JPH0559511A - Galvanizing equipment for steel strip - Google Patents

Galvanizing equipment for steel strip

Info

Publication number
JPH0559511A
JPH0559511A JP12753491A JP12753491A JPH0559511A JP H0559511 A JPH0559511 A JP H0559511A JP 12753491 A JP12753491 A JP 12753491A JP 12753491 A JP12753491 A JP 12753491A JP H0559511 A JPH0559511 A JP H0559511A
Authority
JP
Japan
Prior art keywords
steel strip
electromagnets
electromagnet
exciting current
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12753491A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeue
洋 井家上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12753491A priority Critical patent/JPH0559511A/en
Publication of JPH0559511A publication Critical patent/JPH0559511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To change the direction of a plated steel strip of high temp. in noncontact by arranging plural electromagnets in such a manner that the shape of the sucking face against the steel strip is formed into a circular-arc one, controlling an exciting current and floating the steel strip up to a certain place by a magnetic force. CONSTITUTION:Electromagnets 11a to 11c are arranged in a curcular-arc state against a steel strip 1. Sensors 12a to 12c measure the distance between the electromagnets 11a to 11c and the steel strip 1 to control an exciting current and to float the steel strip 1 up to a certain place by a magnetic force. An auxiliary roll 13 is needless in the process of ordinary operation, but it is used in the case of sheet passing in the initial stage or in the case of an accident at the time of power failure. The progressing direction of the plated steel strip 1 of high temp. can be changed in noncontact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼帯の連続亜鉛メッキ設
備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous galvanizing equipment for steel strip.

【0002】[0002]

【従来の技術】図8に典型的な溶融亜鉛メッキ設備を示
す。鋼帯1は溶融亜鉛ポット2でメッキされ、合金化炉
3で500℃程度の温度でメッキ層を合金化し、クーラ
ー4で300〜350℃まで冷却された後トップロール
6で進行方向を変え、更にクーラー5及び水冷タンク7
で常温まで冷却される。
2. Description of the Related Art FIG. 8 shows a typical hot dip galvanizing facility. The steel strip 1 is plated with a molten zinc pot 2, the plating layer is alloyed at a temperature of about 500 ° C. in an alloying furnace 3, cooled to 300 to 350 ° C. in a cooler 4, and then the direction of travel is changed by a top roll 6, Cooler 5 and water cooling tank 7
It is cooled down to room temperature.

【0003】[0003]

【発明が解決しようとする課題】このような機器構成か
らなるメッキ設備の高さHは速度150mpm のラインで
60m以上に及び、建屋を含む設備費を著しく高価なも
のとし、また高層建屋の建築認可を伴う建設工程を長く
している。
The height H of the plating equipment having such an equipment structure is 60 m or more in a line with a speed of 150 mpm, which makes the equipment cost including the building extremely expensive, and the construction of a high-rise building. The construction process with approval is lengthened.

【0004】メッキ後の鋼帯が高温の状態では成品品質
上ロールにふれて進行方向転換せしめることができない
ため、このような問題を生じている。鋼板に非接触の条
件で鋼帯の進行方向転換をすることが望ましいことは言
うまでもなく、この目的のための既存技術としては図9
及び図10に示すACB(エアクッションベアリング)
20がある。これは空気をスリット21より噴出させ、
矩形のスリット路の内側に発生する静圧により鋼帯1を
支えるものである。しかしながら鋼帯の厚みが大となる
に伴いACB20により鋼帯を浮上支持するに必要なブ
ロワー22の動力は急増し、現実的な設計は困難にな
る。例えば厚み1mm、幅1000mmの鋼帯の支持のため
には500kW以上のブロワーパワーを必要とする。
[0004] When the steel strip after plating is in a high temperature state, it is impossible to change the traveling direction by touching the roll due to the quality of the product, and thus such a problem occurs. Needless to say, it is desirable to change the traveling direction of the steel strip without contacting the steel plate.
And ACB (air cushion bearing) shown in FIG.
There are 20. This ejects air from the slit 21,
The steel strip 1 is supported by the static pressure generated inside the rectangular slit path. However, as the thickness of the steel strip becomes thicker, the power of the blower 22 required to levitate and support the steel strip by the ACB 20 sharply increases, making it difficult to make a realistic design. For example, a blower power of 500 kW or more is required to support a steel strip having a thickness of 1 mm and a width of 1000 mm.

