JPH0559705B2 - - Google Patents

Info

Publication number
JPH0559705B2
JPH0559705B2 JP59181250A JP18125084A JPH0559705B2 JP H0559705 B2 JPH0559705 B2 JP H0559705B2 JP 59181250 A JP59181250 A JP 59181250A JP 18125084 A JP18125084 A JP 18125084A JP H0559705 B2 JPH0559705 B2 JP H0559705B2
Authority
JP
Japan
Prior art keywords
acylneuraminic
dna
acid aldolase
acylneuraminic acid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59181250A
Other languages
Japanese (ja)
Other versions
JPS6181786A (en
Inventor
Tsunetake Sugimori
Yoji Tsukada
Yasuhiro Oota
Hikari Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKIN SHOYU KK
Original Assignee
MARUKIN SHOYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKIN SHOYU KK filed Critical MARUKIN SHOYU KK
Priority to JP59181250A priority Critical patent/JPS6181786A/en
Priority to DE19853530935 priority patent/DE3530935A1/en
Publication of JPS6181786A publication Critical patent/JPS6181786A/en
Priority to JP5018292A priority patent/JP2587764B2/en
Publication of JPH0559705B2 publication Critical patent/JPH0559705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エシエリヒア属に属するN−アシル
ノイラミン酸アルドラーゼ生産菌由来のN−アシ
ルノイラミン酸アルドラーゼ遺伝子を含む染色体
DNA断片を組込んでなる新しい組換えプラスミ
ド、該プラスミドを導入して形質転換した微生物
及び該微生物よりN−アシルノイラミン酸アルド
ラーゼを製造する方法に関する。 従来の技術 N−アシルノイラミン酸アルドラーゼ(N−
acylneuraminate aldolase)は、別名シアル酸
アルドラーゼとも呼ばれ、国際生化学連合酵素委
員会の酵素番号E.C.4.1.3.3.に分類され、系統名で
はN−アシルノイラミン酸:ピルビン酸リアーゼ
(N−acylneuraminate:pyruvate lyase)と呼
ばれている酵素である。本酵素は下記の反応式に
示す如く、シアル酸(N−アシルノイラミン酸)
の分解及び合成反応を触媒する酵素である。 シアル酸=N−アシルマンノサミン+ピルビン酸 本発明者らは、先にエシエリヒア属、その他の
数種の属に属する公知菌を、シアル酸の存在下に
培養する時には、上記N−アシルノイラミン酸ア
ルドラーゼが工業的規模で容易に製造できること
を見出し、該酵素の製造技術を確立した(特公昭
56−54153号、特許第1111346号)。しかるに上記
確立された方法では、培地へのシアル酸の添加が
必須であり、このシアル酸自体その調製に繁雑な
操作等を要し且つ高価なものである不利があつ
た。しかもこのシアル酸添加を行なわない限り、
N−アシルノイラミン酸アルドラーゼは生産され
ないかあるいは極微量生産されるのみで、到底工
業的実施はできないものであつた。即ち上記方法
に利用される微生物は、それ自体シアル酸の不存
在下ではN−アシルノイラミン酸生産能を実質的
に発現できないものであつた。 発明の目的 本発明者らは、上記方法の最大の欠点とするシ
アル酸利用を必須とする点を解消し、該シアル酸
を利用せずとも工業的規模で大量のN−アシルノ
イラミン酸アルドラーゼを製造できる技術を開発
するべく鋭意研究を重ねた。その結果上記確立さ
れた方法に利用される微生物のうちエシエリヒア
属に属するN−アシルノイラミン酸アルドラーゼ
生産菌からN−アシルノイラミン酸アルドラーゼ
遺伝子を含む染色体DNA断片を抽出し、これを
ベクターに組み込んで組換えプラスミドを作成
し、該プラスミドの導入により形質転換させた微
生物を得るに成功すると共に、該微生物がシアル
酸無添加培地での培養により、目的とする酵素を
著量生産できるという事実を発見した。本発明は
この新しい知見に基づいて完成されたものであ
る。 発明の構成 即ち本発明は、エシエリヒア属に属するN−ア
シルノイラミン酸アルドラーゼ生産菌由来のN−
アシルノイラミン酸アルドラーゼ遺伝子を含む染
色体DNAのHind III−Eco RI断片であつて大き
さ約1.2kbのDNA断片を組込んだことを特徴とす
る大腸菌にて複製できる組換えプラスミドPMK6
及び、該組換えプラスミドを上記染色体DNAの
供与菌に導入して形質転換させた微生物に係わ
る。 本発明の上記組換えプラスミド及びこれを導入
した形質転換株の利用によれば、調製が面倒なシ
アル酸、その類縁体等のN−アシルノイラミン酸
アルドラーゼの誘導物質を培地に添加せずとも、
通常の微生物の培養用培地を用いて工業的規模で
大量の目的酵素を容易に製造採取することができ
る。 以下、本発明組換えプラスミド及びこれを導入
した形質転換株の製造法につき詳述する。 本発明プラスミドは、エシエリヒア属に属する
N−アシルノイラミン酸アルドラーゼ生産菌由来
のN−アシルノイラミン酸アルドラーゼ遺伝子を
