JP2001296075A - Gas cooling apparatus - Google Patents

Gas cooling apparatus

Info

Publication number
JP2001296075A
JP2001296075A JP2000117183A JP2000117183A JP2001296075A JP 2001296075 A JP2001296075 A JP 2001296075A JP 2000117183 A JP2000117183 A JP 2000117183A JP 2000117183 A JP2000117183 A JP 2000117183A JP 2001296075 A JP2001296075 A JP 2001296075A
Authority
JP
Japan
Prior art keywords
receiver
refrigerant
liquid
liquid refrigerant
gas cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000117183A
Other languages
Japanese (ja)
Inventor
Mikizo Yamamoto
幹造 山本
Masanao Ando
昌尚 安藤
Kazufumi Otono
和史 乙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000117183A priority Critical patent/JP2001296075A/en
Publication of JP2001296075A publication Critical patent/JP2001296075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas cooling apparatus in which a liquid refrigerator is sent from a receiver (liquid reception apparatus) of a cooling apparatus using a refrigerant to the side of an expansion valve at all times. SOLUTION: A liquid refrigerant 10 introduced through an inlet piping 15 from a skin condenser 2 is pooled below a receiver 11. When an aeroplane is inclined owing to turning thereof and the like, a liquid level of the liquid refrigerant 10 in the receiver 11 becomes a liquid surface state determined by centrifugal force and gravity, and also an exit piping 12 in the receiver 11 connected to a flexible joint 14 is positioned in the liquid refrigerant 10 owing to centrifugal force and gravity. Accordingly, the gas refrigerant 9 is prevented from being fed to the side of an expansion valve 4, and hence the liquid refrigerant 10 can stably be fed to the through an outlet pipe 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を用いたガス
冷却装置に係わり、特に、航空機のベーパサイクルシス
テムの電子機器用冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas cooling device using a refrigerant, and more particularly to a cooling device for electronic equipment of a vapor cycle system of an aircraft.

【0002】[0002]

【従来の技術】航空機に搭載されたポッド内の電子機器
の冷却は、冷媒、例えば、代替フロン等を用いて、コン
プレッサ(圧縮器)、コンデンサ(凝縮器)、レシーバ
(受液器)、膨張弁、エバポレータ(蒸発器)からなる
冷凍サイクルのベーパサイクル冷却システム(以下VC
Sという)で行われている。図5に、航空機に搭載され
た電子機器8がVCSで冷却される制御ブロック図を示
す。外気の冷えた空気が航空機ポッド外板1にふれ、ポ
ッド外板1から冷気がスキンコンデンサ2に伝達され
る。コンプレッサ6によって圧縮された高温高圧の蒸気
状の冷媒が、スキンコンデンサ2に入り、周囲から熱を
取られて凝縮し液体となってレシーバ3のタンクに流入
し貯められる。レシーバ3からの冷媒は膨張弁4で断熱
膨張し低圧になって、エバポレータ5の蒸発コイルに入
り、周囲から熱を奪って蒸気になる。蒸気になった冷媒
は蒸発コイルからコンプレッサ6に吸入される。そし
て、凝縮するまで圧縮される。一方、この冷凍サイクル
のエバポレータ5で電子機器8を冷却する冷却液が、熱
交換され、循環ポンプ7によって冷却液が循環され、電
子機器8を冷却する。
2. Description of the Related Art Electronic equipment in a pod mounted on an aircraft is cooled by using a refrigerant, for example, an alternative Freon or the like, by using a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), and expansion. A vapor cycle cooling system (hereinafter referred to as VC) for a refrigeration cycle comprising a valve and an evaporator (evaporator).
S). FIG. 5 shows a control block diagram in which the electronic device 8 mounted on the aircraft is cooled by the VCS. The cold air of the outside air touches the aircraft pod skin 1, and the cool air is transmitted from the pod skin 1 to the skin condenser 2. The high-temperature, high-pressure vapor-like refrigerant compressed by the compressor 6 enters the skin condenser 2, takes heat from the surroundings, condenses, becomes a liquid, flows into the tank of the receiver 3, and is stored. The refrigerant from the receiver 3 is adiabatically expanded by the expansion valve 4 and becomes low pressure, enters the evaporator coil of the evaporator 5, takes heat from the surroundings, and turns into steam. The vaporized refrigerant is sucked into the compressor 6 from the evaporation coil. Then it is compressed until it condenses. On the other hand, the cooling liquid for cooling the electronic device 8 by the evaporator 5 of the refrigeration cycle undergoes heat exchange, and the cooling liquid is circulated by the circulation pump 7 to cool the electronic device 8.

