JPH0559200B2 - - Google Patents

Info

Publication number
JPH0559200B2
JPH0559200B2 JP60213460A JP21346085A JPH0559200B2 JP H0559200 B2 JPH0559200 B2 JP H0559200B2 JP 60213460 A JP60213460 A JP 60213460A JP 21346085 A JP21346085 A JP 21346085A JP H0559200 B2 JPH0559200 B2 JP H0559200B2
Authority
JP
Japan
Prior art keywords
alloy
plating
layer
plating layer
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60213460A
Other languages
Japanese (ja)
Other versions
JPS6274097A (en
Inventor
Sanae Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP21346085A priority Critical patent/JPS6274097A/en
Priority to GB8602101A priority patent/GB2175603B/en
Publication of JPS6274097A publication Critical patent/JPS6274097A/en
Priority to US07/224,262 priority patent/US4832801A/en
Priority to US07/332,407 priority patent/US4927715A/en
Priority to US07/357,932 priority patent/US4937149A/en
Publication of JPH0559200B2 publication Critical patent/JPH0559200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明は自動車、船舶、各種電気機械、OA
機器、農業機械、工作機械、食品機械、その他一
般的産業機械の摺動部品及び平軸受などの表面層
として使用されるメツキ皮膜(オーバレイ合金)
を有する摺動部品及び平軸受の製造方法に関す
る。 (ロ) 従来の技術 従来技術として、「軸受潤滑便覧」昭和36年6
月30日 日刊工業新聞社発行、第415頁と第432頁
と第433頁には2段階の電気メツキ層によつて複
合メツキ層を設け、これを熱処理により拡散させ
て表面層用合金を作る技術が示されている。ま
た、特公昭57−9635号にPb−Sn−Sb−In表面層
用合金あるいはPb−Sn−Sb−Tl表面層用合金
を、2段階の電気メツキ及び加熱拡散によつて、
設ける技術が示されている。また特公昭39−
22498号には、鋼裏金に設けられた銅合金層を溶
融鉛インジウムで被覆し、銅を鉛インジウム層中
に拡散させて、裏金と銅−鉛合金層と鉛−インジ
ウム−銅系表面層となるから摺動材料を作る技術
が示されている。 (ハ) 発明が解決しようとする問題点 最近、自動車用内燃機関や他の一般産業機械や
急速な進歩を遂げつつあり、より高速で高荷重化
される傾向にあつて、それに使用されるすべり軸
受や摺動材は、前記従来の表面層用合金では、特
に高速高荷重下では潤滑油膜の減少で、耐摩耗性
や、耐疲労性、耐食性などからその軸受寿命が短
くなつて来たという問題点があり、また、すべり
軸受では、潤滑油中において、該すべり軸受の表
面層を浸食する、いわゆるキヤビテーシヨンエロ
ージヨンはつきものであり、この種、損傷の軽
減・防止が必要となつてきた。 従来の表面層用Pb−Sn合金、Pb−In合金およ
びPb−Sn−In合金はキヤビテーシヨンエロージ
ヨンが大きすぎて好ましくなく、せめて従来の表
面層用Pb−Sn−Cu合金程度の小なるキヤビテー
シヨンエロージヨンに軽減・防止が各種産業界か
ら強く要望されてきた。また特公昭39−22498号
に示されている製法による摺動材は、溶融鉛イン
ジウム合金を鋳造によつて銅合金層と接合し且つ
この銅合金層を鉛インジウム合金に拡散させるこ
とで鉛−インジウム−銅系表面層を作つていた。
このため特公昭39−22498号においては、融点の
高い銅を鉛インジウム合金に拡散させるために複
合材を非常に高い温度に(特公昭39−22498号の
実施例では650℃)加熱することが必要であつた。
この高い温度に加熱すると銅と鉛の温度差に起因
して銅−鉛合金層表面に凹凸(銅−鉛合金層表面
の変形)が生じ、この銅−鉛合金層表面に均一厚
さの(数μmの厚さである)表面層を得ることは
不可能であり、この結果として軸受特性のばらつ
き及び信頼性が劣る欠点があつた。 本発明者は特願昭60−109627号(特開昭61−
266544号)出願でPb−Cu−In表面層用合金ある
いはPb−Cu−In−Sn表面層用合金がこれらの問
題点を解決するのに有効であることを示したが、
この特願昭60−109627の特許請求の範囲は、Pb
−Cu−In合金の製法を規定していなかつた。ま
た (ニ) 問題点を解決するための手段 この発明の目的は、上記の高速高荷重下での平
軸受や摺動材の表面層として使用されても、水中
またはすべり軸受の潤滑油中においてキヤビテー
シヨンエロージヨンを軽減でき且つ摩耗、疲労及
び潤滑油による腐食によく耐えて使用できるPb
−Cu−InあるいはPb−Cu−In−Snメツキ皮膜
(表面層)を有する摺動部品及び平軸受の製造方
法を得ることである。 本発明の方法に関係するメツキ皮膜(表面層)
は、重量でCu0.1〜6%、In1〜10%及び残部が
Pbと不可避的不純物とから成る。本発明の方法
に関連する他の表面層用合金は、重量でCu0.1〜
6%、In1〜10%、Snが8%以下及び残部がPbと
不可避的不純物とから成る。 本発明のメツキ皮膜(表面層)を有する摺動部
品及び平軸受の製造方法は、鋼裏金付の銅−鉛合
金上に直接にあるいはNiメツキしその上にPb−
Cu合金を電気メツキし、次にこのPb−Cu合金メ
ツキ層にIn、あるいはInと更にその上にSn、ま
たはIn−Sn合金の電気メツキを施し、これら電
気メツキによつて設けられた2層または3層から
成る複合メツキ層を熱処理して複合メツキ層構成
成分相互の拡散を生じさせそれによりPb−Cu−
In表面層用合金あるいはPb−Cu−In−Sn表面層
用合金を製造することを特徴とする。 (ホ) 作用 鋼裏金付の銅−鉛合金に設けられたNiメツキ
層はメツキ皮膜(表面層)の各成分が鋼裏金付銅
−鉛合金中に拡散するのを防止するのに有効であ
る。 メツキ皮膜(表面層)を作るための(1)Pb−Cu
合金メツキ層の厚さは5〜100μmの範囲であり、
(2)In、あるいはInとSn、又はIn−Sn合金メツキ
層の厚さは1〜20μmの範囲で、前記(1)と(2)をプ
ラスしたいわゆる複合メツキ層の合計の厚さは6
〜129μmの範囲である。 この複合メツキ層の拡散熱処理は80〜180℃の
温度範囲で10分〜20時間おこなう。 (ヘ) 実施例 以下本発明の実施例について説明する。 鋼裏金付銅−鉛合金上に直接またはNiメツキ
した上に、次表のPb−Cu合金メツキ液組成と、
そのメツキ条件でPbとCuの合金メツキを施し、
次にInメツキまたはIn及びSnメツキ即ちInメツキ
し更にその上にSnメツキするか、あるいはIn−
Sn合金メツキ(従来公知公用のメツキ液、例え
ば「軸受潤滑便覧」日刊工業新聞社、昭和36年6
月30日発行第367頁〜第368頁、第432頁〜第438頁
でよい)を施し、しかる後、熱処理によつて拡散
させて合金としてなる3層または4層からなる半
円筒形の平軸受を製造した。
(a) Industrial application field This invention is applicable to automobiles, ships, various electric machines, OA
Plate film (overlay alloy) used as the surface layer of sliding parts and plain bearings of equipment, agricultural machinery, machine tools, food machinery, and other general industrial machinery.
The present invention relates to a method for manufacturing a sliding component and a plain bearing. (b) Conventional technology As a conventional technology, "Bearing Lubrication Handbook" June 1963
March 30th, published by Nikkan Kogyo Shimbun, pages 415, 432, and 433, a composite plating layer is provided by two-step electroplating layer, and this is diffused by heat treatment to create an alloy for the surface layer. The technique is shown. In addition, in Japanese Patent Publication No. 57-9635, alloys for Pb-Sn-Sb-In surface layers or alloys for Pb-Sn-Sb-Tl surface layers were prepared by two-step electroplating and heating diffusion.
A technique for providing is shown. Also, special public service in 1977-