含む染色体DNA断片をベクターに組込むことに
より製造される。ここで染色体DNA供与菌とし
て用いるエシエリヒア属細菌は、例えばエシエリ
ヒア・コリー(E. coli)のようなN−アシルノ
イラミン酸アルドラーゼ高生産性のものであるの
が好ましいが、N−アシルノイラミン酸アルドラ
ーゼ産生能を有する限り特に制限はなく、公知の
各種細菌をいずれも使用可能である。 上記N−アシルノイラミン酸アルドラーゼ生産
菌からの染色体DNAの調製は、通常の方法、例
えばフエノールを用いる方法〔Saito−Miura法、
Biochim.Biophys.Acta.,72,619(1963)〕等に
より行なわれる。 調製された染色体DNAは、次いでベクターと
連結するために切断される。この染色体DNAの
切断は、通常の制限エンドヌクレアーゼを用いる
方法により行なわれるが、特にこの方法に限定さ
れず、N−アシルノイラミン酸アルドラーゼ遺伝
子を切断しない限り例えば物理的に剪断力を加え
て切断する方法によることもできる。制限エンド
ヌクレアーゼを用いて染色体DNAを切断する方
法の実施に当り、完全切断を起こす反応条件を採
用する場合には、目的とするN−アシルノイラミ
ン酸アルドラーゼ遺伝子に切断部位を持たない各
種の制限エンドヌクレアーゼを用いることがで
き、また部分的にしか切断を起こさない反応条件
を採用する場合には、全ての種類の制限エンドヌ
クレアーゼを用いることができる。特にベクター
との連結の容易さから該制限エンドヌクレアーゼ
としては、用いられるベクターに唯一の切断部位
を有するものが好ましい。 かくして切断された染色体DNA断片を挿入結
合されるベクターDNAとしては、通常用いられ
る各種のものをいずれも利用することができ、特
にエシエリヒア・コリー系ベクターが好適であ
る。上記ベクターの例としては、例えばColE1の
系統、pSC101の系統、pBR322の系統、
pACY177の系統、pCR1の系統、R6Kの系統、ラ
ムダフアージの系統等を例示できる。 上記染色体DNAとベクターDNAとの結合は、
一般的に行なわれている方法、例えば供与染色体
とベクターとを同一の制限エンドヌクレアーゼで
切断し、しかる後に之等をDNAリガーゼを用い
て結合させる方法により行なわれるが、この方法
に限定されることなく、他の如何なる方法によつ
てもよい。かくして本発明組換えプラスミド(組
換え体DNA分子、即ち供与染色体DNA断片とベ
クターとの結合体)を得る。 本発明は、また上記プラスミドを導入して形質
転換させた微生物をも提供するものである。本発
明組換えプラスミドを導入して形質転換される宿
主としての受容菌としては、エシエリヒア属細
菌、特に上記染色体DNA供与菌又はこれより誘
導したN−アシルノイラミン酸アルドラーゼ欠損
株が使用される。これらの内で特にN−アシルノ
イラミン酸アルドラーゼ欠損株は、本発明プラス
ミドを保有する形質転換株の選択の際に好適であ
る。 宿主菌としてのエシエリヒア属細菌に本発明プ
ラスミドを導入して形質転換を行なわせる方法
は、公知の方法、例えば代表的にはコンピテント
細胞を用いる形質転換法〔Mol.Gen.Genet.,
167,251(1979)〕等に従うことができる。本発明
では特にこの方法に限定されることなく他の公知
の各種の方法をいずれも採用することができる。 上記方法により得られる形質転換株から目的と
するN−アシルノイラミン酸アルドラーゼ遺伝子
を含む供与染色体DNA断片を保有し、該酵素を
シアル酸等の誘導物質の不存在下に生産する能力
を有する微生物の選択分離は、何ら特殊な方法を
採用することなく、所望の染色体上の遺伝形質も
しくはベクターの持つ形質又はこれらの両者を合
せ持つ菌のクローンを選択的に生育させ得る培地
を利用して容易に実施できる。 かくして抗生物質耐性を有し、シアル酸最小培
地に生育し、シアル酸などの誘導物質の無添加培
地で著量のN−アシルノイラミン酸アルドラーゼ
生産能を有する目的とする形質転換株を収得でき
る。 従来かかる顕著に向上された酵素生産能を有す
るエシエリヒア属細菌は全く知られておらず、勿
論公知のエシエリヒア属細菌が遺伝子組換え法に
よりかかる酵素生産能を発現させ得るという事
実、更にシアル酸無添加培地で著量のN−アシル
ノイラミン酸アルドラーゼ生産能を有する形質転
換株を育種するという事実も知られていない。 本発明は、上記のごとくして得られる形質転換
株を培養してN−アシルノイラミン酸アルドラー
ゼを採取する方法をも提供するものである。 上記形質転換株の培養のための培地としては炭
素源、窒素源、無機化合物その他の栄養素を含
み、細菌の培養に一般に用いられている合成培
地、半合成培地或いは天然培地のいずれをも使用
することができる。上記各培地に利用される炭素
源としては、例えばブドウ糖、果糖、転化糖、澱
粉糖化液、ソルビトール、グリセロール等の糖質
液、ピルビン酸、リンゴ酸、コハク酸等の有機酸
類等を例示できる。窒素源としては、例えば硫酸
アンモニウム、塩化アンモニウム、硝酸アンモニ
ウム、リン酸アンモニウム、水酸化アンモニウ
ム、酒石酸アンモニウム、酢酸アンモニウム、尿
素等を例示できる。炭素源としても窒素源として
も利用できるものとしては、例えばペプトン、肉
エキス、コーンステイープリカー等を例示でき
る。無機化合物としては、例えばリン酸一カリウ
ム、リン酸二カリウム、リン酸一ナトリウム、リ
ン酸二ナトリウム、硫酸マグネシウム、塩化マグ
ネシウム、塩化カリウム、塩化ナトリウム、硫酸
第一鉄、塩化第一鉄、硫酸第二鉄、塩化第二鉄、
硫酸マンガン、塩化マンガン等を例示できる。そ
の他の栄養素としては、例えば酵母エキス、ビタ
ミン等を例示できる。 培養は、液体培地又は固体培地のいずれでも行
なうことができるが、通常液体培地方が有利であ
つて、特に振盪培養又は通気攪拌培養を行なうの
が量産上有利である。培養温度は20〜45℃、好ま
しくは28〜37℃とするのが好適である。培養中は
適当な中和剤を用いてPH6〜9に調整するのが好
ましい。上記培養を通常10〜50時間行なうことに
より、目的とするN−アシルノイラミン酸アルド
