JPH0559099B2 - - Google Patents

Info

Publication number
JPH0559099B2
JPH0559099B2 JP58063903A JP6390383A JPH0559099B2 JP H0559099 B2 JPH0559099 B2 JP H0559099B2 JP 58063903 A JP58063903 A JP 58063903A JP 6390383 A JP6390383 A JP 6390383A JP H0559099 B2 JPH0559099 B2 JP H0559099B2
Authority
JP
Japan
Prior art keywords
slurry
terephthalic acid
ppm
mother liquor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58063903A
Other languages
Japanese (ja)
Other versions
JPS59190947A (en
Inventor
Susumu Tate
Akira Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP6390383A priority Critical patent/JPS59190947A/en
Publication of JPS59190947A publication Critical patent/JPS59190947A/en
Publication of JPH0559099B2 publication Critical patent/JPH0559099B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパラキシレンまたはその酸化中間体を
液相酸化して得られるテレフタル酸の製造法に関
するものである。特に複雑な精製工程を経ずに直
接重合用テレフタル酸、すなわち、直接にエチレ
ングリコールと重合反応させてポリエステルを得
るための原料として使用可能なテレフタル酸の製
造法に関する。 通常、直接重合用テレフタル酸としては非常に
高純度なものが要求されており、ことに4−カル
ボキシベンズアルデヒド(以下、4−CBAと称
す)を代表とする不純物含有量が500ppm以下の
ものが要求されている。そのため、従来より、パ
ラキシレンの液相酸化により得られたテレフタル
酸を、水に溶解し、高温高圧下に水素雰囲気で処
理して精製するといつた複雑な工程が用いられて
いた。 本発明者等は上記実情に鑑み、より簡単な精製
工程により、直接重合用の高純度テレフタル酸を
得る方法について、種々検討の結果本発明を完成
するに到つた。 すなわち本発明は、酢酸溶媒中、重金属および
臭素化合物よりなる触媒の存在下に、酸素または
酸素含有ガスにより、パラキシレンまたはその酸
化中間体を液相酸化してテレフタル酸スラリーを
得、次いでこのスラリーを追酸化するか、また
は/およびこのスラリーの母液の一部または全部
を新たな酢酸におきかえることによつて、スラリ
ー母液中の不純物濃度を低下させた後、下記
()式を満足する条件で熟成処理することを特
徴とするテレフタル酸の製造法である。 500>{R・a・(1.84−0.0083T)+1.29(
R・b+a)/R+1.29} ×{(0.0138T−0.528)−(0.00344T−0.
394)lnθ}() (式中、Rはテレフタル酸に対する溶媒の重量
比、Tは処理温度(℃)、aはテレフタル酸中の
4−カルボキシベンズアルデヒド量(ppm)、b
は母液中の4−カルボキシベンズアルデヒド量
(ppm)、θは処理時間(分)を示す。) 以下、本発明の内容について詳細に述べる。本
発明で用いる溶媒は主として酢酸より成るもので
通常2〜20%の水を含有していてもよい。 酸化触媒としては、コバルト、マンガンの如き
重金属および臭化水素酸、臭化ナトリウム、テト
ラブロモエタンのような臭素化合物を用い、酸素
又は酸素含有ガスにより、パラキシレン又はその
酸化中間体を液相酸化する。 触媒の使用量は、コバルト、マンガンの合計量
で200〜2000ppm(対液中)であり、コバルトに対
するマンガン金属の割合は1.0〜200wt%とする。
又臭素化合物の使用量はコバルトに対して原子比
で1.0〜10.0倍用いる。反応温度は180℃以上、好
ましくは190〜230℃で反応圧力としては系を液相
に保ち得る圧力、すなわち10〜50Kg/cm2である。 本発明で用いる酸素又は酸素含有ガスとしては
分子状酸素を10〜100%含むガスであり通常空気
を用いる。使用量としては、バラキシレン1モル
に対し3〜5モルであり、廃ガス中の酸素濃度が
2〜8vol%になるように調整する。また、本発明
においてパラキシレンに対する酢酸溶媒の使用量
としては後で述べる処理工程条件にも関連する
が、通常パラキシレンに対し2〜8重量倍で用い
る。 上記のような酸化条件で、パラキシレンを液相
酸化した後、テレフタル酸を含むスラリーを追酸
化処理、すなわちパラキシレンの供給を行わず
に、酸素又は酸素含有ガスのみを供給して、この
処理を行うことにより、液中の未酸化物、即ち、
パラトルイル酸、4−CBAを酸化して該スラリ
ーの母液中の不純物濃度を低下させるか、また
は/および前記スラリーの母液の一部または全部
を新たな酢酸に換えてることによつて、母液中の
不純物の濃度を低下させた後、前記()式を満
足する条件で熟成処理する。 なお、前記()式中Rは溶媒比であり、テレ
フタル酸に対する溶媒の重量比を示す。aは処理
前のテレフタル酸中の4−CBA量でありppm単