In No. 22498, a copper alloy layer provided on a steel back metal is coated with molten lead indium, copper is diffused into the lead indium layer, and the back metal, copper-lead alloy layer, and lead-indium-copper surface layer are formed. A technique for making a sliding material is shown. (c) Problems to be solved by the invention In recent years, internal combustion engines for automobiles and other general industrial machinery have been making rapid progress, and there is a trend toward higher speeds and heavier loads, and the sliding For bearings and sliding materials, the life of the conventional surface layer alloys mentioned above has been shortened due to lack of lubricating oil film, especially under high-speed and high-load conditions, due to poor wear resistance, fatigue resistance, and corrosion resistance. Furthermore, sliding bearings are prone to so-called cavitation erosion, which erodes the surface layer of the sliding bearing in lubricating oil, and it is necessary to reduce and prevent this type of damage. It's here. Conventional Pb-Sn alloys, Pb-In alloys, and Pb-Sn-In alloys for surface layers have too large cavitation erosion, which is undesirable. There has been a strong demand from various industries to reduce and prevent cavitation erosion. In addition, the sliding material manufactured by the manufacturing method shown in Japanese Patent Publication No. 39-22498 is produced by joining molten lead-indium alloy with a copper alloy layer by casting, and then diffusing this copper alloy layer into the lead-indium alloy. An indium-copper surface layer was created.
For this reason, in Japanese Patent Publication No. 39-22498, it is necessary to heat the composite material to a very high temperature (650°C in the example of Japanese Patent Publication No. 39-22498) in order to diffuse copper, which has a high melting point, into the lead-indium alloy. It was necessary.
When heated to this high temperature, unevenness occurs on the surface of the copper-lead alloy layer (deformation of the surface of the copper-lead alloy layer) due to the temperature difference between copper and lead. It is impossible to obtain a surface layer (with a thickness of several micrometers), and as a result, there are disadvantages such as variations in bearing characteristics and poor reliability. The inventor of the present invention is Japanese Patent Application No. 60-109627
No. 266544), the Pb-Cu-In surface layer alloy or the Pb-Cu-In-Sn surface layer alloy was shown to be effective in solving these problems.
The scope of claims of this patent application 1986-109627 is that Pb
-The manufacturing method of Cu-In alloy was not specified. (d) Means for Solving the Problems The object of the present invention is to provide a surface layer for flat bearings and sliding materials under high speed and high loads, as well as for underwater or lubricating oil for sliding bearings. Pb can reduce cavitation erosion and can be used by resisting wear, fatigue, and corrosion caused by lubricating oil.
- To obtain a method for manufacturing sliding parts and plain bearings having a Cu-In or Pb-Cu-In-Sn plating film (surface layer). Plated film (surface layer) related to the method of the present invention
is Cu0.1~6%, In1~10% and the balance by weight.
Consists of Pb and unavoidable impurities. Other surface layer alloys relevant to the method of the invention include Cu0.1 to
6%, In 1 to 10%, Sn 8% or less, and the balance consists of Pb and inevitable impurities. The method of manufacturing sliding parts and plain bearings having a plating film (surface layer) of the present invention is to directly plate a copper-lead alloy with a steel back metal or to plate the Pb-
A Cu alloy is electroplated, and then In or In is electroplated on this Pb-Cu alloy plating layer, and then Sn or an In-Sn alloy is electroplated on top of the Pb-Cu alloy plating layer, and the two layers formed by these electroplatings are Alternatively, a composite plating layer consisting of three layers is heat-treated to cause mutual diffusion of the components of the composite plating layer, thereby causing Pb-Cu-
It is characterized by producing an alloy for an In surface layer or an alloy for a Pb-Cu-In-Sn surface layer. (E) Effect The Ni plating layer provided on the copper-lead alloy with the steel backing is effective in preventing the components of the plating film (surface layer) from diffusing into the copper-lead alloy with the steel backing. . (1) Pb-Cu for making plating film (surface layer)
The thickness of the alloy plating layer is in the range of 5 to 100 μm,
(2) The thickness of the In, In and Sn, or In-Sn alloy plating layer is in the range of 1 to 20 μm, and the total thickness of the so-called composite plating layer, which includes the above (1) and (2), is 6 μm.
It is in the range of ~129μm. Diffusion heat treatment of this composite plating layer is performed at a temperature range of 80 to 180°C for 10 minutes to 20 hours. (f) Examples Examples of the present invention will be described below. Pb-Cu alloy plating liquid composition shown in the table below on copper-lead alloy with steel backing plated directly or on top of Ni plating.
Pb and Cu alloy plating was applied under the plating conditions,
Next, In plating or In and Sn plating, that is, In plating and then Sn plating on top of that, or In-
Sn alloy plating (previously known and publicly used plating liquids, such as "Bearing Lubrication Handbook", Nikkan Kogyo Shimbun, June 1963)
(Pages 367 to 368, pages 432 to 438, published on March 30), and then diffused through heat treatment to form an alloy. Manufactured bearings.