ラーゼの活性は最高に達する。本酵素は一般に菌
体内酵素であるので、培養物からの本酵素の採
取、精製に当つては、上記培養液から遠心分離等
の方法で菌体を集め、得られた菌体を超音波処
理、ガラスビーズを用いる磨砕処理、或いはフレ
ンチプレス処理等によつて破砕し、酵素を抽出す
るのが好ましい。抽出液はこれを硫安塩析法、イ
オン交換クロマトグラフイー、ゲル過法等の常
法により処理して精製N−アシルノイラミン酸ア
ルドラーゼとすることができる。 実施例 以下、実施例を挙げ本発明を更に詳しく説明す
る。 実施例 1 (1) N−アシルノイラミン酸アルドラーゼ生産株
E.coli K12C600株からの染色体DNAの調製 下記組成のL培地1中でエシエリヒア・コリ
ー(E.coli)K12C600株を37℃で約3時間振盪培
養し、対数増殖期の菌体を集めた。 〈L培地組成〉 ペプトン 1g/dl 酵母エキス 0.5g/dl グルコース 0.1g/dl NaCl 0.5g/dl PH 7.2に調整 上記菌体につきフエノール法によるDNA抽出
操作を行なつて、最終3.8mgの染色体DNAを抽出
精製した。 (2) ベクターDNAの調製と制限酵素による切断 ベクターとしてのプラスミドpBR322のDNA
を以下の通り調製した。即ち、まずpBR322をプ
ラスミドとして保有するエシエリヒア・コリー
K12株の一種を下記組成のGPM培地に接種し、
37℃で対数期中期まで培養した後、最終濃度
100μg/mlのクロラムフエニコールを添加し、
更に一夜培養した。 〈GPM組成〉 グルコース 10g ペプトン 10g NH4Cl 1g Na2HPO4・12H2O 15.2g KH2PO4 3g NaCl 3g Na2SO4 0.115g MgCl2・6H2O 0.083g 酵母エキス 1g 脱塩水 全体を1とする量 上記操作により、細胞内にプラスミドDNAを
多量に生産させた。クロラムフエニコール添加の
16時間目に菌体を集め、リゾチーム・SDS処理し
て溶菌させ、30000×g、1時間の超遠心により
上清を得た。これよりプラスミドDNAを濃縮し、
セシウムクロライド−エチジウムブロマイド平衡
密度勾配遠心法によつて最終700μgのpBR322の
プラスミドDNAを分画採取した。 (3) 染色体DNA断片のベクターへの導入 上記(1)で得た染色体DNA10μgを取り、制限
エンドヌクレアーゼHindを37℃で30分間、60
分間又は120分間それぞれ反応させ、DNAの部分
的切断を行なつた後、65℃で10分間熱処理して反
応を停止させた。他方ベクターpBR322につき制
限エンドヌクレアーゼHindを用いて完全に切
断後、アルカリフオスフアターゼで処理して
pBR322のDNA断片を調製した。 上記染色体DNA断片とpBR322のDNA断片5μ
gとを混合し、ATP及びジチオスレイトールの
存在下に、T4フアージ由来のDNAリガーゼを用
いて、10℃で16時間を要してDNA鎖の連結反応
を行なつた。65℃で10分間の熱処理後、反応液に
2倍容のエタノールを加え連結反応終了後の
DNAを沈澱させ、採取した。 (4) 組換えプラスミドDNAによる形質転換 エシエリヒア・コリーK12C600株から、ニトロ
ソグアニジン変異処理によつて誘導したN−アシ
ルノイラミン酸アルドラーゼ欠損株を、L培地10
mlにて対数増殖中期まで生育させた後、塩化カル
シウム50mMを含むトリス緩衝液(50mM、PH
7.0)で2回洗浄することにより、コンピテント
な(DNA取り込み能を有する)細胞を調製した。
このコンピテント細胞顕濁液0.4mlに上記(3)で得
たDNA溶液0.1mlを加えて、0℃で30分間保持し
た後、直ちに42℃、2分間の熱パルスを与え、
DNAを細胞内に取込ませた。 次にこの細胞懸濁液をL培地に接種し、37℃で
2時間静置培養を行なつて形質転換反応を完了さ
せた後、集菌し、洗浄し、再懸濁液を最小培地プ
レートに塗沫し、37℃で2日間培養した。 尚上記最小培地プレートは、シアル酸の2g、
(NH42SO4の1g、K2HPO4の7g、KH2PO4
の2g、MgSO4・7H2Oの0.1g、ロイシンの20
mg、スレオニンの20mg及びチアミンの1mgを1
の純水に溶解し、PHを7.0に調整したものに寒天
20gを加えて殺菌した固形培地にアンピシリンを
10μg/mlとなるように加えることにより調整し
たものである。 上記により生じたコロニーを釣菌し、アンピシ
リン耐性と菌体内のN−アシルノイラミン酸アル
ドラーゼ活性とを検討し、形質転換株RC−H1/
pMK2(約14.2kb)を収得した。 (5) N−アシルノイラミン酸アルドラーゼの遺伝
情報を担うプラスミドのセルフクローニング 上記(4)で得た形質転換株をL培地100ml中で培
養し、上記(2)と同様にしてクロラムフエニコール
処理を行なつた。菌体を集菌、洗浄後、ビルンボ
イム及びドリー(Birnboim and Doly)の方方
法〔Nucleic Acids Research,,1513〜1523
(1979)〕により、N−アシルノイラミン酸アルド
ラーゼの遺伝子情報を担う組換えプラスミド(以
下「pMK2」と称する)を含む液を調製した。 この溶液をアガロースゲル電気泳動(アガロー
ス0.7%、90V)にかけ、pMK2のバンドを紫外線
照射下で切り出し、これを透析チユーブに入れ、
再度電気泳動を行ない、ゲルよりDNAを抽出し
た。エチジウムブロマイドの除去を行なつた後、
2倍容のエタノールを加えて沈澱させ、得られた
pMK2の90μgを5mMトリス塩酸緩衝液(PH7.5)
に溶解した。 次いで上記(4)と同様にして、エシエリヒア・コ
リーK12C600株にDNA取り込み能を持たせた後、
上記pMK2を取り込ませた。かくして得られる菌
株をアンピシリン10μg/mlを含む最小培地プレ
ートに培養し、生じてくるコロニーを分離し、ア
ンピシリン耐性と菌体内のN−アシルノイラミン
酸アルドラーゼ活性を検討して、形質転換株RC
−K12C600/pMK2を収得した。 (6) N−アシルノイラミン酸アルドラーゼ遺伝子
のサブクローニング 上記(5)で得た形質転換株から、該(5)と同様の方