位で示す。bは液中の4−CBA量であり、同じ
くppm単位で示す。Tは処理温度(℃)である。 さらに詳しくこの熟成処理について述べると、
R、すなわち溶媒比は前工程の液相酸化時のパラ
キシレン対酢酸溶媒の比によつても左右される
が、()式を満足するように、スラリー中の母
液を新たな酢酸、あるいは反応器コンデンサーよ
り排出される凝縮液、または蒸留回収された含水
酢酸等で希釈または液置換により任意に調整する
ことができる。しかしながら経済的理由により通
常は2〜10が好ましい。処理温度Tは()式を
満足する任意の温度であるが、150℃以下では処
理効果が小さく現実的でない。従つて通常150〜
280℃の範囲で行う。 また、熟成処理の時間θ(保持時間)は、もつ
ぱら処理温度に依存しており、200℃以下の温度
では30〜300分の範囲であり、200℃以上では120
分以下の保持時間でよい。 以上、かかる構成よりなる本発明方法を採用す
ることにより、テレフタル酸中の不純物は減少
し、目的とする高品質の直接重合用テレフタル酸
を得ることができる。また、本発明は比較的簡単
な処理により、テレフタル酸品質向上をはかるこ
とができるため、バツチ法、連続法、いずれの方
式においても実施可能である。 以下、実施例、比較例を用いて本発明を具体的
に説明するが、本発明はこれらに限定されるもの
ではない。 実施例 1 還流冷却器、撹拌装置、加熱装置、原料及び触
媒を含む溶媒の送入口、ガス導入口、反応主成ス
ラリー抜き出し口を備えたチタン製の耐圧反応器
を用いて、パラキシレンの連続酸化を行つた。 触媒溶液はコバルト700ppm、マンガン
180ppm、臭素2400ppm(それぞれ、酢酸コバル
ト、酢酸マンガン、臭化水素酸を用いた。)およ
び、水5重量%を含む酢酸溶液を用いた。この触
媒液を1000部/hr、パラキシレンを300部/hrの
割合で連続的に供給した。この間、反応温度は
200℃に保ち、還流冷却器より凝縮液の一部を連
続的に抜き出すことにより、反応系の水分量を8
〜10重量%に保つた。また送入空気量は排ガス中
の酸素濃度が3〜5vol%になるように調整した。 このようにして得られたスラリーをチタン製の
追酸化反応器に連続的に供給し、温度190℃、平
均滞留時間30分で追酸化した。追酸化の酸素源と
しては空気を用い、排ガス中の酸素濃度が8%以
下となるように調整した。 なお、このスラリー中の固型分中の4−CBA
濃度は1200ppmで、母液中の4−CBA量は約
80ppmであつた。この追酸化後のスラリーの母液
の一部を新たたな酢酸で置き換えることにより、
溶媒比Rを3.3、液中の4−CBA量bを10ppmと
した。次にこの新たな酢酸で置換したスラリーを
撹拌装置、加熱装置、流器、スラリー送入口及び
抜き出し口を有するチタン製耐圧容器に供給して
220℃で、平均滞留時間80分間熟成処理を行つた。
熟成処理後、スラリーを抜き出して、固液分離
し、酢酸で洗浄し乾燥した。得られたテレフタル
酸の性状を表−1に示す。 実施例 2〜6 実施例1の追酸化後のスラリー(a:
1200ppm、b:80ppm)を用い、フレツシユ酢酸
によりその一部を液置換し、表−1に示すソルベ
ント比、液中の4−CBA量のスラリーを作り、
それぞれ同表に示す温度で熟成処理した。得られ
たテレフタル酸の品質を表−1に示す。 比較例 1〜3 実施例2〜6と同じく、表−1に示す条件で熟
成処理を行つた。この例に見るように前記()
式で得られる値が500以上になると、得られるテ
レフタル酸品質が悪化してくる。 実施例 7 実施例1において触媒液の組成をコバルト
220ppm、マンガン400ppm、臭素1200ppm(それ
ぞれ酢酸コバルト、酢酸マンガン、テトラブロム
エタンを用いた)および水5重量%とする以外は
実施例1と同じ装置、操作で行つた。只し反応温
度は210℃で行つた。追酸化も実施例1と同じ方
法で行つた。 このようにして得られた追酸化後のスラリー
(スラリー中の固型分中の4−CBA濃度は
1800ppmで母液中の4−CBA量は約200ppm)を
新たな酢酸でその部を置き換えることにより溶媒
比Rを4.3液中の4−CBA量bを10ppmとした。
次に実施例1で用いた熟成装置を用いて、230℃、
平均滞留時間30分の熟成処理を行つた。得られた
テレフタル酸の品質を表−1に示す。 実施例 8〜10 実施例7の追酸化後のスラリーを用い、フレツ
シユ酢酸によりその一部を液置換し表−1に示す
溶媒比、液中の4−CBA量のスラリーを作り、
同表に示す温度でそれぞれ熟成処理した。得られ
たテレフタル酸の品質を表−1に示す。 比較例 4〜6 実施例8〜10と同じく表−1に示す条件で熟成
処理を行つた。得られたテレフタル酸の品質を表
−1に示す。この例に見るように()式で計算
される値が500以上になると得られるテレフタル
酸品質は悪化してくることが判る。
