JPH0558400A - Space chamber device for heat vacuum test - Google Patents

Space chamber device for heat vacuum test

Info

Publication number
JPH0558400A
JPH0558400A JP3220400A JP22040091A JPH0558400A JP H0558400 A JPH0558400 A JP H0558400A JP 3220400 A JP3220400 A JP 3220400A JP 22040091 A JP22040091 A JP 22040091A JP H0558400 A JPH0558400 A JP H0558400A
Authority
JP
Japan
Prior art keywords
plate body
test
space chamber
gas
vacuum environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3220400A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamazaki
力 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3220400A priority Critical patent/JPH0558400A/en
Publication of JPH0558400A publication Critical patent/JPH0558400A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • B64G2007/005Space simulation vacuum chambers

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To ensure heat vacuum environment without providing any refrigerant circulating means and to reduce the size of a device. CONSTITUTION:When liquefied nitrogen is fed from an LN2 feed source to a plate body 11, the plate body 11 and a cylinder body 12 are filled with liquefied nitrogen to cool a closed container 10 to heat vacuum environment. When heaters 14 and 15 are driven to heat the plate body 11 and the cylinder body 12, liquefied nitrogen is gasified to generate nitrogen gas, which is discharged through the plate body 11 and the cylinder body 12. A space chamber device for heat vacuum test is formed as mentioned above to achieve an initial purpose.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星等の
宇宙飛行体や、各種センサ等の搭載機器の地上熱真空試
験に用いられるスペースチェンバー装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space chamber apparatus used for a ground thermal vacuum test of a spacecraft such as an artificial satellite and onboard equipment such as various sensors.

【0002】[0002]

【従来の技術】近年、宇宙開発の分野においては、宇宙
飛行体を含む搭載機器の開発にあたり、宇宙空間を模擬
した熱真空試験が不可欠となっている。この熱真空試験
を実施する手段として、試験体を収容して熱真空環境を
確保するためのスペースチェンバー装置が用いられてい
る。
2. Description of the Related Art In recent years, in the field of space development, a thermal vacuum test simulating outer space has become indispensable for developing onboard equipment including spacecraft. As a means for carrying out this thermal vacuum test, a space chamber device for accommodating a test body and securing a thermal vacuum environment is used.

【0003】図5はこのような従来のスペースチェンバ
ー装置を示すもので、真空環境状態が保たれる図示しな
い密閉容器内にはシュラウドと称する中空状の箱体1が
設けられる。この箱体1には冷媒出入口が設けられ、そ
のうち冷媒入口には冷媒管2がポンプ,圧縮機等の移送
部3を介して連結される。この移送部3には冷凍機4の
出力側が接続され、この冷凍機4で冷却した冷媒液、例
えば液体窒素を冷媒出口に供給する。冷凍機4には箱体
1で気化した窒素ガスと共に、液体窒素供給源5から液
体窒素が供給され、供給された窒素ガス及び液体窒素を
液化して移送部3に出力する。これにより、箱体1は液
体窒素温度(摂氏−180度)付近まで冷却され、真空
状態に保たれた密閉容器(図示せず)内が宇宙環境に対
応した熱真空環境となる。
FIG. 5 shows such a conventional space chamber device, in which a hollow box body 1 called a shroud is provided in a closed container (not shown) in which a vacuum environment is maintained. The box body 1 is provided with a refrigerant inlet / outlet, and a refrigerant pipe 2 is connected to the refrigerant inlet / outlet via a transfer portion 3 such as a pump or a compressor. The output side of the refrigerator 4 is connected to the transfer section 3, and the refrigerant liquid cooled by the refrigerator 4 such as liquid nitrogen is supplied to the refrigerant outlet. Liquid nitrogen is supplied to the refrigerator 4 from the liquid nitrogen supply source 5 together with the nitrogen gas vaporized in the box 1, and the supplied nitrogen gas and liquid nitrogen are liquefied and output to the transfer unit 3. As a result, the box body 1 is cooled to near the liquid nitrogen temperature (-180 degrees Celsius), and the inside of the closed container (not shown) kept in a vacuum state becomes a thermal vacuum environment corresponding to the space environment.