【表】【table】

【表】 従来技術でのPb−Sn合金電気メツキは、メツ
キ厚を増すとメツキ表面の粗さが粗くなる。また
従来のPb−Sn−Cu合金電気メツキは、メツキの
ザラツキが発生しがちである。更にPb−Sn合金
電気メツキ及びPb−Sn−Cu合金電気メツキは添
加剤の変動で表面状態及び電着成分が変化しがち
である。従来の上記Pb−Sn合金電気メツキ及び
Pb−Sn−Cu合金電気メツキのメツキ液にはSn+2
が含まれ、このSn+2はメツキ液中の溶存酸素及
びCu+2などにより、電析しないSn+4にまで酸化
され、このSn+4が過剰になるとメツキ液が白濁
して分離すると共に、電着物を脆化させる恐れが
ある。またメツキ液にCu+2が存在するとSn+2
らSn+4への変化が加速されるなど、メツキ液の
不安定になり、このSn+4を沈澱分離するか、メ
ツキ液を更新しなければメツキ作業を続けること
ができないという問題があつた。 本実施例でのメツキ処理では、メツキ液が極め
て安定なPbとCuの合金メツキ液のため、従来の
Pb−SnメツキやPb−Sn−Cuメツキに比較して、
極めて長時間の連続使用が可能であつた。またメ
ツキ治具や被処理物に付着したほこりなど及びメ
ツキ液の不純物などの活性炭濾過をしつつ連続メ
ツキが可能であつた。更に本実施例のメツキ処理
では、鏡面光沢で緻密なメツキ(表面層)が得ら
れた。例えば下地表面あらさ3〜5μ上の場合で
もレベリングが良く、メツキ完了後0.1〜0.8μ程
度の表面あらさの表面が得られた。 第1表に本発明の方法を使用して製造した各種
の軸受表面層合金の組成及び機械的性質、腐食減
量、下地合金との反応層の厚さを従来技術による
軸受表面層合金と比較して示した。第1表から明
らかなように従来の表面層合金より本発明の方法
により設けられた表面層合金は、硬度、引張強度
が高く高負荷に耐え得る。Cu5%までになると伸
びが低下して来る。従つてCu6%以上は脆くな
る。なお劣化油での腐食減量を見るとNiバリヤ
ーのない場合のPb−Sn−In合金を除き、従来合
金は下地にSn又はInが拡散し、そのため165℃×
1000Hr熱処理後試料の劣化油による腐食性が著
しい。これに対し本発明方法により設けられた表
面層合金は従来合金の約1/4〜1/6で極めて耐食性
がある。特にPb−Cu−In−Snは極めて良い。下
地合金の銅と本発明方法に使用した合金のIn及び
Snの反応層の厚さは薄く良好だが、Sn量が過剰
では反応層が厚くなる。この反応層の厚さが3ミ
クロンを越えると、次第にもろくなり疲労しやす
くなる欠点を有する。なお耐食性が上がる理由
は、第1図から判明するようにCuの添加により
下地合金へのInの拡散が減少するためと考えられ
る。Niバリヤーを表面層合金と下地合金との間
に設けた場合には腐食減量は極めて小さく耐食性
良好である。Niバリヤーがない場合でもCuを所
定量含有させることでInの表面層内への残存率が
高まり実用上使用可能な耐腐食性を得ることがで
きる。
[Table] In conventional Pb-Sn alloy electroplating, as the plating thickness increases, the roughness of the plating surface becomes rougher. Furthermore, conventional Pb-Sn-Cu alloy electroplating tends to cause the plating to become rough. Furthermore, Pb-Sn alloy electroplating and Pb-Sn-Cu alloy electroplating tend to change the surface condition and electrodeposited components due to variations in additives. Conventional Pb-Sn alloy electroplating and
Sn +2 is used in the plating liquid for Pb-Sn-Cu alloy electroplating.
This Sn +2 is oxidized to Sn +4, which is not deposited, by dissolved oxygen and Cu +2 in the plating solution, and when this Sn +4 becomes excessive, the plating solution becomes cloudy and separates . , there is a risk of embrittling the electrodeposited material. Furthermore, if Cu +2 is present in the plating solution, the change from Sn +2 to Sn +4 will be accelerated, making the plating solution unstable, and the plating solution will need to be separated by precipitation or the plating solution should be renewed. There was a problem in that it was not possible to continue the plating work. In the plating process in this example, the plating liquid is an extremely stable alloy plating liquid of Pb and Cu, so it
Compared to Pb-Sn plating and Pb-Sn-Cu plating,
It was possible to use it continuously for an extremely long time. Continuous plating was also possible while filtering with activated carbon to remove dust adhering to the plating jig and the object to be processed, as well as impurities in the plating solution. Furthermore, in the plating treatment of this example, a dense plating (surface layer) with specular gloss was obtained. For example, even when the base surface roughness was 3 to 5 μm higher, leveling was good, and after plating was completed, a surface with a surface roughness of about 0.1 to 0.8 μm was obtained. Table 1 compares the composition, mechanical properties, corrosion loss, and thickness of the reaction layer with the base alloy of various bearing surface layer alloys manufactured using the method of the present invention with bearing surface layer alloys manufactured using the conventional technology. It was shown. As is clear from Table 1, the surface layer alloy provided by the method of the present invention has higher hardness and tensile strength than the conventional surface layer alloy, and can withstand high loads. When Cu reaches 5%, elongation decreases. Therefore, Cu of 6% or more becomes brittle. In addition, looking at the corrosion loss with degraded oil, with the exception of Pb-Sn-In alloys without a Ni barrier, Sn or In diffuses into the base, and as a result, the corrosion loss at 165°C
After heat treatment for 1000 hours, the sample was significantly corrosive due to degraded oil. In contrast, the surface layer alloy provided by the method of the present invention has extremely high corrosion resistance, about 1/4 to 1/6 of that of conventional alloys. In particular, Pb-Cu-In-Sn is extremely good. The copper base alloy and the In and In alloys used in the method of the present invention
The thickness of the reaction layer of Sn is thin and good, but if the amount of Sn is excessive, the reaction layer becomes thick. If the thickness of this reaction layer exceeds 3 microns, it has the disadvantage of becoming gradually brittle and prone to fatigue. The reason for the increase in corrosion resistance is thought to be that the addition of Cu reduces the diffusion of In into the base alloy, as shown in Figure 1. When a Ni barrier is provided between the surface layer alloy and the base alloy, corrosion loss is extremely small and corrosion resistance is good. Even when there is no Ni barrier, by containing a predetermined amount of Cu, the residual rate of In in the surface layer increases and corrosion resistance that can be used practically can be obtained.

【表】 次に鈴木式試験機による焼付試験と摩耗量につ
いて調べた。試験条件は以下のとおりであり、試
験片1の形状及び試料状態は第2図〜第4図に示
すとおりである。 軸2の材質:S450 潤滑油:SAE30#、組付時に0.02ml塗付 軸回転数:780r.p.m 試験片:外径27.2mmφ、内径22mmφ、深さ1mm
のリング溝3を有し、下地材は鋼裏金
付Cu75%−Pb25%G銅合金で、鋼裏
金と銅合金層の合計厚さは1.5mmで電
気メツキにより厚さ10μmの表面層用
合金を設けた。 試験時間:70min. 組付時のみ1滴(0.02ml)塗布した油の潤滑状
態で焼付荷重と摩耗厚さの平均値を表2に示し
た。本発明方法に関する表面層合金は焼付荷重も
高く、摩耗厚さも小さく良好である。
[Table] Next, a seizure test using a Suzuki tester and the amount of wear were investigated. The test conditions were as follows, and the shape and sample condition of the test piece 1 were as shown in FIGS. 2 to 4. Material of shaft 2: S450 Lubricating oil: SAE30#, applied 0.02ml during assembly Shaft rotation speed: 780r.pm Test piece: Outer diameter 27.2mmφ, inner diameter 22mmφ, depth 1mm
The base material is a Cu75%-Pb25%G copper alloy with a steel backing metal.The total thickness of the steel backing metal and copper alloy layer is 1.5mm, and a 10μm thick surface layer alloy is coated by electroplating. Established. Test time: 70 min. Table 2 shows the average values of seizure load and wear thickness under the condition of lubrication with one drop (0.02 ml) of oil applied only during assembly. The surface layer alloy according to the method of the present invention has a high seizure load and a small wear thickness.