【0003】[0003]

【発明が解決しようとする課題】従来の冷媒を用いたガ
ス冷却装置は以上のように構成されており、図6に示す
ように、スキンコンデンサ2からの冷媒配管はレシーバ
3の上部に備えられ、そして、下部に膨張弁4に送出さ
れる冷媒配管が備えられている。レシーバ3の内部に
は、上方に気体冷媒9が存在し、下方に液体冷媒10が
存在する。この状態で航空機が旋回等で傾斜した時、図
7に示すように、レシーバ3内の液体冷媒10の液面
は、遠心力と重力による力で決まる液面状態になる。こ
の時膨張弁4に送出される冷媒配管の取り入れ口が、液
体冷媒10の中になく、気体冷媒9の所になり、気体冷
媒9が膨張弁4の方に流れてしまうという状態になる。
エバポレータ5内で膨張弁4を介して液体冷媒10が気
体になるとき、周りから熱を奪うことで冷却効果を発揮
するのに対し、最初から気体冷媒9が膨張弁4を介して
エバポレータ5内に入ると冷却効果を発揮することがで
きないという問題がある。
The conventional gas cooling apparatus using a refrigerant is constructed as described above. As shown in FIG. 6, a refrigerant pipe from the skin condenser 2 is provided above the receiver 3. Further, a refrigerant pipe to be sent to the expansion valve 4 is provided at a lower portion. Inside the receiver 3, a gaseous refrigerant 9 exists above and a liquid refrigerant 10 exists below. In this state, when the aircraft inclines due to turning or the like, as shown in FIG. 7, the liquid level of the liquid refrigerant 10 in the receiver 3 becomes a liquid level determined by the centrifugal force and the force due to gravity. At this time, the inlet of the refrigerant pipe sent to the expansion valve 4 is not in the liquid refrigerant 10 but at the gas refrigerant 9, and the gas refrigerant 9 flows toward the expansion valve 4.
When the liquid refrigerant 10 becomes gaseous through the expansion valve 4 in the evaporator 5, the liquid refrigerant 10 exerts a cooling effect by removing heat from the surroundings, whereas the gaseous refrigerant 9 is initially formed in the evaporator 5 through the expansion valve 4. There is a problem that the cooling effect cannot be exerted when entering.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、レシーバ3から膨張弁4に送り出され
る配管が、レシーバ3内の液体冷媒10中に常に位置し
て、気体冷媒9を膨張弁4側に送ることがないガス冷却
装置を提供することを目的とする。
[0004] The present invention has been made in view of such circumstances, and the pipe delivered from the receiver 3 to the expansion valve 4 is always located in the liquid refrigerant 10 in the receiver 3, and the gas refrigerant 9 is provided. It is an object of the present invention to provide a gas cooling device that does not send the gas to the expansion valve 4 side.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のガス冷却装置は、冷媒を用い、コンプレッ
サ(圧縮器)、コンデンサ(凝縮器)、レシーバ(受液
器)、膨張弁、エバポレータ(蒸発器)からなるベーパ
サイクルガス冷却装置において、前記レシーバ内の液体
冷媒の出口配管が常に液体冷媒中に位置するようにフレ
キシブル配管とするものである。また、本発明のガス冷
却装置は、前記レシーバ内をOリングを介してピストン
機構で液体冷媒を仕切りそのピストンを所定の圧力でば
ねで押さえる機構を備えるものである。また、本発明の
ガス冷却装置は、前記レシーバ内をOリングを介してピ
ストン機構で液体冷媒を仕切り、そのピストンを高圧ガ
スを封入して所定の圧力で押さえる機構を備えるもので
ある。また、本発明のガス冷却装置は、前記レシーバ内
をベローズ機構で液体冷媒を仕切りそのベローズに高圧
ガスを封入して所定の圧力で押さえる機構を備えるもの
である。
In order to achieve the above object, a gas cooling apparatus according to the present invention uses a refrigerant, and includes a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), and an expansion valve. In the vapor cycle gas cooling device including the evaporator, the outlet pipe of the liquid refrigerant in the receiver is a flexible pipe so that the outlet pipe is always located in the liquid refrigerant. Further, the gas cooling device of the present invention is provided with a mechanism for separating the liquid refrigerant in the receiver through an O-ring by a piston mechanism and pressing the piston with a predetermined pressure by a spring. Further, the gas cooling device of the present invention is provided with a mechanism for partitioning the liquid refrigerant in the receiver via an O-ring by a piston mechanism, filling the piston with high-pressure gas, and pressing the piston at a predetermined pressure. Further, the gas cooling device of the present invention is provided with a mechanism for separating the liquid refrigerant in the receiver by a bellows mechanism, filling high-pressure gas in the bellows, and pressing the bellows at a predetermined pressure.