【0004】ところが、上記スペースチェンバー装置で
は、熱真空環境を確保するために、筒体内に液体窒素を
循環させる移送部3や冷凍機4等の循環設備を備えなけ
ればならないことにより、その構成が非常に複雑で大掛
かりとなり、大形となるという問題を有していた。この
問題は、宇宙飛行体等の大形のものを熱試験するように
構成するものに比して比較的小さなセンサ等の搭載機器
の熱真空試験を行うものにおいて、その密閉容器(図示
せず)の形状寸法に比べて循環設備の占める割合が非常
に大きくなり、顕著なものとなる。
However, in the above space chamber apparatus, in order to secure a thermal vacuum environment, circulation equipment such as a transfer section 3 and a refrigerator 4 for circulating liquid nitrogen in the cylinder must be provided, so that the structure is improved. It had a problem that it was very complicated, large-scale, and large. This problem is caused by a sealed container (not shown) in a thermal vacuum test of on-board equipment such as a sensor which is relatively small compared to a large spacecraft or the like configured to perform a thermal test. Compared to the shape and size of), the ratio of the circulation equipment becomes very large, which is remarkable.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の熱真空試験用スペースチェンバー装置では、液体窒
素を循環させる循環設備を備えなければならないことに
より、構成が非常に複雑で大掛かりとなり、大形となる
という問題を有していた。
As described above, in the conventional space chamber apparatus for thermal vacuum test, since the circulation equipment for circulating the liquid nitrogen must be provided, the structure becomes very complicated and large, It had the problem of becoming large.

【0006】この発明は上記の事情に鑑みてなされたも
ので、簡易な構成で、熱真空環境の確保を実現し得るよ
うにして、小形化の促進を図った熱環境試験用スペース
チェンバー装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a space chamber apparatus for a thermal environment test, which has a simple structure and is capable of ensuring a thermal vacuum environment, thereby promoting miniaturization. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】この発明は、真空環境に
保たれる密閉容器の周壁に沿わせて配設される中空状の
筒体と、この筒体の一端部に配置され、該筒体に連通さ
れる試験体が搭載される中空状の板体と、この板体に冷
媒液を供給して前記筒体に充填する冷媒液供給手段と、
前記筒体に設けられ、前記冷媒液の気化したガスを選択
的に排出するガス排出手段と、前記筒体及び板体を加熱
して充填された冷媒液を気化させて発生したガスのガス
圧で充填された冷媒液を排出させる冷媒液排出手段とを
備えて熱真空試験用スペースチェンバー装置を構成した
ものである。
According to the present invention, there is provided a hollow cylindrical body which is arranged along a peripheral wall of a closed container which is kept in a vacuum environment, and which is arranged at one end of the cylindrical body. A hollow plate body on which a test body communicated with the body is mounted, and a coolant liquid supply means for supplying a coolant liquid to the plate body to fill the cylinder body,
A gas discharge means provided in the cylindrical body for selectively discharging the vaporized gas of the refrigerant liquid, and a gas pressure of a gas generated by vaporizing the filled refrigerant liquid by heating the cylindrical body and the plate body. The space chamber device for a thermal vacuum test is configured by including a refrigerant liquid discharge means for discharging the refrigerant liquid filled in.

【0008】[0008]

【作用】上記構成によれば、筒体及び板体は冷媒液供給
手段を介して冷媒液が供給されると、真空環境に保たれ
た密閉容器を冷却して熱真空環境に設定する。そして、
し、筒体及び板体は冷媒液排出手段が作動されて加熱制
御されると、充填された冷媒液が気化され、そのガス圧
で押圧されて充填された冷媒液が冷媒液供給手段に戻さ
れる。これにより、従来のような冷媒液を循環させる循
環手段を備えることなく、必要量の冷媒液を用いて熱真
空環境の確保が可能となり、小形化の促進が図れる。
According to the above construction, when the refrigerant liquid is supplied to the cylinder body and the plate body through the refrigerant liquid supply means, the closed container kept in the vacuum environment is cooled to set the thermal vacuum environment. And
Then, when the refrigerant liquid discharge means is operated and the heating is controlled in the cylinder body and the plate body, the filled refrigerant liquid is vaporized, and the filled refrigerant liquid is pressed by the gas pressure and returned to the refrigerant liquid supply means. Be done. This makes it possible to secure a thermal vacuum environment by using a necessary amount of the refrigerant liquid without providing a circulation means for circulating the refrigerant liquid as in the conventional case, and to promote miniaturization.