法によりプラスミドpMK2の10μgを取り、これ
に2種の制限エンドヌクレアーゼEcoRI及び
Hind を同時に作用させて37℃で1時間部分
的に切断反応を行なつた後、65℃で10分間熱処理
して反応を停止させた。他方ベクターpBR322に
つき制限エンドヌクレアーゼEcoRI及びHind
を同時に用いて完全に切断後、アルカリフオス
フアターゼで処理してpBR322のDNA断片を調
製した。 上記pMK2のDNA断片とpBR322のDNA断片
5μgとを混合し、ATP及びジチオスレイトール
の存在下に、T4フアージ由来のDNAリガーゼを
用いて、1℃で16時間を要してDNA鎖の連結反
応を行なつて組換えプラスミドを調製した。 次いで上記(4)と同様にしてエシエリヒア・コリ
ーK112C600株にDNA取り込み能を持たせた後、
上記で調製した組換えプラスミドを取り込ませ
た。 かくして得られる菌体をアンピシリン10μg/
mlを含む最小培地プレートに培養し、生じてくる
コロニーを分離し、アンピシリン耐性及び菌体内
のN−アシルノイラミン酸アルドラーゼ活性を検
討して、形質転換株RC−K12C600/pMK6を得
た。 この形質転換株は、本発明のN−アシルノイラ
ミン酸アルドラーゼ遺伝子を含む染色体DNA断
片を組込んだ組換えプラスミドを保有するもので
あり、該プラスミドを以下「pMK6」と称する。 pMK6の制限酵素切断地図は第1図に示す通り
である。これはpBR322に由来しPst、Pvu、
Sal及びBamHで各々切断される切断部位を
有するDNA断片(Hind III−Eco RI断片、
4331bpと、N−アシルノイラミン酸アルドラー
ゼ生産菌由来の染色体DNA断片(Hind III−
Eco RI断片、約1.2kbとが、EcoRI及びHind
の切断部位で連結されてなり、約5.5kbの大き
さを有するものである。 また上記プラスミドpMK6を保有する形質転換
株は、工業技術院微生物工業技術研究所にエシエ
リヒア・コリーK12C600/pMK6なる名称にて寄
託されており、その寄託番号は微工研菌寄第7797
号である。 (6) 本発明形質転換株によるN−アシルノイラミ
ン酸アルドラーゼの生産 上記(5)で得た形質転換株につき、DNA供与菌
であるエシエリヒア・コリーK12C600株と対比し
て、それらのシアル酸添加培地及びシアル酸無添
加培地(酵母エキス培地)の各々におけるN−ア
シルノイラミン酸アルドラーゼ生産性を検討し
た。 各微生物の培養培地としては、以下の組成の培
地をそれぞれ利用した。 〈シアル酸添加培地組成〉 シアル酸 5g (NH42SO4 1g K2HPO4 7g KH2PO4 2g MgSO4・7H2O 0.1g 酵母エキス 0.5g 純水 全体を1とする量(PH6.0) 〈酵母エキス培地組成〉 酵母エキス 20g コハク酸 10g 純水 全体を1とする量(PH6.0) 上記各培地に各微生物を接種し、30℃で24時間
振盪培養を行なつた。その後、培養液から遠心分
離法により菌体を集め、25mMリン酸緩衝液(PH
7.5)100mlに懸濁させて超音波処理を行ない細胞
を破砕し、菌体内の酵素を抽出し、遠心分離によ
り沈渣と上澄とを分離した後、抽出液(上澄)と
して粗酵素液を得た。 得られた酵素液の活性を、バーネツトらの方法
〔J.E.G.Barnett,D.L.Corina,and G.Rasool,
Biochemical Journal,125,275(1971)〕に従い
測定した。 N−アシルノイラミン酸アルドラーゼ活性は、
上記方法により測定されるものであり、その酵素
活性の1単位とは、反応温度37℃において1分間
に1マイクロモルのN−アシルノイラミン酸を分
解する活性をいう。 得られた結果を下記第1表に示す。 【表】 上記第1表より、本発明によれば、シアル酸無
添加培地において著量のN−アシルノイラミン酸
アルドラーゼを収得できることが明らかである。 なお、上記粗酵素液は、これを常法に従い硫安
で塩析し、遠心分離し、透析後、凍結乾燥するこ
とにより粗酵素粉末とすることができる。また該
酵素粉末は、これをイオン交換クロマトグラフ
イ、ゲル過等の手段により精製して更に純化さ
れた酵素標品とすることができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a chromosome containing an N-acylneuraminic acid aldolase gene derived from an N-acylneuraminic acid aldolase-producing bacterium belonging to the genus Escherichia.
The present invention relates to a new recombinant plasmid incorporating a DNA fragment, a microorganism transformed by introducing the plasmid, and a method for producing N-acylneuraminic acid aldolase from the microorganism. Conventional technology N-acylneuraminic acid aldolase (N-
acylneuraminate aldolase), also known as sialic acid aldolase, is classified as enzyme number EC4.1.3.3 by the International Union of Biochemistry Enzyme Committee, and its systematic name is N-acylneuraminate:pyruvate lyase. It is an enzyme called lyase). This enzyme produces sialic acid (N-acylneuraminic acid) as shown in the reaction formula below.