【0006】本発明のガス冷却装置は上記のように構成
されており、レシーバ内の液体冷媒の出口配管がフレキ
シブル配管で構成され、遠心力と重力によって、常に液
体冷媒中に位置するようになる。また、レシーバ内が液
体冷媒のみになるように、レシーバ内をOリングを介し
てピストン機構で液体冷媒を仕切り、そのピストンを所
定の圧力でばねで押さえる機構を設けたり、また、その
ピストンを高圧ガスを封入して所定の圧力で押さえる機
構を設けたり、また、ベローズ機構で液体冷媒を仕切
り、そのベローズに高圧ガスを封入して所定の圧力で押
さえる機構を設けたりして、気体冷媒が入り込めない状
態にし、液体冷媒のみを膨張弁側に送り込むことができ
るような機構にしたので、安定してエバポレータで冷却
効果を発揮することができる。
[0006] The gas cooling device of the present invention is configured as described above, and the outlet pipe of the liquid refrigerant in the receiver is constituted by a flexible pipe, and is always located in the liquid refrigerant by centrifugal force and gravity. . In addition, a mechanism for partitioning the liquid refrigerant by a piston mechanism through an O-ring so that the inside of the receiver becomes only the liquid refrigerant and providing a mechanism for pressing the piston with a predetermined pressure by a spring is provided. A mechanism for sealing gas and holding it at a predetermined pressure is provided.Also, a bellows mechanism is used to partition liquid refrigerant, and a mechanism for sealing high-pressure gas in the bellows and holding it at a predetermined pressure is provided to allow gas refrigerant to enter. In this state, only the liquid refrigerant can be sent to the expansion valve side, so that the evaporator can stably exhibit a cooling effect.

【0007】[0007]

