface portion of the ceiling portion of the rotor, wherein the magnetic attraction component force of the rotational force generating means when the rotor is stationary. Fluid dynamic bearing motor, characterized by more the receiving contact state of the outer surface with a member.
【請求項2】 前記受け部材と前記天井部外側面の間に
形成される第1ラビリンス部と、 前記基台と前記ロータの円筒縁部の間に形成される第2
ラビリンス部を、 さらに具備することを特徴とする請求項1に記載の流体
軸受モータ。
2. A first labyrinth portion formed between the receiving member and the outer surface of the ceiling portion, and a second labyrinth portion formed between the base and the cylindrical edge portion of the rotor.
The hydrodynamic bearing motor according to claim 1, further comprising a labyrinth portion.
【請求項3】 前記受け部材の外周縁部において磁性流
体の保持手段を設けるとともに、前記天井部の外側面の
縁部に環状凸部をさらに形成して、 磁性シールを形成することを特徴とする請求項1または
請求項2に記載の流体軸受モータ。
3. A magnetic seal is formed by providing magnetic fluid holding means at the outer peripheral edge of the receiving member, and further forming an annular convex portion at the edge of the outer surface of the ceiling portion. The fluid dynamic bearing motor according to claim 1 or 2.
【請求項4】 前記ロータの前記外側面部位を前記スリ
ーブと一体形成することを特徴とする請求項1から請求
項3のいずれかに記載の流体軸受モータ。
4. The fluid dynamic bearing motor according to claim 1, wherein the outer surface portion of the rotor is integrally formed with the sleeve.
【請求項5】 前記外側面部位を前記スリーブと別部材
で形成し、該別部材に流体溝部を形成し一体化すること
を特徴とする請求項1から請求項4のいずれかに記載の
流体軸受モータ。
5. The fluid according to claim 1, wherein the outer side surface portion is formed of a member different from the sleeve, and a fluid groove portion is formed in the different member to be integrated. Bearing motor.
JP22264091A 1991-09-03 1991-09-03 Fluid bearing motor Withdrawn JPH0560134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22264091A JPH0560134A (en) 1991-09-03 1991-09-03 Fluid bearing motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22264091A JPH0560134A (en) 1991-09-03 1991-09-03 Fluid bearing motor

Publications (1)

Publication Number Publication Date
JPH0560134A true JPH0560134A (en) 1993-03-09

Family

ID=16785627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22264091A Withdrawn JPH0560134A (en) 1991-09-03 1991-09-03 Fluid bearing motor

Country Status (1)

Country Link
JP (1) JPH0560134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034454A (en) * 1998-03-26 2000-03-07 Nidec Corporation Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034454A (en) * 1998-03-26 2000-03-07 Nidec Corporation Motor

Similar Documents

Publication Publication Date Title
JP3602732B2 (en) motor
JP2001286116A (en) Noncontact drive motor
JPH11285195A (en) Motor
JP2004092910A (en) Fluid bearing system
JP2003009462A (en) Spindle motor
JPH0560134A (en) Fluid bearing motor
JPH0560135A (en) Sealed fluid bearing motor
JP2500731B2 (en) Spindle motor for magnetic disk drive
US5450261A (en) Magnetic disc drive motor having disc securely fixed to loading surface to abut upper bearing outer ring
JP3386965B2 (en) Bearing structure of spindle motor
JPS63148846A (en) Bearing mechanism for motor
JP3013969B2 (en) Dynamic pressure bearing device
KR100269109B1 (en) Spindle motor for disc player
KR100267696B1 (en) A motor for disk driving
JP2567917Y2 (en) Motors using hydrodynamic bearings
JP2003329037A (en) Bearing device
JP4062801B2 (en) Spindle motor
JPH0754842A (en) Roller bearing
JPH05115163A (en) Outer rotor type electric rotating machine
JPH0327747A (en) Rotational driving gear for polygon mirror
JP3763417B2 (en) Disk storage device with improved spindle torque and acceleration
JPH07111029A (en) Bearing fluid sealing structure for motor
JPH07293572A (en) Bearing device
JPH05184099A (en) Polygon scanner motor equipped with bearing unit
JPH03256547A (en) Spindle motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203