【表】 次にサフアイヤ式試験機による軸受疲労試験に
より本発明の方法により設けた表面層合金の耐疲
労性について調べた。試験条件は以下のとおり。 軸材質 :S55C、軸形53mmφ 供試軸受:鋼裏金付焼結銅−鉛合金(Cu75%
−Pb25%)上に第3表に示す各種表
面層合金を15μm厚さメツキしたコン
ロツド軸受、供試軸受外径=56.0mm、
供試軸受肉厚=1.5mm、供試軸受幅=
26.0mm。 潤滑油種類と温度:SAE20#、90℃ 回転数 :3250r.p.m. 試験時間:20時間、 試験荷重:1330Kg/cm2
[Table] Next, the fatigue resistance of the surface layer alloy provided by the method of the present invention was investigated by a bearing fatigue test using a Saphire tester. The test conditions are as follows. Shaft material: S55C, shaft shape 53mmφ Test bearing: Sintered copper-lead alloy with steel backing (Cu75%)
-Pb25%) and plated with various surface layer alloys shown in Table 3 to a thickness of 15 μm, test bearing outer diameter = 56.0 mm,
Test bearing wall thickness = 1.5mm, test bearing width =
26.0mm. Lubricating oil type and temperature: SAE20#, 90℃ Rotation speed: 3250r.pm Test time: 20 hours, Test load: 1330Kg/cm 2

【表】 第3表から明らかな様に本発明方法に関する合
金は疲労亀裂の発生がなく良好、Pb−5%Cu−
6%In−1%Snに微少面積見られた原因は下地
合金の破壊の一部により見られたものである。 次に本発明方法に関するメツキ皮膜(表面層)
についてエンジンテストを繰返数3回で、おこな
つた。その試験条件は以下のとおり。 使用試験機:2輪車用エンジン35馬力 軸回転数:13000r.p.m 軸 径:33mm 軸 材:S50C 試験時間:10時間 潤 滑 油:SAE20# 潤滑油温度:145〜150℃ 試験荷重:フル荷重 供試軸受:外径36.0mm、肉厚1.5mm、幅13.8mm、
第4表に示されているメツキ皮膜(表
面層)を軸受(鋼裏金付銅−鉛焼結合
金(Cu−75%−Pb25%))にNiバリ
ヤーをメツキした後、メツキにより
15μmの厚さ設けた。 第4表に見るように本発明のメツキ皮膜(表面
層)作成方法による合金は亀裂が見られず疲労に
極めて強い事が判明した。
[Table] As is clear from Table 3, the alloy produced by the method of the present invention is good with no fatigue cracks, Pb-5%Cu-
The reason why a small area was observed in 6%In-1%Sn was due to a part of the underlying alloy being destroyed. Next, the plating film (surface layer) related to the method of the present invention
The engine test was repeated three times. The test conditions are as follows. Test machine used: Motorcycle engine 35 horsepower Shaft rotation speed: 13000r.pm Shaft diameter: 33mm Shaft material: S50C Test time: 10 hours Lubricating oil: SAE20# Lubricating oil temperature: 145-150℃ Test load: Full load Test bearing: outer diameter 36.0mm, wall thickness 1.5mm, width 13.8mm,
After plating the plating film (surface layer) shown in Table 4 on the bearing (copper-lead sintered alloy with steel backing (Cu-75%-Pb25%)) with a Ni barrier,
A thickness of 15 μm was provided. As shown in Table 4, the alloy produced by the plating film (surface layer) preparation method of the present invention showed no cracks and was found to be extremely resistant to fatigue.