【発明の実施の形態】本発明のガス冷却装置の一実施例
を図1を参照しながら説明する。図1は、本発明のガス
冷却装置のレシーバ11の断面構造を示す図である。本
ガス冷却装置は、図5に示す従来のガス冷却装置のシス
テム構成のレシーバ3が、図1に示すレシーバ11にお
きかえられたもので、代替フロン等の冷媒を用いて、コ
ンプレッサ(圧縮器)6、スキンコンデンサ(凝縮器)
2、レシーバ(受液器)11、膨張弁4、エバポレータ
(蒸発器)5からなるベーパサイクル冷却システムであ
る。本装置のレシーバ11は、内部に液体冷媒10と気
体冷媒9を収容したレシーバ11の容器と、スキンコン
デンサ2からの液体冷媒10を導入する入口配管15
と、液体冷媒10を膨張弁4に送り込む出口配管12と
出口配管13と、出口配管12と出口配管13とを連結
するフレキシブルジョイント14とから構成されてい
る。出口配管12は、レシーバ11の容器に固定された
出口配管13の先端で、フレキシブルジョイント14を
介して接続され、レシーバ11が傾いても、フレキシブ
ルジョイント14により、出口配管12自身の重さで自
由に方向を変えることができる。航空機が旋回等で傾斜
した時、レシーバ11内の液体冷媒10の液面は、遠心
力と重力による力で決まる液面状態になる。それに応じ
て出口配管12も遠心力と重力により、常に液体冷媒1
0中に位置するようになる。したがって、気体冷媒9を
送り込むような状態にならず、膨張弁4に液体冷媒10
を安定して送り込むことができる。次に、本装置の動作
について説明する。航空機の飛行する高度は、地上から
12km、超音速ジェット機で16〜23kmを飛行す
ることがある。その外気の温度はマイナス数十度にもな
る。この外気の冷えた空気が航空機のポッド(莢)の外
板1にふれ、ポッド外板1から冷気がスキンコンデンサ
2に伝達する。コンプレッサ6によって圧縮された高温
高圧の蒸気状の冷媒(テフロン代替品)が、スキンコン
デンサ2に入り、ここで周囲から熱を取られて凝縮し液
体となる。液体となった冷媒は、レシーバ11のタンク
に流入しタンクの底に貯められる。レシーバ11のタン
クの中には、上方に気体冷媒9が、下方に液体冷媒10
が存在する。この状態で航空機が旋回等で傾斜した時、
レシーバ11内の液体冷媒10の液面は、遠心力と重力
による力で決まる液面状態になる。それに応じて、フレ
キシブルジョイント14に接続された出口配管12も遠
心力と重力により、常に液体冷媒10中に位置するよう
になる。したがって、気体冷媒9を送り込むような状態
にならず、膨張弁4に液体冷媒10を安定して送り込む
ことができる。そして、レシーバ11からの液体冷媒1
0は、膨張弁4で断熱膨張し低圧になってエバポレータ
5の蒸発コイルに入り、周囲から熱を奪って蒸気にな
る。蒸気になった冷媒は蒸発コイルからコンプレッサ6
に吸入される。そして、凝縮するまで圧縮される。一
方、この冷凍サイクルのエバポレータ5で電子機器8を
冷却する冷却液が、熱交換され、循環ポンプ7によって
冷却液が循環され、電子機器8を冷却する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the gas cooling device of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a cross-sectional structure of a receiver 11 of the gas cooling device of the present invention. In the present gas cooling device, the receiver 3 of the system configuration of the conventional gas cooling device shown in FIG. 5 is replaced with the receiver 11 shown in FIG. 1, and a compressor (compressor) is used by using a refrigerant such as an alternative chlorofluorocarbon. 6. Skin condenser (condenser)
2, a vapor cycle cooling system including a receiver (liquid receiver) 11, an expansion valve 4, and an evaporator (evaporator) 5. The receiver 11 of the present apparatus includes a container of the receiver 11 containing the liquid refrigerant 10 and the gas refrigerant 9 therein, and an inlet pipe 15 for introducing the liquid refrigerant 10 from the skin condenser 2.
And an outlet pipe 12 for sending the liquid refrigerant 10 to the expansion valve 4, an outlet pipe 13, and a flexible joint 14 connecting the outlet pipe 12 and the outlet pipe 13. The outlet pipe 12 is connected to the distal end of the outlet pipe 13 fixed to the container of the receiver 11 via a flexible joint 14. Even if the receiver 11 is tilted, the flexible joint 14 allows the outlet pipe 12 to freely move under its own weight. Can change direction. When the aircraft tilts due to turning or the like, the liquid level of the liquid refrigerant 10 in the receiver 11 becomes a liquid level state determined by the centrifugal force and the force due to gravity. In response to this, the outlet pipe 12 is also constantly subjected to the liquid refrigerant 1 by centrifugal force and gravity.
0. Accordingly, the state where the gaseous refrigerant 9 is fed is not generated, and the liquid refrigerant 10 is supplied to the expansion valve 4.
Can be sent in a stable manner. Next, the operation of the present apparatus will be described. The altitude at which an aircraft flies may fly 12 km from the ground and 16 to 23 km with a supersonic jet. The temperature of the outside air can be minus several tens of degrees. The cold air of the outside air touches the outer plate 1 of the pod (pod) of the aircraft, and the cool air is transmitted from the pod outer plate 1 to the skin condenser 2. The high-temperature and high-pressure vapor-like refrigerant (Teflon substitute) compressed by the compressor 6 enters the skin condenser 2, where heat is taken from the surroundings and condensed into a liquid. The refrigerant that has become liquid flows into the tank of the receiver 11 and is stored at the bottom of the tank. In the tank of the receiver 11, the gaseous refrigerant 9 is located above and the liquid refrigerant 10 is located below.
Exists. In this state, when the aircraft tilts due to turning,
The liquid surface of the liquid refrigerant 10 in the receiver 11 has a liquid surface state determined by the centrifugal force and the force due to gravity. Accordingly, the outlet pipe 12 connected to the flexible joint 14 is always located in the liquid refrigerant 10 due to centrifugal force and gravity. Therefore, the liquid refrigerant 10 can be stably sent to the expansion valve 4 without being in a state where the gas refrigerant 9 is sent. Then, the liquid refrigerant 1 from the receiver 11
Numeral 0 is adiabatically expanded by the expansion valve 4 and becomes a low pressure, enters the evaporator coil of the evaporator 5, takes heat from the surroundings, and turns into steam. The refrigerant that has become vapor is supplied from the evaporator coil to the compressor 6.
Inhaled. Then it is compressed until it condenses. On the other hand, the cooling liquid for cooling the electronic device 8 by the evaporator 5 of the refrigeration cycle undergoes heat exchange, and the cooling liquid is circulated by the circulation pump 7 to cool the electronic device 8.