【0009】[0009]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】第1図はこの発明の一実施例に係る熱真空
試験用スペースチェンバー装置を示すもので、密閉容器
10は図示しない真空ポンプを介して真空環境に保たれ
る。密閉容器10の底面には、一方面に試験体載置部1
1aを有した中空状の板体11が配設される。この板体
11の一方面には図2に示すように、中空状の筒体12
が試験体載置部11aを覆うように配設される。この筒
体12は密閉容器10の内壁に沿って配設されており、
板体11と接続管13を介して連通される。このうち板
体11は図示しない液体窒素(LN2 )供給源に接続さ
れるLN2 供給管が連結され、その一方面にはLN2 排
出用ヒータ14が敷設される。他方、筒体12には板体
11側の一端部に冷媒液排出用ヒータ15が敷設され、
その他端部には窒素(N2 )ガス排出用ガス排出弁16
が取付けられる。
FIG. 1 shows a space chamber apparatus for a thermal vacuum test according to an embodiment of the present invention, in which a closed container 10 is kept in a vacuum environment via a vacuum pump (not shown). On the bottom surface of the closed container 10, one side is provided with the specimen mounting portion 1
A hollow plate body 11 having 1a is arranged. As shown in FIG. 2, a hollow cylindrical body 12 is provided on one surface of the plate body 11.
Are arranged so as to cover the test body mounting portion 11a. This cylindrical body 12 is arranged along the inner wall of the closed container 10,
It is communicated with the plate body 11 via the connection pipe 13. The plate body 11 is connected to an LN2 supply pipe connected to a liquid nitrogen (LN2) supply source (not shown), and an LN2 discharge heater 14 is laid on one surface thereof. On the other hand, the cylindrical body 12 is provided with a heater 15 for discharging a refrigerant liquid at one end on the plate body 11 side,
Gas discharge valve 16 for nitrogen (N2) gas discharge at the other end
Is installed.

【0011】上記構成において、熱環境試験を実施する
場合は図3に示すように、先ず試験体17が板体11の
試験体載置部11aに装着され、その後、上記真空ポン
プ(図示せず)が駆動されて、密閉容器10が真空環境
状態に設定される。この際、上記LN2 供給源(図示せ
ず)が作動され、密閉容器10の板体11にはLN2が
供給される。すると、このLN2 は、先ず板体11に充
填された後、筒体12に充填され、密閉容器10内が熱
真空環境に保たれる。ここで、筒体12のガス排出弁1
6が所定量だけ開状態に設定され、気化されたN2 ガス
が若干ずつ排出されると共に、LN2 が逐次供給されて
所望の熱真空環境が保たれ、ここに試験体17の熱真空
試験が実施される。
In the above-mentioned structure, when the thermal environment test is carried out, as shown in FIG. 3, the test body 17 is first mounted on the test body mounting portion 11a of the plate body 11, and then the vacuum pump (not shown). ) Is driven to set the closed container 10 in a vacuum environment state. At this time, the LN2 supply source (not shown) is activated, and LN2 is supplied to the plate 11 of the closed container 10. Then, the LN2 is first filled in the plate body 11 and then in the cylindrical body 12, and the inside of the closed container 10 is kept in a thermal vacuum environment. Here, the gas discharge valve 1 of the cylindrical body 12
6 is set to an open state by a predetermined amount, the vaporized N2 gas is discharged little by little, and LN2 is sequentially supplied to maintain a desired thermal vacuum environment, and the thermal vacuum test of the test body 17 is performed here. To be done.