The present invention relates to a method for producing terephthalic acid obtained by liquid phase oxidation of paraxylene or its oxidized intermediate. In particular, the present invention relates to a method for producing terephthalic acid for direct polymerization without complicated purification steps, that is, terephthalic acid that can be directly polymerized with ethylene glycol and used as a raw material for obtaining polyester. Normally, terephthalic acid for direct polymerization is required to be extremely pure, and in particular, it is required to have an impurity content of 500 ppm or less, typically 4-carboxybenzaldehyde (hereinafter referred to as 4-CBA). has been done. Therefore, conventionally, a complicated process has been used in which terephthalic acid obtained by liquid phase oxidation of paraxylene is dissolved in water and purified by treatment in a hydrogen atmosphere at high temperature and pressure. In view of the above circumstances, the present inventors have completed the present invention as a result of various studies on a method for obtaining high purity terephthalic acid for direct polymerization through a simpler purification process. That is, the present invention involves liquid-phase oxidation of para-xylene or its oxidized intermediate in an acetic acid solvent in the presence of a catalyst consisting of a heavy metal and a bromine compound with oxygen or an oxygen-containing gas to obtain a terephthalic acid slurry; After reducing the impurity concentration in the slurry mother liquor by additionally oxidizing the slurry and/or replacing part or all of this slurry mother liquor with fresh acetic acid, under the conditions that satisfy the following formula (): This is a method for producing terephthalic acid characterized by aging treatment. 500>{R・a・(1.84−0.0083T)+1.29(
R・b+a)/R+1.29} × {(0.0138T−0.528)−(0.00344T−0.
394)lnθ}() (where, R is the weight ratio of the solvent to terephthalic acid, T is the treatment temperature (°C), a is the amount of 4-carboxybenzaldehyde in terephthalic acid (ppm), b
represents the amount of 4-carboxybenzaldehyde in the mother liquor (ppm), and θ represents the treatment time (minutes). ) Hereinafter, the content of the present invention will be described in detail. The solvent used in the present invention mainly consists of acetic acid and may normally contain 2 to 20% water. Heavy metals such as cobalt and manganese and bromine compounds such as hydrobromic acid, sodium bromide, and tetrabromoethane are used as oxidation catalysts, and paraxylene or its oxidized intermediates are oxidized in a liquid phase using oxygen or an oxygen-containing gas. do. The total amount of cobalt and manganese used in the catalyst is 200 to 2000 ppm (in the liquid), and the ratio of manganese metal to cobalt is 1.0 to 200 wt%.