【0005】本発明はかかる従来技術の不具合を解決す
るために種々工夫されたものであり、少ないエネルギー
消費で効率のよい非接触支持が可能でかつラインを高速
化しても高層建屋の必要のない鋼帯の溶融亜鉛メッキ設
備を提供することを目的とする。
The present invention has been devised in various ways to solve the problems of the prior art. It enables efficient non-contact support with low energy consumption and does not require a high-rise building even if the line speed is increased. It is an object to provide a hot-dip galvanizing equipment for steel strip.

【0006】[0006]

【課題を解決するための手段】本発明は溶融亜鉛メッキ
ラインのメッキポット上方に複数個の電磁石を鋼帯に対
する吸引面が円弧もしくは円弧に近い形になるように配
列し、該電磁石の吸引面と鋼帯表面間の距離を測定する
センサーを設け、該センサーによる距離に基づいて電磁
石の励磁電流を制御し鋼帯を一定位置に磁力浮上させつ
つその進行方向を転換せしめることを特徴とする溶融亜
鉛メッキ設備を要旨とする。
According to the present invention, a plurality of electromagnets are arranged above a plating pot of a hot-dip galvanizing line so that the suction surface for a steel strip has a circular arc shape or a shape close to a circular arc. A melting point characterized by providing a sensor for measuring the distance between the surface of the steel strip and the surface of the steel strip, and controlling the exciting current of the electromagnet based on the distance by the sensor to magnetically levitate the steel strip to a certain position while changing its traveling direction. The main point is galvanizing equipment.

【0007】[0007]

【実施例】図1に本発明の磁力浮上方式を用いた溶融亜
鉛メッキ設備を示す。亜鉛ポット2でメッキされて引き
上げられた鋼帯1は合金化炉3aを通り500℃程度の
温度に保持され磁力浮上装置10を経て進行方向を下方
へと転換し、更に合金化炉3bで合金化を完了ししかる
後常温への冷却過程へと入る。図1では鋼帯の平坦度劣
化防止のため沸点に近い水を満たした水冷槽8で比較的
小さい冷却速度で一次冷却を行い、ついで室温水を満た
した水冷槽7で常温まで冷却する。なおこれらの冷却設
備は本発明の主旨とするところではなく、エアジェット
クーラー等どのような手段でもよい。ただしエアジェッ
トクーラーのように冷却速度の小さい手段を用いる場合
は、鋼帯が高温の状態で再び進行方向転換をすることに
なるので図2に示すように、2個もしくはそれ以上の非
接触進行方向曲げ装置10a,10bが必要となる。
EXAMPLE FIG. 1 shows hot dip galvanizing equipment using the magnetic levitation method of the present invention. The steel strip 1 plated with the zinc pot 2 and pulled up passes through the alloying furnace 3a and is maintained at a temperature of about 500 ° C., and the traveling direction is changed downward through the magnetic levitation device 10 and further alloyed in the alloying furnace 3b. After that, the process of cooling to normal temperature is started. In FIG. 1, in order to prevent the flatness of the steel strip from deteriorating, primary cooling is performed in a water cooling tank 8 filled with water close to the boiling point at a relatively low cooling rate, and then cooled to room temperature in a water cooling tank 7 filled with room temperature water. Note that these cooling facilities are not the gist of the present invention, and any means such as an air jet cooler may be used. However, when a means with a low cooling rate such as an air jet cooler is used, the traveling direction of the steel strip is changed again at a high temperature, so as shown in FIG. Direction bending devices 10a, 10b are required.

【0008】さて図3に本発明による磁力浮上方式によ
る鋼帯の進行方向曲げ装置10の詳細を示す。11a〜
11cは電磁石、12a〜12cは鋼帯の位置を検出す
るためのセンサーで公知のレーザー式変位計、超音波式
変位計等を用いる。13は補助ロールであり通常の運転
中は不要であるが、初期の通板のために用いる。また通
常の運転中でも停電等の事故が生じた場合は鋼帯の落下
防止のために必要である。
FIG. 3 shows the details of the apparatus 10 for bending the traveling direction of the steel strip by the magnetic levitation method according to the present invention. 11a ~
Reference numeral 11c is an electromagnet, and 12a to 12c are sensors for detecting the position of the steel strip, which are known laser type displacement gauges, ultrasonic type displacement gauges or the like. Reference numeral 13 is an auxiliary roll, which is not necessary during normal operation, but is used for the initial passage. In addition, it is necessary to prevent the steel strip from falling if an accident such as a power failure occurs during normal operation.