It is an enzyme that catalyzes the decomposition and synthesis reactions of Sialic acid = N-acylmannosamine + pyruvic acid When the present inventors culture known bacteria belonging to the genus Escherichia and several other genera in the presence of sialic acid, the above N-acylneuraminic acid He discovered that aldolase could be easily produced on an industrial scale and established the production technology for this enzyme (Tokuko Sho
56-54153, Patent No. 1111346). However, the established method described above requires the addition of sialic acid to the culture medium, and the sialic acid itself has the disadvantage that its preparation requires complicated operations and is expensive. Moreover, unless this sialic acid is added,
N-acylneuraminic acid aldolase was not produced or was produced only in very small amounts, and it was completely impossible to implement it industrially. That is, the microorganisms used in the above method cannot substantially exhibit the ability to produce N-acylneuraminic acid in the absence of sialic acid. Purpose of the Invention The present inventors have solved the biggest drawback of the above method, which is that it requires the use of sialic acid, and produced large quantities of N-acylneuraminic acid aldolase on an industrial scale without using the sialic acid. We conducted extensive research to develop the technology that would allow us to do so. As a result, a chromosomal DNA fragment containing the N-acylneuraminic acid aldolase gene was extracted from an N-acylneuraminic acid aldolase-producing bacterium belonging to the genus Escherichia among the microorganisms used in the above established method, and this was inserted into a vector to create a recombinant plasmid. They created a microorganism and succeeded in obtaining a transformed microorganism by introducing the plasmid, and also discovered that the microorganism can produce a significant amount of the desired enzyme by culturing in a sialic acid-free medium. The present invention was completed based on this new knowledge. Structure of the Invention That is, the present invention provides N-acylneuraminic acid aldolase-producing bacteria belonging to the genus Escherichia.
Recombinant plasmid PMK6 that can be replicated in Escherichia coli and is characterized by incorporating a Hind III-Eco RI fragment of chromosomal DNA containing the acylneuraminic acid aldolase gene and a DNA fragment approximately 1.2 kb in size.
The present invention also relates to a microorganism that is transformed by introducing the recombinant plasmid into the chromosomal DNA donor microorganism. According to the use of the above-mentioned recombinant plasmid of the present invention and the transformed strain into which it has been introduced, N-acylneuraminic acid aldolase inducers such as sialic acid and its analogs, which are difficult to prepare, are not added to the culture medium.
A large amount of the desired enzyme can be easily produced and collected on an industrial scale using a common culture medium for microorganisms. Hereinafter, the recombinant plasmid of the present invention and the method for producing a transformed strain introduced with the same will be described in detail. The plasmid of the present invention is produced by incorporating into a vector a chromosomal DNA fragment containing an N-acylneuraminic acid aldolase gene derived from an N-acylneuraminic acid aldolase-producing bacterium belonging to the genus Escherichia. The bacteria of the genus Escherichia used as the chromosomal DNA donor here is preferably one with high productivity of N-acylneuraminic acid aldolase, such as E. coli. There are no particular limitations as long as the bacteria are present, and any known variety of bacteria can be used. The preparation of chromosomal DNA from the above N-acylneuraminic acid aldolase-producing bacteria can be carried out using conventional methods, such as the method using phenol [Saito-Miura method,
Biochim. Biophys. Acta., 72 , 619 (1963)]. The prepared chromosomal DNA is then cut for ligation with the vector. This chromosomal DNA cleavage is carried out by a conventional method using a restriction endonuclease, but is not particularly limited to this method. For example, a method in which cleavage is performed by physically applying shearing force as long as the N-acylneuraminic acid aldolase gene is not cleaved It can also be done by When implementing a method of cutting chromosomal DNA using restriction endonucleases, when adopting reaction conditions that cause complete cleavage, use various restriction endonucleases that do not have a cleavage site in the target N-acylneuraminic acid aldolase gene. can be used, and all types of restriction endonucleases can be used if reaction conditions that cause only partial cleavage are employed. In particular, from the viewpoint of ease of ligation with a vector, it is preferable that the restriction endonuclease has a unique cleavage site in the vector used. As the vector DNA into which the thus cut chromosomal DNA fragments are inserted and ligated, any of a variety of commonly used vectors can be used, and Escherichia coli vectors are particularly preferred. Examples of the above vectors include ColE1 strain, pSC101 strain, pBR322 strain,
Examples include the pACY177 strain, the pCR1 strain, the R6K strain, and the lambda phage strain. The combination of the above chromosomal DNA and vector DNA is
Although this method is commonly used, for example, cutting the donor chromosome and vector with the same restriction endonuclease and then ligating them together using DNA ligase, this method is not limited to this method. However, any other method may be used. In this way, a recombinant plasmid of the present invention (a recombinant DNA molecule, ie, a conjugate of a donor chromosomal DNA fragment and a vector) is obtained. The present invention also provides microorganisms transformed by introducing the above-mentioned plasmids. Bacteria of the genus Escherichia, particularly the above-mentioned chromosomal DNA donor bacteria or N-acylneuraminic acid aldolase-deficient strains derived therefrom, are used as recipient bacteria to be transformed by introducing the recombinant plasmid of the present invention. Among these, N-acylneuraminic acid aldolase-deficient strains are particularly suitable for selecting transformants carrying the plasmid of the present invention. The method of introducing the plasmid of the present invention into a bacterium of the genus Escherichia as a host bacterium and causing transformation can be performed using a known method, for example, a typical transformation method using competent cells [Mol.Gen.Genet.