The amount of the bromine compound to be used is 1.0 to 10.0 times that of cobalt in terms of atomic ratio. The reaction temperature is 180° C. or higher, preferably 190 to 230° C., and the reaction pressure is a pressure that can maintain the system in a liquid phase, that is, 10 to 50 kg/cm 2 . The oxygen or oxygen-containing gas used in the present invention is a gas containing 10 to 100% molecular oxygen, and is usually air. The amount used is 3 to 5 mol per 1 mol of baraxylene, and adjusted so that the oxygen concentration in the waste gas is 2 to 8 vol%. Further, in the present invention, the amount of acetic acid solvent to be used relative to para-xylene is related to the treatment process conditions described later, but it is usually used in an amount of 2 to 8 times the weight of para-xylene. After liquid phase oxidation of paraxylene under the above oxidation conditions, the slurry containing terephthalic acid is subjected to additional oxidation treatment, that is, without supplying paraxylene, only oxygen or an oxygen-containing gas is supplied. By doing this, unoxidized substances in the liquid, i.e.
The concentration of impurities in the mother liquor of the slurry is reduced by oxidizing para-toluic acid, 4-CBA, and/or by replacing part or all of the mother liquor of the slurry with fresh acetic acid. After reducing the concentration of impurities, aging treatment is performed under conditions that satisfy the above formula (). Note that R in the above formula () is a solvent ratio, and indicates the weight ratio of the solvent to terephthalic acid. a is the amount of 4-CBA in terephthalic acid before treatment and is expressed in ppm. b is the amount of 4-CBA in the liquid, also expressed in ppm. T is the processing temperature (°C). To explain this aging process in more detail,
R, that is, the solvent ratio, also depends on the ratio of paraxylene to acetic acid solvent during liquid phase oxidation in the previous step, but in order to satisfy the formula (), the mother liquor in the slurry should be replaced with fresh acetic acid or It can be adjusted as desired by diluting or replacing the liquid with the condensate discharged from the condenser, or the hydrated acetic acid recovered by distillation. However, for economic reasons, 2 to 10 is usually preferred. The processing temperature T is any temperature that satisfies the equation (), but if it is below 150°C, the processing effect will be small and it is not practical. Therefore, usually 150~
Perform at a temperature of 280℃. In addition, the aging treatment time θ (holding time) is highly dependent on the treatment temperature, and is in the range of 30 to 300 minutes at temperatures below 200℃, and 120 minutes at temperatures above 200℃.
A retention time of minutes or less is sufficient. As described above, by employing the method of the present invention having such a configuration, impurities in terephthalic acid are reduced, and the desired high quality terephthalic acid for direct polymerization can be obtained. Furthermore, since the present invention can improve the quality of terephthalic acid through relatively simple processing, it can be implemented in either a batch method or a continuous method. Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 Continuous production of para-xylene using a pressure-resistant titanium reactor equipped with a reflux condenser, a stirring device, a heating device, an inlet for a solvent containing raw materials and a catalyst, a gas inlet, and an outlet for the main reaction slurry. carried out oxidation. Catalyst solution contains 700ppm cobalt and manganese
An acetic acid solution containing 180 ppm of bromine, 2400 ppm of bromine (cobalt acetate, manganese acetate, and hydrobromic acid were used, respectively), and 5% by weight of water was used. This catalyst liquid was continuously supplied at a rate of 1000 parts/hr and paraxylene at a rate of 300 parts/hr. During this time, the reaction temperature is
By maintaining the temperature at 200℃ and continuously drawing out a portion of the condensate from the reflux condenser, the water content of the reaction system is reduced to 8.
It was kept at ~10% by weight. Further, the amount of air fed was adjusted so that the oxygen concentration in the exhaust gas was 3 to 5 vol%. The slurry thus obtained was continuously supplied to a titanium additional oxidation reactor, and additional oxidation was performed at a temperature of 190° C. and an average residence time of 30 minutes. Air was used as the oxygen source for additional oxidation, and the oxygen concentration in the exhaust gas was adjusted to be 8% or less. In addition, 4-CBA in the solid content of this slurry
The concentration is 1200ppm, and the amount of 4-CBA in the mother liquor is approximately
It was 80ppm. By replacing part of the mother liquor of the slurry after this additional oxidation with fresh acetic acid,
The solvent ratio R was 3.3, and the amount b of 4-CBA in the liquid was 10 ppm. Next, the slurry replaced with this new acetic acid is supplied to a titanium pressure-resistant container equipped with a stirring device, a heating device, a flow device, a slurry inlet, and a slurry outlet.