【表】 また、メツキ皮膜(表面層)と下地金属(Ni)
との接着強度は第5表で明らかなように、本発明
のメツキ皮膜(表面層)の製造方法のほうがすぐ
れていることがわかる。さらに本発明方法に関連
するメツキ皮膜(表面層)の性質について詳記す
るならば、第5表に示すごとく熱処理条件と接着
強度の比較データがある。この比較データは、英
国特許第2121547号および米国特許第4501154号に
示された方法により求めたもので、本発明方法に
よるメツキ皮膜(表面層)が前記従来の表面層用
合金よりも最も接着力が強く、熱処理温度による
差も少なく、また165℃×1000Hまでは、ほぼ安
定していることがわかり、これに対し、従来の表
面層用合金であるP10(Pb−10%Sn)、P9(Pb−
9%Sn−9%In)は下方にバラツイている。こ
の面からも本発明の方法によるメツキ皮膜(表面
層)(Pb−Cu−In合金とPb−Cu−In−Sn合金)
はすぐれていることがわかる。 また、表面層粗さの比較試験においては、下地
金属の表面粗さ0.5〜3μ(Ni)に対して前記従来
の表面層用合金の表面粗さは2〜7μであつたの
に対し、本発明の方法によるメツキ皮膜(表面
層)の表面粗さはそれより小さい0.6μであつた。
すなわち、従来より1/3〜1/11という表面粗さで
あるから、外観はなめらかであつた。 本発明方法では以下の1、2の利点が得られ
た。即ち、(1)メツキ液が極めて安定なPbとCuの
合金メツキ液のため、従来のPb−SnやPb−Sn−
Cuメツキに比較し連続使用がしやすい。また、
活性炭濾過をしつつ連続メツキが可能である。(2)
常に鏡面光沢で緻密なメツキが得られる。例え
ば、下地表面3〜5μの場合もレベリングが良く、
メツキ完成後、0.1〜0.8μとなり極めて良好であ
る。 * P10/Ni/KS25は、鋼層+Kelmt焼
結層+Hiメツキ層+Sn10%−Pbメツ
キ層から成ることを示す。即ち半円形
のKS25の内面にNiメツキし、さらに
P10メツキを施した軸受。Kelmtは
Pb25%を含む青銅。 ** P9は、In9%−Sn10%−Pb合金メツ
キ層を示す。 *** In5はInが5wt%であることを示す。 **** P8は、Sn8%−Cu3%−Pb合金メツキ
層を示す。 次に、各種合金材質の表面層のキヤビテーシヨ
ンテストは、次の条件で実施した。すなわち、(イ)
試料:タテ50×ヨコ50×厚さ1.5(mm)のKS25上
に1.5μmのNiメツキをし、さらに、その上に
18μmの−5%In、Pb−10%Sn、Pb−10%Sn−
9%In、Pb−10%Sn−2.5%Cu、Pb−2.5%Cu−
6%Inをメツキした。(ロ)超音波出力:19KHz、
600Wでホーン先端直径35mm即ちエネルギー密度
は19KHzで62.4W/cm2の密度である。(ハ)衝撃条
件:15〜20℃の温度の水中で試料とのクリアラン
ス0.5mmで超音波ホーンを配置し1分間試験を行
なつた。 試験結果は、表6に示すとおりである。
[Table] Also, plating film (surface layer) and base metal (Ni)
As is clear from Table 5, the method for producing the plating film (surface layer) of the present invention is superior in terms of adhesive strength. Further, to describe in detail the properties of the plating film (surface layer) related to the method of the present invention, as shown in Table 5, there is comparative data on heat treatment conditions and adhesive strength. This comparative data was obtained using the method shown in British Patent No. 2,121,547 and US Patent No. 4,501,154. is strong, with little difference due to heat treatment temperature, and is almost stable up to 165℃ Pb−
9%Sn-9%In) fluctuates downward. From this point of view, plating film (surface layer) (Pb-Cu-In alloy and Pb-Cu-In-Sn alloy) by the method of the present invention
I can see that it is excellent. In addition, in a comparative test of surface layer roughness, the surface roughness of the conventional surface layer alloy was 2 to 7μ compared to the surface roughness of the base metal of 0.5 to 3μ (Ni), whereas this The surface roughness of the plating film (surface layer) obtained by the method of the invention was 0.6μ, which is smaller than that.
In other words, the surface roughness was 1/3 to 1/11 that of conventional products, so the appearance was smooth. The method of the present invention has the following advantages. In other words, (1) the plating solution is an extremely stable Pb and Cu alloy plating solution, so it cannot be used in conventional Pb-Sn or Pb-Sn-
Easy to use continuously compared to Cu plating. Also,
Continuous plating is possible while performing activated carbon filtration. (2)
You can always get a detailed plating with a mirror shine. For example, leveling is good even when the base surface is 3 to 5μ,
After plating is completed, it becomes 0.1 to 0.8μ, which is extremely good. *P10/Ni/KS25 indicates that it consists of a steel layer + Kelmt sintered layer + Hi plating layer + Sn10%-Pb plating layer. In other words, the inner surface of semicircular KS25 is plated with Ni, and
Bearing with P10 plating. Kelmt is
Bronze containing 25% Pb. **P9 indicates an In9%-Sn10%-Pb alloy plating layer. *** In5 indicates that In is 5wt%. **** P8 indicates a Sn8%-Cu3%-Pb alloy plating layer. Next, cavitation tests on the surface layers of various alloy materials were conducted under the following conditions. In other words, (a)
Sample: 1.5μm Ni plating was applied on KS25 measuring 50mm vertically x 50mm horizontally x 1.5mm thick, and then
18μm −5%In, Pb−10%Sn, Pb−10%Sn−
9%In, Pb−10%Sn−2.5%Cu, Pb−2.5%Cu−
I plated 6% In. (b) Ultrasonic output: 19KHz,
At 600W, the diameter of the horn tip is 35mm, that is, the energy density is 62.4W/cm 2 at 19KHz. (c) Impact conditions: An ultrasonic horn was placed with a clearance of 0.5 mm to the sample in water at a temperature of 15 to 20°C, and the test was conducted for 1 minute. The test results are shown in Table 6.