167, 251 (1979)] etc. The present invention is not particularly limited to this method, and any of various other known methods may be employed. Selection of a microorganism that possesses a donor chromosomal DNA fragment containing the target N-acylneuraminic acid aldolase gene from the transformed strain obtained by the above method and has the ability to produce the enzyme in the absence of an inducer such as sialic acid. Isolation can be easily carried out without using any special methods, using a medium that can selectively grow bacterial clones that have the desired genetic trait on the chromosome, the trait of the vector, or a combination of both. can. In this way, it is possible to obtain the desired transformed strain, which has antibiotic resistance, grows in a sialic acid minimal medium, and has the ability to produce a significant amount of N-acylneuraminic acid aldolase in a medium without the addition of inducers such as sialic acid. Until now, no bacteria of the genus Escherichia has been known to have such a significantly improved enzyme-producing ability, and of course the fact that known bacteria of the genus Escherichia can express such an enzyme-producing ability through genetic recombination methods, and the lack of sialic acid. There is also no known fact that a transformed strain having the ability to produce a significant amount of N-acylneuraminic acid aldolase can be bred using a supplemented medium. The present invention also provides a method for culturing the transformed strain obtained as described above and collecting N-acylneuraminic acid aldolase. The medium for culturing the above-mentioned transformed strain may be a synthetic medium, a semi-synthetic medium, or a natural medium that contains carbon sources, nitrogen sources, inorganic compounds, and other nutrients and is generally used for culturing bacteria. be able to. Examples of carbon sources used in each of the above-mentioned media include glucose, fructose, invert sugar, starch saccharification solution, carbohydrate solutions such as sorbitol and glycerol, and organic acids such as pyruvic acid, malic acid and succinic acid. Examples of the nitrogen source include ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphate, ammonium hydroxide, ammonium tartrate, ammonium acetate, and urea. Examples of substances that can be used as both a carbon source and a nitrogen source include peptone, meat extract, and cornstarch liquor. Examples of inorganic compounds include monopotassium phosphate, dipotassium phosphate, monosodium phosphate, disodium phosphate, magnesium sulfate, magnesium chloride, potassium chloride, sodium chloride, ferrous sulfate, ferrous chloride, and ferrous sulfate. diiron, ferric chloride,
Examples include manganese sulfate and manganese chloride. Examples of other nutrients include yeast extract and vitamins. Cultivation can be carried out in either a liquid medium or a solid medium, but a liquid medium is generally more advantageous, and in particular, shaking culture or aerated agitation culture is advantageous in terms of mass production. The culture temperature is suitably 20-45°C, preferably 28-37°C. During cultivation, it is preferable to adjust the pH to 6 to 9 using a suitable neutralizing agent. By carrying out the above-mentioned culture for usually 10 to 50 hours, the activity of the target N-acylneuraminic acid aldolase reaches its maximum. Since this enzyme is generally an intracellular enzyme, when collecting and purifying this enzyme from a culture, the cells are collected from the above-mentioned culture solution by a method such as centrifugation, and the obtained cells are subjected to ultrasonic treatment. It is preferable to extract the enzyme by crushing by grinding using glass beads, French press, or the like. The extract can be processed by conventional methods such as ammonium sulfate salting out method, ion exchange chromatography, and gel filtration method to obtain purified N-acylneuraminic acid aldolase. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 (1) N-acylneuraminic acid aldolase producing strain
Preparation of chromosomal DNA from E. coli K12C600 strain Escherichia coli (E. coli) K12C600 strain was cultured with shaking at 37° C. for about 3 hours in L medium 1 having the following composition, and cells in the logarithmic growth phase were collected. <L medium composition> Peptone 1g/dl Yeast extract 0.5g/dl Glucose 0.1g/dl NaCl 0.5g/dl PH adjusted to 7.2 The above bacterial cells were subjected to DNA extraction using the phenol method to obtain a final 3.8mg of chromosomal DNA. was extracted and purified. (2) Preparation of vector DNA and cutting with restriction enzymes DNA of plasmid pBR322 as vector
was prepared as follows. That is, first, Escherichia coli carrying pBR322 as a plasmid
Inoculate a type of K12 strain into GPM medium with the following composition,
After incubation at 37°C to mid-log phase, the final concentration
Add 100 μg/ml chloramphenicol,
It was further cultured overnight. <GPM composition> Glucose 10g Peptone 10g NH 4 Cl 1g Na 2 HPO 4・12H 2 O 15.2g KH 2 PO 4 3g NaCl 3g Na 2 SO 4 0.115g MgCl 2・6H 2 O 0.083g Yeast extract 1g Demineralized water Amount to be 1 By the above operation, a large amount of plasmid DNA was produced in the cells. Added chloramphenicol
Bacterial cells were collected at 16 hours, treated with lysozyme and SDS to lyse them, and ultracentrifuged at 30,000 xg for 1 hour to obtain a supernatant. From this, plasmid DNA is concentrated,
A final 700 μg of pBR322 plasmid DNA was fractionated by cesium chloride-ethidium bromide equilibrium density gradient centrifugation. (3) Introduction of chromosomal DNA fragment into vector Take 10μg of chromosomal DNA obtained in (1) above, apply restriction endonuclease Hind at 37°C for 30 minutes, and incubate for 60 minutes.
After reacting for 1 minute or 120 minutes, respectively, to partially cleave the DNA, the reaction was stopped by heat treatment at 65° C. for 10 minutes. On the other hand, vector pBR322 was completely cleaved using restriction endonuclease Hind, and then treated with alkaline phosphatase.
A DNA fragment of pBR322 was prepared. The above chromosomal DNA fragment and pBR322 DNA fragment 5μ
The DNA strands were ligated using T4 phage-derived DNA ligase in the presence of ATP and dithiothreitol at 10°C for 16 hours. After heat treatment at 65℃ for 10 minutes, add 2 times the volume of ethanol to the reaction solution and add
DNA was precipitated and collected. (4) Transformation with recombinant plasmid DNA An N-acylneuraminic acid aldolase-deficient strain induced from Escherichia coli K12C600 strain by nitrosoguanidine mutation treatment was grown in L medium 10
After growing to the mid-logarithmic phase in
Competent cells (having the ability to take up DNA) were prepared by washing twice with 7.0).
Add 0.1 ml of the DNA solution obtained in (3) above to 0.4 ml of this competent cell suspension, hold at 0°C for 30 minutes, and immediately apply a heat pulse at 42°C for 2 minutes.
DNA was taken into cells. Next, this cell suspension was inoculated into L medium, statically cultured at 37°C for 2 hours to complete the transformation reaction, and the cells were harvested, washed, and resuspended on a minimal medium plate. and cultured at 37°C for 2 days. The above minimal medium plate contains 2g of sialic acid,
(NH 4 ) 1 g of 2 SO 4 , 7 g of K 2 HPO 4 , KH 2 PO 4
2g of , 0.1g of MgSO 4 7H 2 O, 20g of leucine
mg, 20 mg of threonine and 1 mg of thiamine in 1
Agar is dissolved in pure water and adjusted to pH 7.0.
Add 20g of ampicillin to the sterilized solid medium.
It was adjusted by adding 10 μg/ml. The colonies generated above were collected, and ampicillin resistance and intracellular N-acylneuraminic acid aldolase activity were examined.
pMK2 (about 14.2kb) was obtained. (5) Self-cloning of a plasmid carrying genetic information for N-acylneuraminic acid aldolase The transformed strain obtained in (4) above was cultured in 100 ml of L medium, and treated with chloramphenicol in the same manner as in (2) above. I did it. After collecting and washing the bacterial cells, the method of Birnboim and Doly [Nucleic Acids Research, 7 , 1513-1523]
(1979)], a solution containing a recombinant plasmid (hereinafter referred to as "pMK2") carrying genetic information for N-acylneuraminic acid aldolase was prepared. This solution was subjected to agarose gel electrophoresis (agarose 0.7%, 90V), the pMK2 band was cut out under ultraviolet irradiation, and this was placed in a dialysis tube.