Aging treatment was performed at 220°C for an average residence time of 80 minutes.
After the aging treatment, the slurry was extracted, separated into solid and liquid, washed with acetic acid, and dried. The properties of the obtained terephthalic acid are shown in Table 1. Examples 2 to 6 Slurry after additional oxidation of Example 1 (a:
1200ppm, b: 80ppm), part of it was replaced with fresh acetic acid, and a slurry with the solvent ratio and the amount of 4-CBA in the liquid shown in Table 1 was made.
Each was aged at the temperatures shown in the same table. The quality of the obtained terephthalic acid is shown in Table 1. Comparative Examples 1 to 3 As in Examples 2 to 6, aging treatment was performed under the conditions shown in Table 1. () as seen in this example
When the value obtained by the formula exceeds 500, the quality of the obtained terephthalic acid deteriorates. Example 7 In Example 1, the composition of the catalyst liquid was changed to cobalt.
The same equipment and operation as in Example 1 were used except for using 220 ppm of manganese, 400 ppm of manganese, 1200 ppm of bromine (using cobalt acetate, manganese acetate, and tetrabromoethane, respectively), and 5% by weight of water. However, the reaction temperature was 210°C. Additional oxidation was also carried out in the same manner as in Example 1. The slurry after additional oxidation obtained in this way (4-CBA concentration in the solid content of the slurry is
The amount of 4-CBA in the mother liquor was 1800 ppm (approximately 200 ppm) by replacing that part with fresh acetic acid, so that the solvent ratio R was 4.3 and the amount b of 4-CBA in the solution was 10 ppm.
Next, using the aging device used in Example 1,
A ripening treatment was carried out with an average residence time of 30 minutes. The quality of the obtained terephthalic acid is shown in Table 1. Examples 8 to 10 Using the slurry after additional oxidation of Example 7, part of it was replaced with fresh acetic acid to make a slurry with the solvent ratio and the amount of 4-CBA in the liquid shown in Table 1,
Each was aged at the temperatures shown in the same table. The quality of the obtained terephthalic acid is shown in Table 1. Comparative Examples 4 to 6 A ripening treatment was performed under the same conditions as in Examples 8 to 10 as shown in Table 1. The quality of the obtained terephthalic acid is shown in Table 1. As seen in this example, it can be seen that when the value calculated by formula () exceeds 500, the quality of the obtained terephthalic acid deteriorates.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 酢酸溶媒中、重金属および臭素化合物よりな
る触媒の存在下に、酸素または酸素含有ガスによ
り、パラキシレンまたはその酸化中間体を液相酸
化してテレフタル酸スラリーを得、次いでこのス
ラリーを追酸化するか、または/およびこのスラ
リーの母液の一部または全部を新たな酢酸におき
かえることによつて、スラリー母液中の不純物濃
度を低下させた後、下記()式を満足する条件
で熟成処理することを特徴とするテレフタル酸の
製造法。 500>{R・a・(1.84−0.0083T)+1.29(
R・b+a)/R+1.29} ×{(0.0138T−0.528)−(0.00344T−0.
394)lnθ}() (式中、Rはテレフタル酸に対する溶媒の重量
比、Tは処理温度(℃)、aはテレフタル酸中の
4−カルボキシベンズアルデヒド量(ppm)、b
は母液中の4−カルボキシベンズアルデヒド量
(ppm)、θは処理時間(分)を示す。)
[Claims] 1. In an acetic acid solvent, in the presence of a catalyst consisting of a heavy metal and a bromine compound, paraxylene or an oxidized intermediate thereof is oxidized in the liquid phase with oxygen or an oxygen-containing gas to obtain a terephthalic acid slurry, and then After reducing the impurity concentration in the slurry mother liquor by additionally oxidizing this slurry and/or replacing part or all of the slurry mother liquor with fresh acetic acid, the following formula () is satisfied. A method for producing terephthalic acid characterized by aging treatment under certain conditions. 500>{R・a・(1.84−0.0083T)+1.29(
R・b+a)/R+1.29} × {(0.0138T−0.528)−(0.00344T−0.