【0008】図2に、本ガス冷却装置のレシーバ19の
他の実施例の断面構造を示す。レシーバ19の容器の液
体冷媒10中に2本の配管が接続され、一方をスキンコ
ンデンサ2からの冷媒が導入される配管とし、他方を液
体冷媒10を膨張弁4に送り出す配管とする。そして、
レシーバ19内をOリング16を介してピストン18で
液体冷媒10を仕切り、そのピストン18を介してばね
17で一定の力で液体冷媒10を押し、レシーバ19内
に気体冷媒9が存在しないようにしている。したがっ
て、気体冷媒9を送り込むような状態にならず、膨張弁
4に液体冷媒10を安定して送り込むことができる。ば
ね17により液体冷媒10に対し常に力を加え、この力
はスキンコンデンサ2の圧力とバランスするように設計
し、スキンコンデンサ2の圧力が高いときには、ばね1
7が縮み、レシーバ19内に液体冷媒10が貯まる。ス
キンコンデンサ2内の圧力が低い時は、レシーバ19の
容器内の液体冷媒10はばね17の力により押し出さ
れ、スキンコンデンサ2内に貯まる。これにより、スキ
ンコンデンサ2内の熱交換面積が小さくなり、スキンコ
ンデンサ2内の圧力を一定に保つことができる。図3
に、本ガス冷却装置のレシーバ20の他の実施例の断面
構造を示す。レシーバ20の容器の液体冷媒10中に2
本の配管が接続され、一方をスキンコンデンサ2からの
冷媒が導入される配管とし、他方を液体冷媒10を膨張
弁4に送り出す配管とする。そして、レシーバ20内を
Oリング16を介してピストン18で液体冷媒10を仕
切り、そのピストン18を介して、高圧ガス21で一定
の力で液体冷媒10を押し、レシーバ20内に気体冷媒
9が存在しないようにしている。したがって、気体冷媒
9を送り込むような状態にならず、膨張弁4に液体冷媒
10を安定して送り込むことができる。図4に、本ガス
冷却装置のレシーバ23の他の実施例の断面構造を示
す。レシーバ23の容器の液体冷媒10中に2本の配管
が接続され、一方をスキンコンデンサ2からの冷媒が導
入される配管とし、他方を液体冷媒10を膨張弁4に送
り出す配管とする。そして、レシーバ23内をベローズ
22を用いて液体冷媒10を仕切り、そのベローズ22
内に高圧ガス21を入れて、一定の力で液体冷媒10を
押し、レシーバ23内に気体冷媒9が存在しないように
している。したがって、気体冷媒9を送り込むような状
態にならず、膨張弁4に液体冷媒10を安定して送り込
むことができる。
FIG. 2 shows a cross-sectional structure of another embodiment of the receiver 19 of the present gas cooling device. Two pipes are connected to the liquid refrigerant 10 in the container of the receiver 19, one of which is a pipe for introducing the refrigerant from the skin condenser 2, and the other is a pipe for sending the liquid refrigerant 10 to the expansion valve 4. And
The liquid refrigerant 10 is partitioned by the piston 18 through the O-ring 16 in the receiver 19, and the liquid refrigerant 10 is pushed by the spring 17 through the piston 18 with a constant force so that the gas refrigerant 9 does not exist in the receiver 19. ing. Therefore, the liquid refrigerant 10 can be stably sent to the expansion valve 4 without being in a state where the gas refrigerant 9 is sent. A force is always applied to the liquid refrigerant 10 by the spring 17, and this force is designed to be balanced with the pressure of the skin condenser 2.
7 contracts, and the liquid refrigerant 10 is stored in the receiver 19. When the pressure in the skin condenser 2 is low, the liquid refrigerant 10 in the container of the receiver 19 is pushed out by the force of the spring 17 and is stored in the skin condenser 2. Thereby, the heat exchange area in the skin condenser 2 is reduced, and the pressure in the skin condenser 2 can be kept constant. FIG.
Next, a cross-sectional structure of another embodiment of the receiver 20 of the present gas cooling device is shown. 2 in the liquid refrigerant 10 in the container of the receiver 20
One of the pipes is connected to a pipe through which the refrigerant from the skin condenser 2 is introduced, and the other is a pipe that sends the liquid refrigerant 10 to the expansion valve 4. Then, the liquid refrigerant 10 is partitioned by the piston 18 through the O-ring 16 in the receiver 20, and the liquid refrigerant 10 is pushed by the high-pressure gas 21 with a constant force through the piston 18, and the gas refrigerant 9 is put in the receiver 20. I try not to exist. Therefore, the liquid refrigerant 10 can be stably sent to the expansion valve 4 without being in a state where the gas refrigerant 9 is sent. FIG. 4 shows a cross-sectional structure of another embodiment of the receiver 23 of the present gas cooling device. Two pipes are connected to the liquid refrigerant 10 in the container of the receiver 23, one of which is a pipe through which the refrigerant from the skin condenser 2 is introduced, and the other is a pipe which sends the liquid refrigerant 10 to the expansion valve 4. Then, the liquid refrigerant 10 is partitioned inside the receiver 23 using the bellows 22, and the bellows 22
The high-pressure gas 21 is put in the inside, and the liquid refrigerant 10 is pushed with a constant force so that the gas refrigerant 9 does not exist in the receiver 23. Therefore, the liquid refrigerant 10 can be stably sent to the expansion valve 4 without being in a state where the gas refrigerant 9 is sent.