【0012】また、熱真空試験が終了すると、ガス排出
弁16が閉じられると共に、図示しない電源が作動され
てヒータ14,15に電力が供給される。すると、図4
に示すように板体11及び筒体12に充填されたLN2
は気化される。この結果、LN2 はガス圧によりN2 ガ
スとともに上記LN2 供給源(図示せず)に押出される
ように排出される。ここで、密閉容器10は上記真空ポ
ンプ(図示せず)の駆動が停止されて地上環境に戻さ
れ、試験体17が板体11の試験体載置部11aから離
脱されて熱真空試験が完了される。
When the thermal vacuum test is completed, the gas exhaust valve 16 is closed and a power source (not shown) is operated to supply power to the heaters 14 and 15. Then, Fig. 4
LN2 filled in the plate body 11 and the cylinder body 12 as shown in FIG.
Is vaporized. As a result, LN2 is discharged by gas pressure together with N2 gas so as to be extruded to the LN2 supply source (not shown). Here, the sealed container 10 is returned to the ground environment by stopping the driving of the vacuum pump (not shown), the test body 17 is separated from the test body mounting portion 11a of the plate body 11, and the thermal vacuum test is completed. To be done.

【0013】なお、上記試験体17としては、搭載機器
等の比較的小形のものに限ることなく、宇宙飛行体本体
等の大形のものにも適用可能である。この場合、密閉容
器、板体及び筒体の形状寸法を大径状に構成することと
なる。
The test body 17 is not limited to a relatively small one such as an on-board device, but may be a large one such as a spacecraft body. In this case, the airtight container, the plate body, and the cylindrical body are configured to have a large diameter.

【0014】このように、上記熱真空試験用スペースチ
ェンバー装置は液化窒素がLN2 供給源から板体11に
供給されると、液化窒素が板体11及び筒体12に充填
されて、密閉容器10が熱真空環境まで冷却され、かつ
ヒータ14,15が駆動されて板体11及び筒体12が
加熱されると、液化窒素が気化されて窒素ガスが発生し
てガス圧により液化窒素が板体11及び筒体12から排
出されるように構成した。これによれば、従来のような
液化窒素を循環させる循環手段を備えることなく、必要
量の液化窒素を用いるだけの簡単な構成で、効果的に熱
真空環境の確保が可能となり、小形化の促進が図れる。
なお、上記実施例では、冷媒液として液化窒素を用いて
説明したが、これに限ることなく、フレオン等を用いて
構成することも可能である。
As described above, in the above-mentioned space chamber apparatus for thermal vacuum test, when liquefied nitrogen is supplied from the LN2 supply source to the plate body 11, the liquefied nitrogen is filled in the plate body 11 and the cylindrical body 12, and the hermetically sealed container 10 is closed. Is cooled to a thermal vacuum environment and the heaters 14 and 15 are driven to heat the plate body 11 and the cylindrical body 12, the liquefied nitrogen is vaporized to generate nitrogen gas, and the liquefied nitrogen is generated by the gas pressure. 11 and the tubular body 12 are configured to be discharged. According to this, it is possible to effectively secure a thermal vacuum environment with a simple configuration using only a necessary amount of liquefied nitrogen without providing a circulation means for circulating liquefied nitrogen as in the conventional case, and to reduce the size. Can be promoted.
In addition, in the said Example, although liquefied nitrogen was used as a refrigerant | coolant liquid, it is not restricted to this and can also be comprised using Freon.

【0015】また、上記実施例では、板体11に液化窒
素を供給するのに、筒体12の中空部を通して供給する
ように構成したが、この構成に限ることなく、各種の構
成が可能である。よって、この発明は上記実施例に限る
ことなく、その他、この発明の要旨を逸脱しない範囲で
種々の変形を実施し得ることは勿論のことである。
Further, in the above-mentioned embodiment, the liquefied nitrogen is supplied to the plate body 11 through the hollow portion of the cylindrical body 12, but the present invention is not limited to this structure, and various configurations are possible. is there. Therefore, it is needless to say that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

【0016】[0016]

【発明の効果】以上上述したように、この発明によれ
ば、簡易な構成で、熱真空環境の確保を実現し得るよう
にして、小形化の促進を図った熱環境試験用スペースチ
ェンバー装置を提供することができる。
As described above, according to the present invention, it is possible to provide a space chamber apparatus for a thermal environment test, which has a simple structure and is capable of ensuring a thermal vacuum environment to promote miniaturization. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る熱真空試験用スペー
スチェンバー装置を示した図。
FIG. 1 is a diagram showing a space chamber device for a thermal vacuum test according to an embodiment of the present invention.

【図2】図1の要部詳細を示した図。FIG. 2 is a diagram showing details of a main part of FIG.