【表】 表6に示すようにPbのキヤビテーシヨンエロ
ージヨンを抑える効果として、Cu、Sn、Inはあ
るが、その中でもCuが著しくPbの強化にCuは極
めて有効である。 (ト) 発明の効果 本発明のメツキ皮膜(表面層)製造方法では、
Pb−Cu合金メツキ層用メツキ液が極めて安定し
ているため連続使用が可能となり、本発明の方法
を連続的におこなうことが可能となつた。また実
施例に示された結果から明らかなように摺動部品
あるいは平軸受などの表面層として優れた特性の
合金を得ることが可能となり、従来の表面層用
Pb−Sn合金、Pb−In合金およびPb−Sn−In合金
よりもキヤビテーシヨンエロージヨンが著しく軽
減されており、かつ従来の表面層用Pb−Sn−Cu
合金に遜色がない同程度のキヤビテーシヨンエロ
ージヨンに軽減され、本発明の所期の目的を達成
することができた。
[Table] As shown in Table 6, Cu, Sn, and In have the effect of suppressing the cavitation erosion of Pb, but among them, Cu is most effective in strengthening Pb. (g) Effects of the invention In the method for producing a plating film (surface layer) of the present invention,
Since the plating liquid for the Pb--Cu alloy plating layer is extremely stable, it has become possible to use it continuously, making it possible to carry out the method of the present invention continuously. In addition, as is clear from the results shown in the examples, it is now possible to obtain an alloy with excellent properties as a surface layer for sliding parts or plain bearings, and
Cavitation erosion is significantly reduced compared to Pb-Sn alloy, Pb-In alloy and Pb-Sn-In alloy, and Pb-Sn-Cu for the conventional surface layer.
The cavitation erosion was reduced to the same level as that of the alloy, and the intended purpose of the present invention could be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼付試験に使用された試験片の正面図
であり、第2図は第1図の−線に沿つた断面
図であり、第3図は焼付試験の試験状況を示す断
面図であり、第4図はキヤビテーシヨンエロージ
ヨンテストの状況を示す概略図である。 1は焼付試験用試験片を示す。
Figure 1 is a front view of the test piece used in the seizure test, Figure 2 is a sectional view taken along the - line in Figure 1, and Figure 3 is a sectional view showing the test conditions of the seizure test. 4 is a schematic diagram showing the state of cavitation erosion test. 1 shows a test piece for the seizure test.

Claims (1)

【特許請求の範囲】 1 摺動部品及び平軸受などの表面層として使用
され、重量でCu0.1〜6%、In1〜10%および残部
がPbと不可避的不純物とから成るメツキ皮膜を
有する摺動部品及び平軸受の製造方法であつて、 電気メツキ法によりPb−Cu合金メツキ層を設
ける段階と、 このPb−Cu合金メツキ層に、電気メツキ法に
よりInのメツキ層を設け、それにより2つの層か
ら成る複合メツキ層を作る段階と、 この複合メツキ層を80〜180℃の温度範囲で熱
処理して、複合メツキ層の構成成分を拡散させ、
それによりメツキ皮膜を作る段階とを有する、上
記製造方法。 2 Pb−Cu合金メツキ層は、60〜150g/の硼
弗化鉛と、1.0〜5.0g/の硼弗化銅と、20〜
120g/の硼弗化水素酸と、0〜35g/の硼
酸と、1〜6g/のレゾルシン、ハイドロキノ
ンおよびカテコールの1種又は2種以上の添加剤
とを有するPb−Cu合金メツキ液中で、メツキ液
の温度を15〜45℃とし、陰極電流密度を1.0〜
6.0A/dm2とし、鉛から成る陽極での電流密度
を0.5〜5.0A/dm2とし、メツキ液を撹拌しつつ
電気メツキをおこなうことによつて設けられる、
特許請求の範囲第1項による製造方法。 3 摺動部品及び平軸受などの表面層として使用
され、重量でCu0.1〜6%、In1〜10%、Snが8
%以下及び残部がPbと不可避的不純物とから成
るメツキ皮膜を有する摺動部品及び平軸受の製造
方法であつて、 電気メツキ法によりPb−Cu合金メツキ層を設
ける段階と、 電気メツキ法により、このPb−Cu合金メツキ
層上に、In−Sn合金のメツキ層を設け、それに
より2層からなる複合メツキ層を作る段階と、 この複合メツキ層を80〜180℃の温度範囲で熱
処理して、複合メツキ層の構成成分を拡散し、そ
れにより表面層用合金を作る上記製造方法。 2 Pb−Cu合金メツキ層は、60〜150g/の硼
弗化鉛と、1.0〜5.0g/の硼弗化銅と、20〜
120g/の硼弗化水素酸と、0〜35g/の硼
酸と、1〜6g/のレゾルシン、ハイドロキノ
ンおよびカテコールの1種又は2種以上の添加剤
とを有するPb−Cu合金メツキ液中で、メツキ液
の温度を15〜45℃とし、陰極電流密度を1.0〜
6.0A/dm2とし、鉛から成る陽極での電流密度
を0.5〜5.0A/dm2とし、メツキ液を撹拌しつつ
電気メツキをおこなうことによつて設けられる、
特許請求の範囲第3項による製造方法。
[Scope of Claims] 1. A sliding plate that is used as a surface layer of sliding parts, flat bearings, etc. and has a plating film consisting of 0.1 to 6% Cu, 1 to 10% In, and the balance being Pb and unavoidable impurities. A method for manufacturing dynamic parts and plain bearings, which includes the steps of: providing a Pb-Cu alloy plating layer by electroplating; and providing an In plating layer on the Pb-Cu alloy plating layer by electroplating, thereby a step of creating a composite plating layer consisting of two layers; heat-treating the composite plating layer at a temperature range of 80 to 180°C to diffuse the constituent components of the composite plating layer;