【0009】次に電磁石の具体的な設計手法について説
明する。図3において鋼帯1の厚みをt、鋼帯に作用す
る単位張力をσ、鋼帯の曲げ直径をDとすると、鋼帯を
保持するのに必要な吸引力(磁石吸引面の単位面積当た
り)fは、 f=2tσ/D ………(1) 一方電磁石11による吸引力は図4に模擬的に示す磁気
回路において、A:電磁石吸引面の面積、B:鋼帯内に
おいて磁束が通過する部分の断面積、lA :電磁石コア
の長さ、lB :鋼帯内において磁束が通過する長さ、μ
O :真空透磁率、μA :電磁石コアの比透磁率、μB
鋼帯の比透磁率、δ:電磁石吸引面と鋼帯との距離、
N:コイルの巻数、I:コイルの電流とすると、 磁気回路の全磁気抵抗R=(lA /(μA ・A)+2δ/A +lB /(μB ・B))/μO ………(2) 総磁束Φ=N・I/R ………(3) 吸引力(電磁石1個当たり)F=Φ2 /(μO ・A) ………(4) (1)〜(4)式による具体的な設計例について述べ
る。なお、図3は3個の電磁石が示してあるが実用上は
より多くの小型の磁石を周方向及び鋼帯幅方向に夫々複
数個配列するのがよい。
Next, a specific design method of the electromagnet will be described. In FIG. 3, where the thickness of the steel strip 1 is t, the unit tension acting on the steel strip is σ, and the bending diameter of the steel strip is D, the attraction force required to hold the steel strip (per unit area of the magnet attraction surface) ) F is f = 2tσ / D (1) On the other hand, in the magnetic circuit shown in FIG. 4, the attraction force by the electromagnet 11 is A: the area of the electromagnet attraction surface, B: the magnetic flux passes in the steel strip. Cross-sectional area of the portion to be applied, l A : length of electromagnet core, l B : length of magnetic flux passing through the steel strip, μ
O : vacuum permeability, μ A : relative permeability of electromagnet core, μ B :
Relative permeability of steel strip, δ: distance between electromagnet attraction surface and steel strip,
Assuming that N is the number of turns of the coil and I is the current of the coil, the total magnetic resistance of the magnetic circuit is R = (l A / (μ A · A) + 2δ / A + l B / (μ B · B)) / μ O .... … (2) Total magnetic flux Φ = N · I / R ……… (3) Attraction force (per electromagnet) F = Φ 2 / (μ O · A) ……… (4) (1) to (4) ) A specific design example based on the equation will be described. Although three electromagnets are shown in FIG. 3, in practice, it is preferable to arrange more small magnets in the circumferential direction and in the width direction of the steel strip.

【0010】鋼帯厚:2mm、鋼帯幅:1000mm、張力
σ:1kg/mm2 、曲げ直径D:3000mm、磁石数:9
(周方向)×4(幅方向)=36個、透磁率μA :10
00、μB :1000、空隙σ:10mm の場合磁石1個当たりに必要な起磁力は7500アンペ
アターンになる。コイル巻数Nと電流Iとの組み合わせ
は自由であり、Nを大にすればIが小となり消費電力は
小さくてすむ。しかしながらNを大にすると電磁石の自
己インダクタンスが大となり制御性を悪くする。本発明
者の検討結果ではこのインダクタンスは1ヘンリー以下
とすることが望ましい。N=100とするとインダクタ
ンスは0.2ヘンリーとなり、線径2mmの銅線をコイル
に用いると36個の磁石の総消費電力は45kWとなる。
これは従来技術(ACB)の500kWに比較すると実に
1/10以下の電力ですむことになる。
Steel strip thickness: 2 mm, steel strip width: 1000 mm, tension σ: 1 kg / mm 2 , bending diameter D: 3000 mm, number of magnets: 9
(Circumferential direction) × 4 (Width direction) = 36, Permeability μ A : 10
When 00, μ B : 1000 and air gap σ: 10 mm, the magnetomotive force required per magnet is 7500 ampere-turns. The number of coil turns N and the current I can be freely combined. If N is increased, I is decreased and power consumption is reduced. However, if N is made large, the self-inductance of the electromagnet becomes large and controllability deteriorates. As a result of the study by the present inventor, it is desirable that this inductance be 1 henry or less. If N = 100, the inductance will be 0.2 henry, and if a copper wire with a wire diameter of 2 mm is used for the coil, the total power consumption of the 36 magnets will be 45 kW.
Compared with the conventional technology (ACB) of 500 kW, the power consumption is 1/10 or less.