394)lnθ}() (where, R is the weight ratio of the solvent to terephthalic acid, T is the treatment temperature (°C), a is the amount of 4-carboxybenzaldehyde in terephthalic acid (ppm), b
represents the amount of 4-carboxybenzaldehyde in the mother liquor (ppm), and θ represents the treatment time (minutes). )
JP6390383A 1983-04-11 1983-04-11 Production of terephthalic acid of high purity Granted JPS59190947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6390383A JPS59190947A (en) 1983-04-11 1983-04-11 Production of terephthalic acid of high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6390383A JPS59190947A (en) 1983-04-11 1983-04-11 Production of terephthalic acid of high purity

Publications (2)

Publication Number Publication Date
JPS59190947A JPS59190947A (en) 1984-10-29
JPH0559099B2 true JPH0559099B2 (en) 1993-08-30

Family

ID=13242740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6390383A Granted JPS59190947A (en) 1983-04-11 1983-04-11 Production of terephthalic acid of high purity

Country Status (1)

Country Link
JP (1) JPS59190947A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490135A (en) * 1977-12-28 1979-07-17 Mitsui Petrochem Ind Ltd Preparation of high purity terephthalic acid
JPS5490136A (en) * 1977-12-28 1979-07-17 Mitsui Petrochem Ind Ltd Preparation of high purity terephthalic acid
JPS565377A (en) * 1979-06-25 1981-01-20 Atomic Energy Authority Uk Manufacture of fine ceramic product
JPS57200328A (en) * 1981-06-03 1982-12-08 Mitsubishi Chem Ind Ltd Preparation of terephthalic acid
JPS643147A (en) * 1987-06-24 1989-01-06 Kuraray Yuka Kk Production of high-purity terephthalic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490135A (en) * 1977-12-28 1979-07-17 Mitsui Petrochem Ind Ltd Preparation of high purity terephthalic acid
JPS5490136A (en) * 1977-12-28 1979-07-17 Mitsui Petrochem Ind Ltd Preparation of high purity terephthalic acid
JPS565377A (en) * 1979-06-25 1981-01-20 Atomic Energy Authority Uk Manufacture of fine ceramic product
JPS57200328A (en) * 1981-06-03 1982-12-08 Mitsubishi Chem Ind Ltd Preparation of terephthalic acid
JPS643147A (en) * 1987-06-24 1989-01-06 Kuraray Yuka Kk Production of high-purity terephthalic acid

Also Published As

Publication number Publication date
JPS59190947A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
US4286101A (en) Process for preparing terephthalic acid
EP0135341B1 (en) Process for preparing terephthalic acid from para-xylene
JPH0451539B2 (en)
US3700731A (en) Process for oxidizing xylenes to phthalic acids
JPH0259820B2 (en)
US4447646A (en) Process for the purification of terephthalic acid
JPH0240653B2 (en)
WO1995009143A1 (en) Production method of high purity isomers of benzenedicarboxylic acids
US5110982A (en) Process for producing 2,6-napthalene dicarboxylic acid
JPH08325197A (en) Production of terephthalic acid
JP2001288139A (en) Method for producing high-purity terephthalic acid
KR20160104696A (en) Oxidation process for preparing purified carboxylic acids
GB1589310A (en) Continuous process for producing terephthalic acid
EP1971566B1 (en) A process for preparing high purity terephthalic acid
JPH0257528B2 (en)
EP1860092B1 (en) Method for producing naphthalenedicarboxylic acid
US3781344A (en) Process for manufacturing terephthalic acid by oxidation of paraxylene
JPH0559099B2 (en)
JP2005502694A (en) Method for producing 2,6-naphthalenedicarboxylic acid
GB1577019A (en) Process for producing high quality terephthalic acid
JP4352191B2 (en) Production of pyromellitic acid
US4259522A (en) Process for the production of isophtahalic acid
EP0443856B1 (en) Preparation of isopropylidene bis(phthalic acid) and isopropylidene bis (phthalic anhydride)
JPH0257529B2 (en)
KR100876011B1 (en) Method for producing naphthalenedicarboxylic acid