【0009】[0009]

【発明の効果】本発明のガス冷却装置は上記のように構
成されており、航空機が旋回等で傾斜した場合、レシー
バ内の液体冷媒の液面は、遠心力と重力による力で決ま
る液面状態になり、そして、フレキシブルジョイントに
接続されたレシーバ内の出口配管も、同様に遠心力と重
力により液体冷媒中に位置するようになるので、気体冷
媒を送り込むような状態にならず、膨張弁に液体冷媒を
安定して送り込むことができる。また、レシーバ内が液
体冷媒のみになるように、レシーバ内をOリングを介し
てピストン機構で液体冷媒を仕切り、所定の圧力でばね
で押さえる機構や、高圧ガスを封入して所定の圧力で押
さえる機構や、また、ベローズ機構で液体冷媒を仕切
り、そのベローズに高圧ガスを封入して所定の圧力で押
さえる機構を設けたりして、気体冷媒が入り込めない状
態にしているので、気体冷媒を送り込むような状態にな
らず、膨張弁に液体冷媒を安定して送り込むことができ
る。そのため機体が傾いた時でも、エバポレータで冷却
能力が落ちることなく、安定して冷却効果を発揮するこ
とができる。さらに、周囲温度が低く、スキンコンデン
サ内の圧力が低くなった場合でも、レシーバ容器内の液
体冷媒を押し出し、スキンコンデンサ内に貯めることで
熱交換面積を小さくし、スキンコンデンサ内の圧力を一
定に保つことができる。
The gas cooling device of the present invention is constructed as described above. When the aircraft is tilted by turning or the like, the liquid level of the liquid refrigerant in the receiver is determined by the centrifugal force and the force of gravity. State, and the outlet pipe in the receiver connected to the flexible joint is similarly located in the liquid refrigerant by centrifugal force and gravity, so that it does not enter a state in which a gaseous refrigerant is fed, and the expansion valve Liquid refrigerant can be stably fed into the apparatus. In addition, the liquid refrigerant is separated by a piston mechanism through an O-ring so that only the liquid refrigerant is contained in the receiver, and a mechanism that presses the liquid refrigerant with a predetermined pressure by a spring or a high-pressure gas is filled and pressed with a predetermined pressure. A mechanism or a bellows mechanism separates the liquid refrigerant, and a mechanism that seals the high-pressure gas in the bellows and holds it at a predetermined pressure is provided, so that the gas refrigerant cannot enter. Such a state does not occur, and the liquid refrigerant can be stably sent to the expansion valve. Therefore, even when the body is tilted, the cooling effect can be stably exhibited without the cooling capacity being reduced by the evaporator. Furthermore, even when the ambient temperature is low and the pressure inside the skin condenser is low, the liquid refrigerant in the receiver container is pushed out and stored in the skin condenser to reduce the heat exchange area and keep the pressure inside the skin condenser constant. Can be kept.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のガス冷却装置のレシーバ(受液器)
の一実施例を示す図である。
FIG. 1 is a receiver (liquid receiver) of the gas cooling device of the present invention.
FIG. 3 is a diagram showing one embodiment of the present invention.

【図2】 本発明のガス冷却装置のレシーバ(受液器)
の他の実施例を示す図である。
FIG. 2 is a receiver (liquid receiver) of the gas cooling device of the present invention.
FIG. 11 is a view showing another embodiment of the present invention.