Electrophoresis was performed again, and DNA was extracted from the gel. After removing ethidium bromide,
Add 2 times the volume of ethanol to precipitate and obtain
90μg of pMK2 in 5mM Tris-HCl buffer (PH7.5)
dissolved in Next, in the same manner as in (4) above, Escherichia coli K12C600 strain was endowed with DNA uptake ability, and then
The above pMK2 was incorporated. The bacterial strain thus obtained was cultured on a minimal medium plate containing 10 μg/ml of ampicillin, the resulting colonies were isolated, and the ampicillin resistance and intracellular N-acylneuraminic acid aldolase activity were examined to determine the transformed strain RC.
-K12C600/pMK2 was obtained. (6) Subcloning of N-acylneuraminic acid aldolase gene From the transformed strain obtained in (5) above, 10 μg of plasmid pMK2 was taken by the same method as in (5), and added to it by two restriction endonucleases, EcoRI and
Hind was simultaneously applied to carry out a partial cleavage reaction at 37°C for 1 hour, followed by heat treatment at 65°C for 10 minutes to stop the reaction. Restriction endonucleases EcoRI and Hind for vector pBR322 on the other hand
At the same time, the DNA fragment of pBR322 was prepared by completely cleaving the DNA fragment using alkaline phosphatase. The above pMK2 DNA fragment and pBR322 DNA fragment
A recombinant plasmid was prepared by mixing 5 μg of the DNA and performing a DNA strand ligation reaction at 1°C for 16 hours using T4 phage-derived DNA ligase in the presence of ATP and dithiothreitol. did. Next, in the same manner as in (4) above, Escherichia coli K112C600 strain was made to have DNA uptake ability.
The recombinant plasmid prepared above was incorporated. The bacterial cells obtained in this way were treated with ampicillin 10 μg/
The resulting colonies were isolated and examined for ampicillin resistance and intracellular N-acylneuraminic acid aldolase activity to obtain a transformed strain RC-K12C600/pMK6. This transformed strain possesses a recombinant plasmid into which a chromosomal DNA fragment containing the N-acylneuraminic acid aldolase gene of the present invention has been integrated, and this plasmid is hereinafter referred to as "pMK6". The restriction enzyme cleavage map of pMK6 is shown in FIG. This is derived from pBR322, Pst, Pvu,
DNA fragments (Hind III-Eco RI fragments,
4331bp and a chromosomal DNA fragment derived from N-acylneuraminic acid aldolase-producing bacteria (Hind III-
Eco RI fragment, approximately 1.2 kb, contains Eco RI and Hind
It is linked at the cleavage site and has a size of approximately 5.5 kb. The transformed strain carrying the above-mentioned plasmid pMK6 has been deposited with the Institute of Microbiology, Agency of Industrial Science and Technology under the name Escherichia coli K12C600/pMK6, and its deposit number is FEIB Deposit No. 7797.
This is the number. (6) Production of N-acylneuraminic acid aldolase using the transformed strain of the present invention The transformed strain obtained in (5) above was compared with the DNA donor strain Escherichia coli K12C600 and its sialic acid-added medium and The productivity of N-acylneuraminic acid aldolase in each of the sialic acid-free medium (yeast extract medium) was examined. As culture media for each microorganism, media with the following compositions were used. <Sialic acid-added medium composition> Sialic acid 5g (NH 4 ) 2 SO 4 1g K 2 HPO 4 7g KH 2 PO 4 2g MgSO 4・7H 2 O 0.1g Yeast extract 0.5g Pure water Amount to make the whole 1 (PH6 .0) <Yeast extract medium composition> Yeast extract 20g Succinic acid 10g Pure water Amount set to 1 (PH6.0) Each of the above-mentioned media was inoculated with each microorganism, and cultured with shaking at 30°C for 24 hours. After that, the bacterial cells were collected from the culture medium by centrifugation, and the cells were added to 25mM phosphate buffer (PH).
7.5) Suspend in 100 ml, crush the cells by ultrasonication, extract the enzyme inside the bacterial cells, separate the sediment and supernatant by centrifugation, and use the crude enzyme solution as the extract (supernatant). Obtained. The activity of the obtained enzyme solution was determined by the method of Barnett et al. [JEGBarnett, DLCorina, and G. Rasool,
Biochemical Journal, 125 , 275 (1971)]. N-acylneuraminic acid aldolase activity is
It is measured by the above method, and one unit of the enzyme activity refers to the activity of decomposing 1 micromole of N-acylneuraminic acid per minute at a reaction temperature of 37°C. The results obtained are shown in Table 1 below. [Table] From Table 1 above, it is clear that according to the present invention, a significant amount of N-acylneuraminic acid aldolase can be obtained in a sialic acid-free medium. The above-mentioned crude enzyme solution can be made into a crude enzyme powder by salting out with ammonium sulfate, centrifuging, dialysis, and freeze-drying according to a conventional method. Further, the enzyme powder can be purified by means such as ion exchange chromatography and gel filtration to obtain a further purified enzyme preparation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明組換えプラスミドpMK6の制
限酵素切断地図を示す。
FIG. 1 shows a restriction enzyme cleavage map of the recombinant plasmid pMK6 of the present invention.