【0011】図5に本発明による鋼帯の浮上制御方法を
示す。鋼板位置δとその指令値δre f との偏差に応じて
電磁石の励磁電流が制御される。Sはラプラス変数、K
I ,KP ,KD は夫々位置偏差を励磁電流指令に変換す
る位置制御系の積分、比例及び微分制御ゲインである。
またKID,KIPは電流指令値と実電流との偏差に応じて
電磁石に印加される電圧を制御する電流制御系の微分及
び比例制御ゲインである。
FIG. 5 shows a method of controlling the floating of the steel strip according to the present invention. Exciting current of the electromagnet is controlled in accordance with the deviation between the steel plate position [delta] and the command value [delta] re f. S is the Laplace variable, K
I , K P , and K D are integral, proportional, and derivative control gains of the position control system that converts the position deviation into an exciting current command, respectively.
K ID and K IP are differential and proportional control gains of the current control system that controls the voltage applied to the electromagnet according to the deviation between the current command value and the actual current.

【0012】図6に制御結果の一例を示す。上のグラフ
は鋼帯の位置を示し+20mmの位置が磁石の吸引面、−
20mmの位置が補助ロール13の表面であり、目標制御
位置は+10mmである。制御ゲインはKI =5A/mm・
sec ,KP =30A/mm,KD =5A・sec /mm,KIP
=5V/A,KID=0.005V・sec /Aとした。横
軸の一目盛りは1秒で、図6から明らかなごとく初期に
補助ロール上にあった鋼帯は制御開始後1秒以内に目標
位置に到達し、以降安定した状態で目標位置を維持して
いる。
FIG. 6 shows an example of the control result. The above graph shows the position of the steel strip, the +20 mm position is the magnet's attraction surface,
The position of 20 mm is the surface of the auxiliary roll 13, and the target control position is +10 mm. Control gain is K I = 5A / mm ・
sec, K P = 30 A / mm, K D = 5 A · sec / mm, K IP
= 5V / A and K ID = 0.005V · sec / A. One scale on the horizontal axis is 1 second, and as is clear from FIG. 6, the steel strip that was initially on the auxiliary roll reached the target position within 1 second after starting the control, and thereafter maintained the target position in a stable state. ing.

【0013】図7に微分制御ゲインKD =0とした場合
を示す。鋼帯位置は磁石と補助ロールとの間を往復し、
安定な制御ができない。図7に示した不安定状態は微分
制御を行わない場合には他のゲインをどのように調整し
ても発生する。すなわちこの磁力浮上制御においては位
置制御系の微分制御が必須であることは特筆すべき点で
ある。
FIG. 7 shows a case where the differential control gain K D = 0. The steel strip position reciprocates between the magnet and the auxiliary roll,
Stable control is not possible. The unstable state shown in FIG. 7 occurs regardless of how other gains are adjusted when the differential control is not performed. That is, it is noteworthy that the differential control of the position control system is essential in this magnetic levitation control.

【0014】電流制御系(KID,KIPをふくむ系)は必
須ではないが、制御の安定化にはこれを設けることが望
ましい。なおそれぞれの制御ゲインは設備の仕様(鋼帯
の厚み、張力など)に合わせて実機における鋼帯の動き
を見ながら最適値を選べばよく上述の値にこだわるもの
ではない。
A current control system (a system including K ID and K IP ) is not essential, but it is desirable to provide it for stabilizing the control. It should be noted that the respective control gains may be selected according to the specifications of the equipment (the thickness of the steel strip, the tension, etc.) while observing the movement of the steel strip in the actual machine, and it is not necessary to stick to the above values.