【図3】 本発明のガス冷却装置のレシーバ(受液器)
の他の実施例を示す図である。
FIG. 3 is a receiver (liquid receiver) of the gas cooling device of the present invention.
FIG. 11 is a view showing another embodiment of the present invention.

【図4】 本発明のガス冷却装置のレシーバ(受液器)
の他の実施例を示す図である。
FIG. 4 is a receiver (liquid receiver) of the gas cooling device of the present invention.
FIG. 11 is a view showing another embodiment of the present invention.

【図5】 ガス冷却装置の系統図を図である。FIG. 5 is a system diagram of a gas cooling device.

【図6】 従来のガス冷却装置のレシーバ(受液器)を
示す図である。
FIG. 6 is a diagram showing a receiver (liquid receiver) of a conventional gas cooling device.

【図7】 従来のガス冷却装置のレシーバ(受液器)が
傾斜した場合を説明するための図である。
FIG. 7 is a view for explaining a case where a receiver (liquid receiver) of a conventional gas cooling device is inclined.

【符号の説明】[Explanation of symbols]

1…ポッド外板 2…スキンコンデンサ 3…レシーバ 4…膨張弁 5…エバポレータ 6…コンプレッサ 7…循環ポンプ 8…電子機器 9…気体冷媒 10…液体冷媒 11…レシーバ 12…出口配管 13…出口配管 14…フレキシブルジョイント 15…入口配管 16…Oリング 17…ばね 18…ピストン 19…レシーバ 20…レシーバ 21…高圧ガス 22…ベローズ 23…レシーバ DESCRIPTION OF SYMBOLS 1 ... Pod outer plate 2 ... Skin condenser 3 ... Receiver 4 ... Expansion valve 5 ... Evaporator 6 ... Compressor 7 ... Circulation pump 8 ... Electronic equipment 9 ... Gas refrigerant 10 ... Liquid refrigerant 11 ... Receiver 12 ... Outlet piping 13 ... Outlet piping 14 ... Flexible joint 15 ... Inlet piping 16 ... O-ring 17 ... Spring 18 ... Piston 19 ... Receiver 20 ... Receiver 21 ... High pressure gas 22 ... Bellows 23 ... Receiver

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】冷媒を用い、コンプレッサ(圧縮器)、コ
ンデンサ(凝縮器)、レシーバ(受液器)、膨張弁、エ
バポレータ(蒸発器)からなるベーパサイクルガス冷却
装置において、前記レシーバ内の液体冷媒の出口配管を
常に液体冷媒中に位置するようにフレキシブル配管とし
たことを特徴とするガス冷却装置。
1. A vapor cycle gas cooling system using a refrigerant and comprising a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), an expansion valve, and an evaporator (evaporator). A gas cooling device, wherein a refrigerant outlet pipe is a flexible pipe so as to be always located in a liquid refrigerant.
【請求項2】冷媒を用い、コンプレッサ(圧縮器)、コ
ンデンサ(凝縮器)、レシーバ(受液器)、膨張弁、エ
バポレータ(蒸発器)からなるベーパサイクルガス冷却
装置において、前記レシーバ内をOリングを介してピス
トン機構で液体冷媒を仕切りそのピストンを所定の圧力
でばねで押さえる機構を備えることを特徴とするガス冷
却装置。
2. A vapor cycle gas cooling system using a refrigerant and comprising a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), an expansion valve, and an evaporator (evaporator). A gas cooling device comprising a mechanism for partitioning a liquid refrigerant by a piston mechanism via a ring and pressing the piston by a spring at a predetermined pressure.
【請求項3】冷媒を用い、コンプレッサ(圧縮器)、コ
ンデンサ(凝縮器)、レシーバ(受液器)、膨張弁、エ
バポレータ(蒸発器)からなるベーパサイクルガス冷却
装置において、前記レシーバ内をOリングを介してピス
トン機構で液体冷媒を仕切りそのピストンを高圧ガスを
封入して所定の圧力で押さえる機構を備えることを特徴
とするガス冷却装置。
3. A vapor cycle gas cooling system using a refrigerant and comprising a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), an expansion valve, and an evaporator (evaporator). A gas cooling device comprising a mechanism for partitioning a liquid refrigerant by a piston mechanism via a ring and for sealing the piston with high-pressure gas and pressing the piston at a predetermined pressure.
【請求項4】冷媒を用い、コンプレッサ(圧縮器)、コ
ンデンサ(凝縮器)、レシーバ(受液器)、膨張弁、エ
バポレータ(蒸発器)からなるベーパサイクルガス冷却
装置において、前記レシーバ内をベローズ機構で液体冷
媒を仕切りそのベローズに高圧ガスを封入して所定の圧
力で押さえる機構を備えることを特徴とするガス冷却装
置。
4. A vapor cycle gas cooling system using a refrigerant and comprising a compressor (compressor), a condenser (condenser), a receiver (liquid receiver), an expansion valve, and an evaporator (evaporator). A gas cooling device comprising a mechanism for partitioning a liquid refrigerant by a mechanism, enclosing a high-pressure gas in its bellows, and pressing the bellows at a predetermined pressure.
JP2000117183A 2000-04-13 2000-04-13 Gas cooling apparatus Pending JP2001296075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117183A JP2001296075A (en) 2000-04-13 2000-04-13 Gas cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117183A JP2001296075A (en) 2000-04-13 2000-04-13 Gas cooling apparatus

Publications (1)

Publication Number Publication Date
JP2001296075A true JP2001296075A (en) 2001-10-26

Family

ID=18628539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117183A Pending JP2001296075A (en) 2000-04-13 2000-04-13 Gas cooling apparatus

Country Status (1)

Country Link
JP (1) JP2001296075A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015362A (en) * 2011-05-16 2014-02-06 테라다인 인코퍼레이티드 Liquid cooling during testing
CN104819609A (en) * 2015-05-04 2015-08-05 昆山方佳机械制造有限公司 Vehicle reservoir
JP2017510781A (en) * 2014-02-27 2017-04-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Heat pump with storage container
EP2079969B1 (en) * 2006-10-13 2020-01-22 Carrier Corporation Refrigeration circuit
CN113945028A (en) * 2021-11-18 2022-01-18 新乡航空工业(集团)有限公司 Flash tank for airborne evaporation circulation refrigerating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2079969B1 (en) * 2006-10-13 2020-01-22 Carrier Corporation Refrigeration circuit
KR20140015362A (en) * 2011-05-16 2014-02-06 테라다인 인코퍼레이티드 Liquid cooling during testing
KR101981170B1 (en) * 2011-05-16 2019-05-22 테라다인 인코퍼레이티드 An apparatus for testing a device
JP2017510781A (en) * 2014-02-27 2017-04-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Heat pump with storage container
CN104819609A (en) * 2015-05-04 2015-08-05 昆山方佳机械制造有限公司 Vehicle reservoir
CN113945028A (en) * 2021-11-18 2022-01-18 新乡航空工业(集团)有限公司 Flash tank for airborne evaporation circulation refrigerating system
CN113945028B (en) * 2021-11-18 2023-01-31 新乡航空工业(集团)有限公司 Onboard flash evaporator for evaporation cycle refrigeration system

Similar Documents

Publication Publication Date Title
US4766733A (en) Refrigerant reclamation and charging unit
US5103650A (en) Refrigeration systems with multiple evaporators
JP5528732B2 (en) Cryogenic liquid storage system for spacecraft
US4910972A (en) Refrigerator system with dual evaporators for household refrigerators
US5134859A (en) Excess refrigerant accumulator for multievaporator vapor compression refrigeration cycles
JPH05503764A (en) food freezer
US20050235655A1 (en) System for forming aerosols and cooling device incorporated therein
JP2001296075A (en) Gas cooling apparatus
EP0374966B1 (en) Refrigerant processing and charging system
CA2497931A1 (en) Air conditioning system
KR200359861Y1 (en) Heat exchanging device
KR100596157B1 (en) Refrigerator using mixed refrigerant with carbon dioxide
EP0374965A2 (en) Refrigerant charging system in which a refrigerant is freshened and smoothly charged into a storage container
JP2000146372A (en) Refrigerant recovering apparatus
JP2008051499A (en) Refrigerating cycle device, and refrigerating cycle
JP2001091173A (en) Heat conveying apparatus
US10240827B2 (en) Liquid chiller system
EP0374688B1 (en) Refrigerator system with dual evaporators for household refrigerators
JP2000283607A (en) Cooling apparatus
JP3158596B2 (en) Refrigerator water removal equipment
EP0038374B1 (en) A compression refrigerator unit adjustable in accordance with the liquid flowing out from the evaporator
KR200336482Y1 (en) Heat exchanging device
JPH0593559A (en) Refrigerant recoverying and reproducing device
US4356699A (en) Gas condensation
US20230068459A1 (en) An assembly and method for cooling an apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081029

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081226