【図3】図1の動作状態を示した図。FIG. 3 is a diagram showing an operation state of FIG.

【図4】図1の動作状態を示した図。FIG. 4 is a diagram showing an operation state of FIG.

【図5】従来の熱真空試験用スペースチェンバー装置を
示した図。
FIG. 5 is a view showing a conventional space chamber device for a thermal vacuum test.

【符号の説明】[Explanation of symbols]

10…密閉容器、11…板体、11a…試験体載置部、
12…筒体、13…接続管、14,15…ヒータ、16
…ガス排出弁、17…試験体。
10 ... Airtight container, 11 ... Plate body, 11a ... Specimen mounting portion,
12 ... Cylindrical body, 13 ... Connection pipe, 14, 15 ... Heater, 16
… Gas exhaust valve, 17… Test body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空環境に保たれる密閉容器の周壁に沿
わせて配設される中空状の筒体と、 この筒体の一端部に配置され、該筒体に連通される試験
体が搭載される中空状の板体と、 この板体に冷媒液を供給して前記筒体に充填する冷媒液
供給手段と、 前記筒体に設けられ、前記冷媒液の気化したガスを選択
的に排出するガス排出手段と、 前記筒体及び板体を加熱して充填された冷媒液を気化さ
せて発生したガスのガス圧で充填された冷媒液を排出さ
せる冷媒液排出手段とを具備したことを特徴とする熱真
空試験用スペースチェンバー装置。
1. A hollow cylindrical body arranged along a peripheral wall of a closed container kept in a vacuum environment, and a test body arranged at one end of the cylindrical body and communicating with the cylindrical body. A hollow plate body to be mounted, a coolant liquid supply means for supplying a coolant liquid to the plate body to fill the cylinder body, and a vaporized gas of the coolant liquid provided in the cylinder body selectively. A gas discharging means for discharging, and a refrigerant liquid discharging means for heating the cylinder body and the plate body to vaporize the filled refrigerant liquid and discharge the filled refrigerant liquid at the gas pressure of the generated gas. A space chamber device for thermal vacuum testing.
JP3220400A 1991-08-30 1991-08-30 Space chamber device for heat vacuum test Pending JPH0558400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3220400A JPH0558400A (en) 1991-08-30 1991-08-30 Space chamber device for heat vacuum test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3220400A JPH0558400A (en) 1991-08-30 1991-08-30 Space chamber device for heat vacuum test

Publications (1)

Publication Number Publication Date
JPH0558400A true JPH0558400A (en) 1993-03-09

Family

ID=16750524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3220400A Pending JPH0558400A (en) 1991-08-30 1991-08-30 Space chamber device for heat vacuum test

Country Status (1)

Country Link
JP (1) JPH0558400A (en)

Similar Documents

Publication Publication Date Title
US3894403A (en) Vibration-free refrigeration transfer
US8683816B2 (en) Heat exchanger device and NMR installation that comprises such a device
KR101034823B1 (en) Cryogenic Gas Generator
JP2000510567A (en) Container cooling method and cooling system for implementing the method
JP2016512879A (en) Portable self-cooling autonomous system
US2429294A (en) Refrigerator made up of separable refrigerating cabinets
JP2001507435A (en) Method and apparatus for filling containers under pressure
JPH0558400A (en) Space chamber device for heat vacuum test
KR20010072203A (en) Esrf chamber cooling system and process
US4357309A (en) Gaseous reagent generator
US5653113A (en) Cooling system
JP3338482B2 (en) Ozone beam generator
US3426545A (en) Generation of gas at high pressures
JP7288117B2 (en) cryogenic refrigerator
US6401479B2 (en) Containers for perishable produce
JP2000150387A (en) Piping structure and piping unit
JP3355258B2 (en) Cooling system
JP7115836B2 (en) cryogenic refrigerator
JPH0346062B2 (en)
JPH05315293A (en) Placing device for object to be processed
JPS6314858A (en) Vacuum deposition device
KR100625327B1 (en) Humidifier using supersonic waves with heating apparatus
JP2001296075A (en) Gas cooling apparatus
JPH0511494Y2 (en)
JPH08187427A (en) Apparatus for supplying liquid to be treated