【0015】[0015]

【発明の効果】本発明の技術を用いることにより高温の
メッキ鋼帯を非接触で進行方向転換せしめることがで
き、ライン仕様が高速化しても従来のように巨大な高層
建屋をつくる必要がなくなり大幅な設備費節減となる。
また非接触進行方向転換用の既存技術であるACB(エ
アークッションベアリング)と比較しても1/10以下
の消費電力という利点を有する。またACBのような強
制冷却効果を伴わないため高温の合金化炉の途中におい
て進行方向転換を行うことも可能になり、将来の高速溶
融亜鉛メッキラインの実現に不可欠な技術を提供するこ
とができる。
EFFECTS OF THE INVENTION By using the technique of the present invention, it is possible to change the traveling direction of a high temperature plated steel strip in a non-contact manner, and it is not necessary to make a huge high-rise building as in the conventional case even if the line specifications are speeded up. The equipment cost will be significantly reduced.
Further, it has an advantage that power consumption is 1/10 or less as compared with ACB (air cushion bearing) which is an existing technology for non-contact traveling direction change. Further, since it does not have a forced cooling effect like ACB, it becomes possible to change the traveling direction in the middle of a high temperature alloying furnace, and it is possible to provide a technology indispensable for realizing a future high-speed hot dip galvanizing line. ..

【0016】なお本発明の技術は鋼帯の溶融亜鉛メッキ
設備のみならず鋼帯の塗装ラインの乾燥炉にも同様の考
え方で塗装後乾燥中の鋼帯を非接触支持する目的に利用
することができる。
The technique of the present invention can be used not only for hot-dip galvanizing equipment for steel strips but also for drying furnaces in steel strip coating lines for the purpose of non-contact supporting the steel strips after coating and drying. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁力浮上式鋼帯進行方向転換装置を用
いた溶融亜鉛メッキ設備の例。
FIG. 1 shows an example of hot dip galvanizing equipment using a magnetic levitation type steel strip traveling direction changing device of the present invention.

【図2】本発明の磁力浮上式鋼帯進行方向転換装置を用
いた溶融亜鉛メッキ設備の別の例。
FIG. 2 is another example of hot dip galvanizing equipment using the magnetic levitation type steel strip traveling direction changing device of the present invention.

【図3】本発明の磁力浮上式鋼帯進行方向転換装置の詳
細構造。
FIG. 3 is a detailed structure of a magnetic levitation type steel strip traveling direction changing device of the present invention.

【図4】磁力吸引を求める式を説明するための図。FIG. 4 is a diagram for explaining an equation for obtaining magnetic attraction.

【図5】磁力吸引により鋼帯を目標位置に浮上させるた
めの制御系。
FIG. 5 is a control system for levitating the steel strip to a target position by magnetic attraction.

【図6】磁力浮上制御結果の例。FIG. 6 shows an example of magnetic levitation control results.

【図7】磁力浮上制御結果の例。FIG. 7 shows an example of magnetic levitation control results.

【図8】従来の亜鉛メッキ設備の概要を示す。FIG. 8 shows an outline of conventional galvanizing equipment.

【図9】従来の非接触支持方式であるエアクッションベ
アリングを示す。
FIG. 9 shows an air cushion bearing which is a conventional non-contact support system.

【図10】図9の円弧部の展開図。FIG. 10 is a development view of an arc portion of FIG.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 亜鉛ポット 3 合金化炉 7,8 水冷槽 10 磁力浮上装置 11 電磁石 12 位置検出センサー 13 補助ロール 1 Steel strip 2 Zinc pot 3 Alloying furnace 7,8 Water cooling tank 10 Magnetic levitation device 11 Electromagnet 12 Position detection sensor 13 Auxiliary roll

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融亜鉛メッキラインのメッキポット上
方に複数個の電磁石を鋼帯に対する吸引面が円弧もしく
は円弧に近い形になるように配列し、該電磁石の吸引面
と鋼帯表面間の距離を測定するセンサーを設け、該セン
サーによる距離に基づいて電磁石の励磁電流を制御し鋼
帯を一定位置に磁力浮上させつつその進行方向を転換せ
しめることを特徴とする溶融亜鉛メッキ設備。
1. A plurality of electromagnets are arranged above a galvanizing pot of a hot dip galvanizing line so that a suction surface for a steel strip is a circular arc or a shape close to a circular arc, and a distance between the suction surface of the electromagnet and the steel strip surface. A hot dip galvanizing facility characterized in that a sensor for measuring the temperature is provided, and the exciting current of the electromagnet is controlled based on the distance by the sensor to magnetically levitate the steel strip to a fixed position while changing its traveling direction.
JP12753491A 1991-05-30 1991-05-30 Galvanizing equipment for steel strip Pending JPH0559511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12753491A JPH0559511A (en) 1991-05-30 1991-05-30 Galvanizing equipment for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12753491A JPH0559511A (en) 1991-05-30 1991-05-30 Galvanizing equipment for steel strip

Publications (1)

Publication Number Publication Date
JPH0559511A true JPH0559511A (en) 1993-03-09

Family

ID=14962393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12753491A Pending JPH0559511A (en) 1991-05-30 1991-05-30 Galvanizing equipment for steel strip

Country Status (1)

Country Link
JP (1) JPH0559511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095694A3 (en) * 2002-05-11 2004-09-02 Band Zink Gmbh Coating device
KR100887115B1 (en) * 2002-07-11 2009-03-04 주식회사 포스코 Apparatus for preventing variation in resin coating according to magnitude of strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124437A (en) * 1976-04-14 1977-10-19 Hitachi Ltd Continuous plating device
JPH0262355A (en) * 1988-08-26 1990-03-02 Kawasaki Steel Corp Vibration restraint and position controller for steel sheet
JPH03199366A (en) * 1989-12-28 1991-08-30 Mitsubishi Heavy Ind Ltd Device for alloying galvanized product
JPH04333554A (en) * 1991-05-10 1992-11-20 Mitsubishi Heavy Ind Ltd Alloying apparatus for galvanized steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124437A (en) * 1976-04-14 1977-10-19 Hitachi Ltd Continuous plating device
JPH0262355A (en) * 1988-08-26 1990-03-02 Kawasaki Steel Corp Vibration restraint and position controller for steel sheet
JPH03199366A (en) * 1989-12-28 1991-08-30 Mitsubishi Heavy Ind Ltd Device for alloying galvanized product
JPH04333554A (en) * 1991-05-10 1992-11-20 Mitsubishi Heavy Ind Ltd Alloying apparatus for galvanized steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095694A3 (en) * 2002-05-11 2004-09-02 Band Zink Gmbh Coating device
CN100402692C (en) * 2002-05-11 2008-07-16 镀锌板带有限公司 Coating device
KR100887115B1 (en) * 2002-07-11 2009-03-04 주식회사 포스코 Apparatus for preventing variation in resin coating according to magnitude of strip

Similar Documents

Publication Publication Date Title
RU2709494C1 (en) Compact homogenization line by continuous annealing
US9446929B2 (en) Steel strip stabilizing apparatus
US20120021916A1 (en) Method and apparatus for heating sheet material
JPH0559511A (en) Galvanizing equipment for steel strip
AU2008362112B2 (en) Method and device for draining liquid coating metal at the output of a tempering metal coating tank
JP2008546908A (en) Apparatus and method for guiding metal strips in continuous processing equipment
JP4332150B2 (en) Molten metal flotation device for continuous hot dipping of metal strips
US10345044B2 (en) Non-contact strip guiding
JP4713184B2 (en) Steel plate shape correction device and shape correction method
JP2849528B2 (en) Hot dip galvanizing equipment for steel strip
KR20040091109A (en) Device for hot dip coating metal strands
US4905756A (en) Electromagnetic confinement and movement of thin sheets of molten metal
JPH0741992B2 (en) Magnetic levitation carrier
US20240216971A1 (en) Contactless looper for metal processing and related methods
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JPH10301638A (en) Vibration suppressing device
KR101998996B1 (en) Apparatus for stablizing wire and apparatus for hot dipping including having same
US7040379B2 (en) Method and apparatus for the regulation of strip temperature in a continuous metallic strip casting plant
JP2002310607A (en) Distance measurement method and distance measurement device for ferromagnetic body
SU925452A1 (en) Roll
JPH0622727B2 (en) Run-out table on the exit side of hot finishing mill
JPS62107030A (en) Floating type strip passing device
JPH03207517A (en) Run out table for exit side of hot finishing rolling mill
CN111560512A (en) Non-magnetic metal plate strip material non-contact supporting device in heat treatment furnace
JPH0318415A (en) Run out table on outlet side of hot finishing mill