Claims (1)

【特許請求の範囲】 1 エシエリヒア属に属するN−アシルノイラミ
ン酸アルドラーゼ生産菌由来のN−アシルノイラ
ミン酸アルドラーゼ遺伝子を含む染色体DNAの
Hind III−Eco RI断片であつて大きさ約1.2kbの
DNA断片を組込んでなり、大腸菌にて複製でき
ることを特徴とする組換えプラスミドpMK6。 2 エシエリヒア属に属するN−アシルノイラミ
ン酸アルドラーゼ生産菌由来のN−アシルノイラ
ミン酸アルドラーゼ遺伝子を含む染色体DNAの
Hind III−Eco RI断片であつて大きさ約1.2kbの
DNA断片を組込んでなる組換えプラスミド
pMK6を、上記染色体DNAの供与菌に導入した
ことを特徴とする形質転換微生物。
[Scope of Claims] 1. Chromosomal DNA containing an N-acylneuraminic acid aldolase gene derived from an N-acylneuraminic acid aldolase-producing bacterium belonging to the genus Escherichia.
Hind III-Eco RI fragment, approximately 1.2 kb in size.
A recombinant plasmid pMK6 that incorporates a DNA fragment and is capable of replicating in E. coli. 2. Chromosomal DNA containing the N-acylneuraminic acid aldolase gene derived from N-acylneuraminic acid aldolase-producing bacteria belonging to the genus Escherichia.
Hind III-Eco RI fragment, approximately 1.2 kb in size.
Recombinant plasmid that incorporates a DNA fragment
A transformed microorganism characterized in that pMK6 is introduced into the above-mentioned chromosomal DNA donor bacterium.
JP59181250A 1984-08-30 1984-08-30 Production of n-acylneuraminic acid aldolase Granted JPS6181786A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59181250A JPS6181786A (en) 1984-08-30 1984-08-30 Production of n-acylneuraminic acid aldolase
DE19853530935 DE3530935A1 (en) 1984-08-30 1985-08-29 Recombinant plasmid, transformant and process for the preparation of N-acylneuraminate aldolase
JP5018292A JP2587764B2 (en) 1984-08-30 1993-02-05 Method for producing N-acylneuraminic acid aldolase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59181250A JPS6181786A (en) 1984-08-30 1984-08-30 Production of n-acylneuraminic acid aldolase
JP5018292A JP2587764B2 (en) 1984-08-30 1993-02-05 Method for producing N-acylneuraminic acid aldolase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5018292A Division JP2587764B2 (en) 1984-08-30 1993-02-05 Method for producing N-acylneuraminic acid aldolase

Publications (2)

Publication Number Publication Date
JPS6181786A JPS6181786A (en) 1986-04-25
JPH0559705B2 true JPH0559705B2 (en) 1993-08-31

Family

ID=26354948

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59181250A Granted JPS6181786A (en) 1984-08-30 1984-08-30 Production of n-acylneuraminic acid aldolase
JP5018292A Expired - Lifetime JP2587764B2 (en) 1984-08-30 1993-02-05 Method for producing N-acylneuraminic acid aldolase

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5018292A Expired - Lifetime JP2587764B2 (en) 1984-08-30 1993-02-05 Method for producing N-acylneuraminic acid aldolase

Country Status (2)

Country Link
JP (2) JPS6181786A (en)
DE (1) DE3530935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755115B2 (en) 2007-03-15 2017-09-05 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277A (en) * 1985-06-26 1987-01-06 Rikagaku Kenkyusho Novel plasmid, novel microorganism transformed therewith and production of useful physiologically active substance using same
JPS62278982A (en) * 1986-05-27 1987-12-03 Kyowa Hakko Kogyo Co Ltd Production of n-acetylneuraminic acid lyase
JPH0755152B2 (en) * 1986-06-02 1995-06-14 日本化薬株式会社 Recombinant gene product manufacturing method and medium
JPH0665301B2 (en) * 1987-02-27 1994-08-24 東洋紡績株式会社 Method for producing NAL (N-acylneuraminic acid aldolase)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654153A (en) * 1979-10-09 1981-05-14 Fujitsu Ltd Information system of failure congestion
JPS611384A (en) * 1984-06-14 1986-01-07 Kyowa Hakko Kogyo Co Ltd Preparation of n-acetylneuraminic lyase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654153A (en) * 1979-10-09 1981-05-14 Fujitsu Ltd Information system of failure congestion
JPS611384A (en) * 1984-06-14 1986-01-07 Kyowa Hakko Kogyo Co Ltd Preparation of n-acetylneuraminic lyase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755115B2 (en) 2007-03-15 2017-09-05 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
DE3530935A1 (en) 1986-03-06
JP2587764B2 (en) 1997-03-05
JPS6181786A (en) 1986-04-25
JPH0638751A (en) 1994-02-15
DE3530935C2 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
JPS59156292A (en) Preparation of tryptophan
JPS62155081A (en) Novel microorganism and production of biotin by fermentation with said microorganism
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
EP0107400B1 (en) Hybrid plasmid and process for producing glutathione using said plasmid
EP0129119B1 (en) Method for producting l-aspartic acid
EP0071486B1 (en) Novel microorganisms of the genus eschericia, hybrid dna for use in their production and the use of the microorganisms in the preparation of glutathione
JPH03164185A (en) Modified dna and use thereof
EP0123903A2 (en) Method for producing L-aspartic acid
JPH062061B2 (en) Process for producing N-acetylneuraminic acid lyase
JPS6236196A (en) Production of alanine
EP0374771B1 (en) Production method for PvuI restriction endonuclease
JPS5928470A (en) Bacillus subtilis
JPH0697995B2 (en) Transformed microorganism
JPH0731473A (en) Production of n-acylneuraminic aldolase
JP2656329B2 (en) Method for producing flavin nucleotides
JP3489604B2 (en) 5-aminolevulinic acid synthase gene
FR2464998A1 (en) NEW PLASMID AND USE THEREOF FOR MODIFYING E. COLI STRAIN
JP3113947B2 (en) Bile acid sulfate sulfatase gene, novel recombinant DNA and method for producing bile acid sulfate sulfatase
JP3357405B2 (en) Method for producing flavin nucleotides
JPS61239896A (en) Production of l-tryptophan
JPS6228678B2 (en)
JP2598718B2 (en) Novel indole-3-pyruvate decarboxylase and method for producing the same
JPS6185184A (en) Microorganism capable of producing l-triptophane by transformation
JPH0198487A (en) Novel plasmid, novel bacterium transformed with said plasmid and enzymatic production of s-lactoylglutathione using said bacterium
JPH0355107B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term