and thereby forming a plating film. 2 The Pb-Cu alloy plating layer contains 60 to 150 g of lead borofluoride, 1.0 to 5.0 g of copper borofluoride, and 20 to 150 g of lead borofluoride.
In a Pb-Cu alloy plating liquid containing 120 g/of borofluoric acid, 0 to 35 g/of boric acid, and 1 to 6 g/of one or more additives of resorcinol, hydroquinone, and catechol, The temperature of the plating solution is 15-45℃, and the cathode current density is 1.0-45℃.
6.0 A/dm 2 and a current density of 0.5 to 5.0 A/dm 2 at an anode made of lead, and electroplating is performed while stirring the plating solution.
A manufacturing method according to claim 1. 3 Used as a surface layer for sliding parts and plain bearings, with a weight of 0.1 to 6% Cu, 1 to 10% In, and 8% Sn.
A method for manufacturing sliding parts and plain bearings having a plating film consisting of Pb and unavoidable impurities. On this Pb-Cu alloy plating layer, an In-Sn alloy plating layer is provided, thereby creating a two-layer composite plating layer, and this composite plating layer is heat-treated in a temperature range of 80 to 180℃. , the above manufacturing method of diffusing the constituent components of the composite plating layer, thereby creating an alloy for the surface layer. 2 The Pb-Cu alloy plating layer contains 60 to 150 g of lead borofluoride, 1.0 to 5.0 g of copper borofluoride, and 20 to 150 g of lead borofluoride.
In a Pb-Cu alloy plating liquid containing 120 g/of borofluoric acid, 0 to 35 g/of boric acid, and 1 to 6 g/of one or more additives of resorcinol, hydroquinone, and catechol, The temperature of the plating solution is 15-45℃, and the cathode current density is 1.0-45℃.
6.0 A/dm 2 and a current density of 0.5 to 5.0 A/dm 2 at an anode made of lead, and electroplating is performed while stirring the plating solution.
Manufacturing method according to claim 3.
JP21346085A 1985-05-22 1985-09-26 Production of alloy for surface layer used as surface layer of sliding parts and plain bearing Granted JPS6274097A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21346085A JPS6274097A (en) 1985-09-26 1985-09-26 Production of alloy for surface layer used as surface layer of sliding parts and plain bearing
GB8602101A GB2175603B (en) 1985-05-22 1986-01-29 Overlay alloy used for a surface layer of sliding material, sliding material having a surface layer comprising said alloy and manufacturing method
US07/224,262 US4832801A (en) 1985-05-22 1988-07-26 Method of making overlay alloy used for a surface layer of sliding material
US07/332,407 US4927715A (en) 1985-05-22 1989-03-31 Overlay alloy used for a surface layer of sliding material
US07/357,932 US4937149A (en) 1985-05-22 1989-05-26 Overlay alloy used for a surface layer of sliding material, sliding material having a surface layer comprising said alloy and the manufacturing method of the sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346085A JPS6274097A (en) 1985-09-26 1985-09-26 Production of alloy for surface layer used as surface layer of sliding parts and plain bearing

Publications (2)

Publication Number Publication Date
JPS6274097A JPS6274097A (en) 1987-04-04
JPH0559200B2 true JPH0559200B2 (en) 1993-08-30

Family

ID=16639575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346085A Granted JPS6274097A (en) 1985-05-22 1985-09-26 Production of alloy for surface layer used as surface layer of sliding parts and plain bearing

Country Status (1)

Country Link
JP (1) JPS6274097A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122158B2 (en) * 1992-02-28 1995-12-25 大同メタル工業株式会社 Multilayer plain bearing with overlay
WO2004076702A1 (en) * 1993-03-04 2004-09-10 Shinichi Okamoto Lead alloy for plain bearing
ES2205629T3 (en) * 1999-04-28 2004-05-01 FEDERAL-MOGUL WIESBADEN GMBH & CO.KG MULTIPLE LAYERS MATERIAL FOR SLIDING ELEMENTS AND PROCEDURE FOR THE PRODUCTION OF THE SAME.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579635A (en) * 1980-06-02 1982-01-19 Deiparoreitaa Corp Ltd Depalletizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579635A (en) * 1980-06-02 1982-01-19 Deiparoreitaa Corp Ltd Depalletizer

Also Published As

Publication number Publication date
JPS6274097A (en) 1987-04-04

Similar Documents

Publication Publication Date Title
US4927715A (en) Overlay alloy used for a surface layer of sliding material
KR100528364B1 (en) Composite multilayer material for plain bearings with backing layer
JP5292279B2 (en) Plain bearing
US4470184A (en) Bearing of an internal combustion engine and process for producing the same
US6301784B1 (en) Method of fabricating plain bearings
JP3249774B2 (en) Sliding member
JP5203606B2 (en) Laminated composite material, its manufacture and use
JP4945241B2 (en) Laminated composite materials for bearings, their manufacture and applications
US5328772A (en) Multilayer sliding material for high-speed engine and method of producing same
US4363854A (en) Method for manufacturing workpieces having adaptation faces capable of withstanding extremely high surface pressures and temperatures, and product produced thereby
JP2575814B2 (en) Multi-layer sliding material
JP3570607B2 (en) Sliding member
JPH0814287B2 (en) Multi-layer aluminum alloy plain bearing and manufacturing method thereof
EP0120553B1 (en) Bearing having nickel-tin-copper barrier layer
US4591536A (en) Plain bearing and method of manufacture
JP3026272B2 (en) Plain bearing
JPH0559200B2 (en)
JP2535105B2 (en) Sliding bearing with composite plating film
JPH05239690A (en) Multilayer slide bearing having overlay
GB2175354A (en) A multilayer plain bearing
JPH0413565B2 (en)
US4545913A (en) Plain bearings
JPH09263863A (en) Indium-containing copper-lead alloy bearing and its production
JPH0159360B2 (en)
Totten Friction and Wear of Sliding Bearing Materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees