JPH0558371B2 - - Google Patents

Info

Publication number
JPH0558371B2
JPH0558371B2 JP1245510A JP24551089A JPH0558371B2 JP H0558371 B2 JPH0558371 B2 JP H0558371B2 JP 1245510 A JP1245510 A JP 1245510A JP 24551089 A JP24551089 A JP 24551089A JP H0558371 B2 JPH0558371 B2 JP H0558371B2
Authority
JP
Japan
Prior art keywords
prepreg
carbon fiber
irregularly shaped
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1245510A
Other languages
Japanese (ja)
Other versions
JPH03106619A (en
Inventor
Satoshi Fujiwara
Yoshio Inoe
Morihiko Sugino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1245510A priority Critical patent/JPH03106619A/en
Publication of JPH03106619A publication Critical patent/JPH03106619A/en
Publication of JPH0558371B2 publication Critical patent/JPH0558371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は強化剤として炭素繊維を使用し、引張
強度及び弾性率を向上させた異形状繊維強化プラ
スチツク及びその製造方法に関し、特に、肉厚が
1mm以下の薄い異形状繊維強化プラスチツク及び
その製造方法に関する。 [従来の技術] 異形状の繊維強化プラスチツクの製造方法とし
て、特開昭49−20274号に開示されたものが公知
である。この方法においては、樹脂の上にガラス
ロービングのチヨツプを散布し、含浸ロールで絞
つてSMC(シートモールデイングコンパウンド)
を製造し、その後異形状の金型を用いて薄肉化す
ることにより圧縮成形を行つている。 また、不織布を使用した例としては、特開昭61
−137712号に開示された強化プラスチツク製ヘル
メツトの製造方法があり、この方法においては、
不織布を異形状に配置した後、そのまま樹脂を含
浸し、次いで、成形型内でこの樹脂含浸強化材を
加熱加圧し、硬化させている。 [発明が解決しようとする課題] しかしながら、前者の方法においては、樹脂マ
トリツクス中で強化材が偏在することとなり、そ
の結果として、成形品において強度が低下する部
分が発生すると共に、そり及びうねり等の変形が
生じる原因となる。 一方、後者の方法においては、予め不織布を異
形状に配置するので、成形作業が繁雑で手間がか
かるという欠点がある。また、乾式フアイバを使
用するので、作業環境が悪くなり、更に、フアイ
バが均一に流動しないので、炭素繊維の体積含有
率に局部的な変動が生じ、その結果、成形品の強
度及び弾性率が局部的に変動するという欠点を有
する。 本発明はかかる問題点に鑑みてなされたもので
あつて、炭素繊維がマトリツクス中に均一に分布
し、引張強度及び弾性率等の機械的特性が優れて
いる異形状繊維強化プラスチツク及びその製造方
法を提供することを目的とする。 [課題を解決するための手段] 本発明に係る異形状繊維強化プラスチツクは、
熱硬化性樹脂からなるマトリツクス中に強化材と
して長さが10乃至100mmの炭素繊維を2次元的に
且つ不規則的に分布して構成され、厚さが1mm以
下であることを特徴とする。 また、本発明に係る異形状繊維強化プラスチツ
クの製造方法は、引張強度が300Kgf/mm2以上の
炭素繊維からなる不織布に熱硬化性樹脂が含浸し
乾燥してプリプレグを得る工程と、このプリプレ
グを所定の異形状のキヤビテイを有する成形型内
に配置し、100Kgf/cm2以上の面圧で前記プリプ
レグを加熱加圧する工程と、を有し、この加熱加
圧工程により前記プリプレグの前記熱硬化性樹脂
と前記炭素繊維とを前記キヤビテイ内で流動化さ
せることを特徴とする。 [作用] 本発明においては、長さが10乃至100mmの炭素
繊維を強化材として熱硬化性樹脂からなるマトリ
ツクス中に2次元的に且つ不規則的に分布してい
る。プリプレグにおいては、この炭素繊維は相互
に絡み合つた不織布の形態で配置するので、成形
品においても、その強化材となる炭素繊維が基材
切れがない状態で熱硬化性樹脂からなるマトリツ
クス中に存在する。これにより、異形状の炭素繊
維強化プラスチツク成形品の引張強度及び弾性率
が向上する。 不織布を作る際の炭素繊維の長さは、10乃至
100mmにする。炭素繊維長が10mm未満の場合には、
上述の炭素繊維の絡みが少なく、良好な不織布を
作ることができなくなる。炭素繊維長が100mmを
超えると、繊維長が長すぎるため、繊維がカール
状となり十分な引張強度及び弾性率を得ることが
できない。このような理由で、炭素繊維の長さを
10乃至100mmにする。 マトリツクスを構成する熱硬化性樹脂として
は、例えば、フエノール樹脂、エポキシ樹脂、ポ
リイミド樹脂及びこれらの混合物がある。 また、この熱硬化性樹脂からなるマトリツクス
に対する炭素繊維の体積含有率は、15乃至60%に
することが好ましい。炭素繊維の体積含有率が15
%未満の場合には、強化材としての炭素繊維の量
が不足し、成形品において、引張強度及び弾性率
が低下する。逆に、炭素繊維の体積含有率が60%
を超えると、マトリツクスに対する強化材として
の添加物の量が多くなり過ぎ、マトリツクスの樹
脂が添加された繊維になじまなくなり、また空孔
が生じるため強度が低下する。このような理由で
炭素繊維の体積含有率を15乃至60%にする。 また、本発明方法においては、先ず、引張強度
が300Kgf/mm2以上の炭素繊維からなる不織布に
熱硬化性樹脂を含浸し、乾燥させてプリプレグを
得る。 次いで、このプリプレグを所望の異形状に対応
するキヤビテイを有する成形型内に配置し、加熱
下において100Kgf/cm2以上の加圧力で圧縮する。
このように、不織布に熱硬化性樹脂を含浸させた
プリプレグの状態で加熱加圧成形するから、プリ
プレグを構成する樹脂と共に、炭素繊維が前記キ
ヤビテイ内に均一に、且つキヤビテイ内の隅々ま
で流動し、炭素繊維の体積含有率が均一な異形状
成形品を製造することができる。 炭素繊維としては、熱硬化性樹脂からなるマト
リツクスの強化材として添加するものであるか
ら、その引張強度は高い方が好ましい。特に、引
張強度が500Kgf/cm2以上、弾性率が105Kgf/cm2
以上の機械的強度が優れた成形品を得るために
は、不織布の炭素繊維としては引張強度が300Kg
f/mm2以上のものを使用する必要がある。 また、成形型内のプリプレグの加圧力は、樹脂
と共に炭素繊維をキヤビテイ内で有効に流動さ
せ、炭素繊維を均一に分布させるために重要な意
義をもつ。このような観点で、加圧力は100Kg
f/cm2以上にする。第1図は横軸に加圧力(面
圧)をとり、縦軸に炭素繊維の流動率をとつて、
面圧と炭素繊維流動率との関係を示すグラフ図で
ある。なお、この流動率は[(流動後の炭素繊維
が占める面積)/(プリプレグ中の炭素繊維が占
める面積)−1]×100で表される。この第1図に
示すように、面圧を100Kgf/cm2以上にすると、
炭素繊維の流動化が良好に進行し、樹脂と共に炭
素繊維がキヤビテイ内に均一に分布する。その結
果、引張強度が500Kgf/cm2以上、弾性率が105Kg
f/cm2以上の成形品を得ることができる。 なお、熱硬化性樹脂の含浸時には、マトリツク
ス樹脂に対する炭素繊維の体積含有率が前述のご
とく15乃至60%になるように、不織布及び含浸樹
脂量を調節することが好ましい。 [実施例] 次に、本発明の実施例について説明する。 先ず、炭素繊維のチヨツプをカード機により開
繊して得たウエツブを所定量重ねてニードルパン
チを打ち、目付量が500g/m2の不織布とした。
この不織布をフエノール樹脂液に浸漬してフエノ
ール樹脂を乾燥後の樹脂量で200%になるように
含浸した。乾燥温度は120℃である。 このようにして製造したプリプレグを金型に挿
入した。第2図はこの金型の下型2を示す。下型
2は上端が開口した箱状をなし、その内部の底面
上にプリプレグ1を載置した。そして、第3図に
示すように、上型3を下型2内に嵌入した。この
上型3はその押圧部3aが下型2の内部に嵌入す
る大きさを有し、この押圧部3aと下型2の内面
との間で所望の異形状成形品(第4図参照)に対
応するキヤビテイが形成されるようになつてい
る。従つて、第2図に示すように、プリプレグ1
を下型2内に載置し、上型3を下型2内に圧入す
ると、プリプレグ1は前述のごとく形成されるキ
ヤビテイ内に流動し、このキヤビテイに規制され
て第4図に示す異形状の成形品が得られた。な
お、成形温度は140℃、面圧は150Kgf/cm2であ
る。 その結果、得られた炭素繊維強化プラスチツク
は肉厚が0.7mmであり、リブ部まで均一に炭素繊
維が流動しており、基材切れ及び気泡等の欠陥は
存在しなかつた。 一方、比較のために、炭素繊維不織布の替わり
に、長さが3mmのチヨツプドフアイバを使用した
カーボンペーパーに実施例と同一の樹脂を同一条
件で含浸し乾燥してシートモールデイングコンパ
ウンド(SMC)を得た。そして、このSMCを実
施例と同一条件で加圧成形して同一形状の成形品
を得た。 その結果、この比較例においては、成形品に基
材切れが発生していた。 また、実施例成形品と比較例成形品とについ
て、その各種特性値を求めて比較した結果、下記
第1表に示すように、曲げ強度及び引張強度のい
ずれも実施例成形品の方が比較例成形品よりも極
めて高い値を示していた。また、弾性率も同様に
実施例成形品のほうが比較例成形品よりも極めて
高いものであつた。
[Field of Industrial Application] The present invention relates to irregularly shaped fiber-reinforced plastics that use carbon fiber as a reinforcing agent and have improved tensile strength and elastic modulus, and a method for producing the same, particularly for thin irregularly shaped plastics with a wall thickness of 1 mm or less. This invention relates to fiber-reinforced plastics and methods for producing the same. [Prior Art] As a method for producing irregularly shaped fiber-reinforced plastics, the method disclosed in JP-A-49-20274 is known. In this method, chips of glass roving are sprinkled on the resin and squeezed with an impregnated roll to form SMC (sheet molding compound).
After that, compression molding is performed by thinning the material using an irregularly shaped mold. In addition, as an example of using non-woven fabric, JP-A-61
-137712 discloses a method for manufacturing a reinforced plastic helmet, which includes:
After the nonwoven fabric is arranged in an irregular shape, it is impregnated with resin as it is, and then this resin-impregnated reinforcing material is heated and pressurized in a mold to harden it. [Problems to be Solved by the Invention] However, in the former method, the reinforcing material is unevenly distributed in the resin matrix, and as a result, parts of the molded product have reduced strength, and warpage, waviness, etc. This causes deformation. On the other hand, in the latter method, since the nonwoven fabric is arranged in an irregular shape in advance, the forming operation is complicated and time-consuming. Furthermore, since dry fibers are used, the working environment is poor, and the fibers do not flow uniformly, causing local fluctuations in the volume content of carbon fibers, resulting in a decrease in the strength and elastic modulus of the molded product. It has the disadvantage of local fluctuations. The present invention has been made in view of the above problems, and provides an irregularly shaped fiber-reinforced plastic in which carbon fibers are uniformly distributed in a matrix and has excellent mechanical properties such as tensile strength and elastic modulus, and a method for producing the same. The purpose is to provide [Means for solving the problem] The irregularly shaped fiber reinforced plastic according to the present invention has the following features:
It is characterized by being constructed by two-dimensionally and irregularly distributing carbon fibers having a length of 10 to 100 mm as reinforcing materials in a matrix made of thermosetting resin, and having a thickness of 1 mm or less. The method for producing irregularly shaped fiber-reinforced plastics according to the present invention also includes the steps of impregnating a nonwoven fabric made of carbon fiber with a tensile strength of 300 Kgf/mm 2 or more with a thermosetting resin and drying it to obtain a prepreg; a step of placing the prepreg in a mold having a cavity of a predetermined irregular shape, and heating and pressing the prepreg with a surface pressure of 100 Kgf/cm 2 or more, and this heating and pressing step improves the thermosetting properties of the prepreg. The method is characterized in that the resin and the carbon fibers are fluidized within the cavity. [Function] In the present invention, carbon fibers having a length of 10 to 100 mm are used as reinforcing materials and are distributed two-dimensionally and irregularly in a matrix made of a thermosetting resin. In prepreg, the carbon fibers are arranged in the form of an intertwined non-woven fabric, so in molded products, the carbon fibers that serve as reinforcement are inserted into the thermosetting resin matrix without cutting the base material. exist. This improves the tensile strength and elastic modulus of the irregularly shaped carbon fiber reinforced plastic molded product. The length of carbon fiber when making non-woven fabric is 10 to
Make it 100mm. If the carbon fiber length is less than 10mm,
The above-mentioned carbon fibers are less entangled, making it impossible to make a good nonwoven fabric. When the carbon fiber length exceeds 100 mm, the fiber length is too long and the fibers become curled, making it impossible to obtain sufficient tensile strength and elastic modulus. For this reason, the length of carbon fiber is
Make it 10 to 100mm. Examples of the thermosetting resin constituting the matrix include phenolic resin, epoxy resin, polyimide resin, and mixtures thereof. Further, the volume content of carbon fibers in the matrix made of this thermosetting resin is preferably 15 to 60%. Carbon fiber volume content is 15
If it is less than %, the amount of carbon fiber as a reinforcing material will be insufficient, and the tensile strength and elastic modulus of the molded product will decrease. Conversely, the volume content of carbon fiber is 60%
If it exceeds 100%, the amount of the additive as a reinforcing material for the matrix becomes too large, the resin of the matrix becomes incompatible with the added fibers, and pores are generated, resulting in a decrease in strength. For this reason, the volume content of carbon fiber is set at 15 to 60%. In the method of the present invention, first, a nonwoven fabric made of carbon fiber having a tensile strength of 300 Kgf/mm 2 or more is impregnated with a thermosetting resin and dried to obtain a prepreg. Next, this prepreg is placed in a mold having a cavity corresponding to the desired irregular shape, and compressed under heating with a pressure of 100 Kgf/cm 2 or more.
In this way, since the prepreg, which is a nonwoven fabric impregnated with a thermosetting resin, is molded under heat and pressure, the carbon fibers flow uniformly into the cavity and to every corner of the cavity together with the resin that makes up the prepreg. Therefore, it is possible to produce a irregularly shaped molded article with a uniform carbon fiber volume content. Since carbon fiber is added as a reinforcing material for a matrix made of thermosetting resin, it is preferable that its tensile strength is high. In particular, the tensile strength is 500 Kgf/cm 2 or more and the elastic modulus is 10 5 Kgf/cm 2
In order to obtain a molded product with excellent mechanical strength, the tensile strength of nonwoven carbon fiber must be 300 kg.
It is necessary to use f/mm 2 or higher. Further, the pressing force of the prepreg in the mold has an important meaning in order to effectively flow the carbon fibers together with the resin within the cavity and uniformly distribute the carbon fibers. From this point of view, the pressing force is 100Kg.
f/cm 2 or more. In Figure 1, the horizontal axis shows the pressing force (surface pressure), and the vertical axis shows the flow rate of carbon fiber.
It is a graph diagram showing the relationship between surface pressure and carbon fiber fluidity. Note that this flow rate is expressed as [(area occupied by carbon fibers after flow)/(area occupied by carbon fibers in prepreg)-1]×100. As shown in Fig. 1, when the surface pressure is increased to 100Kgf/cm 2 or more,
Fluidization of the carbon fibers progresses well, and the carbon fibers are evenly distributed within the cavity together with the resin. As a result, the tensile strength is 500Kgf/cm2 or more, and the elastic modulus is 105Kg .
Molded products with f/cm 2 or more can be obtained. In addition, when impregnating the thermosetting resin, it is preferable to adjust the amounts of the nonwoven fabric and the impregnated resin so that the volume content of the carbon fibers to the matrix resin is 15 to 60% as described above. [Example] Next, an example of the present invention will be described. First, a web obtained by opening carbon fiber chips using a card machine was overlapped by a predetermined amount and needle punched to obtain a nonwoven fabric having a basis weight of 500 g/m 2 .
This nonwoven fabric was immersed in a phenol resin solution to impregnate it with phenol resin so that the amount of resin after drying was 200%. Drying temperature is 120℃. The prepreg thus produced was inserted into a mold. FIG. 2 shows the lower mold 2 of this mold. The lower mold 2 had a box shape with an open upper end, and the prepreg 1 was placed on the bottom surface inside the lower mold 2. Then, as shown in FIG. 3, the upper mold 3 was fitted into the lower mold 2. This upper mold 3 has a size such that its pressing part 3a fits into the inside of the lower mold 2, and a desired irregularly shaped molded product (see Fig. 4) is formed between this pressing part 3a and the inner surface of the lower mold 2. A cavity corresponding to this is formed. Therefore, as shown in FIG.
When the prepreg 1 is placed in the lower mold 2 and the upper mold 3 is press-fitted into the lower mold 2, the prepreg 1 flows into the cavity formed as described above and is regulated by this cavity to form the irregular shape shown in FIG. A molded article was obtained. The molding temperature was 140° C. and the surface pressure was 150 kgf/cm 2 . As a result, the obtained carbon fiber-reinforced plastic had a wall thickness of 0.7 mm, the carbon fibers evenly flowed to the rib portion, and there were no defects such as base material breakage or air bubbles. On the other hand, for comparison, carbon paper using chopped fibers with a length of 3 mm instead of carbon fiber nonwoven fabric was impregnated with the same resin as in the example under the same conditions, dried, and made into a sheet molding compound ( SMC) was obtained. Then, this SMC was pressure molded under the same conditions as in the example to obtain a molded product with the same shape. As a result, in this comparative example, base material breakage occurred in the molded product. In addition, as a result of determining and comparing various characteristic values of the molded product of the example and the molded product of the comparative example, as shown in Table 1 below, the molded product of the example was compared in terms of both bending strength and tensile strength. The value was significantly higher than that of the example molded product. Furthermore, the elastic modulus of the molded product of the example was also significantly higher than that of the molded product of the comparative example.

【表】 [発明の効果] 以上説明したように、本発明によれば、長さが
10乃至100mmの炭素繊維をマトリツクス中に2次
元的に且つ不規則的に分布させたから、炭素繊維
の含有率及び比重が均一な異形状炭素繊維強化プ
ラスチツクが得られ、強度及び弾性率の不均一が
回避され、製造過程での変形が防止される。 また、本発明方法によれば、成形型内で樹脂と
共に、強化材の炭素繊維も流動させることがで
き、成形品において、樹脂マトリツクス中に炭素
繊維を均一に且つ隅々まで分布させることができ
る。従つて、炭素繊維含有率及び比重の局部的変
動及び基材切れ等が防止されて、引張強度が500
Kgf/cm2以上、弾性率が105Kgf/cm2以上という
ように、薄肉成形品としては極めて優れた特性を
有する異形状繊維強化プラスチツクを製造するこ
とができる。
[Table] [Effects of the invention] As explained above, according to the present invention, the length
By distributing carbon fibers of 10 to 100 mm two-dimensionally and irregularly in the matrix, it is possible to obtain irregularly shaped carbon fiber-reinforced plastics with uniform carbon fiber content and specific gravity, and with non-uniform strength and elastic modulus. This prevents deformation during the manufacturing process. Furthermore, according to the method of the present invention, carbon fibers as a reinforcing material can be made to flow together with the resin in the mold, and the carbon fibers can be uniformly distributed throughout the resin matrix in the molded product. . Therefore, local fluctuations in carbon fiber content and specific gravity as well as base material breakage are prevented, and the tensile strength is reduced to 500%.
It is possible to produce irregularly shaped fiber-reinforced plastics having extremely excellent properties as a thin-walled molded product, such as Kgf/cm 2 or more and elastic modulus of 10 5 Kgf/cm 2 or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は面圧と炭素繊維流動率との関係を示す
グラフ図、第2図は成形用下型を示す模式図、第
3図は成形用上型を示す模式図、第4図は成形品
形状を示す模式図である。 1……プリプレグ、2……下型、3……上型、
4……成形品。
Figure 1 is a graph showing the relationship between surface pressure and carbon fiber flow rate, Figure 2 is a schematic diagram showing a lower mold for molding, Figure 3 is a schematic diagram showing an upper mold for molding, and Figure 4 is a schematic diagram showing the upper mold for molding. It is a schematic diagram showing the product shape. 1... prepreg, 2... lower mold, 3... upper mold,
4... Molded product.

Claims (1)

【特許請求の範囲】 1 熱硬化製樹脂からなるマトリツクス中に強化
材として長さが10乃至100mmの炭素繊維を2次元
的に且つ不規則的に分布して構成され、厚さが1
mm以下であることを特徴とする異形状繊維強化プ
ラスチツク。 2 前記炭素繊維は前記マトリツクスに対する体
積比率が15乃至60%であることを特徴とする請求
項1に記載の異形状繊維強化プラスチツク。 3 引張強度が300Kgf/mm2以上の炭素繊維から
なる不織布に熱硬化製樹脂を含浸し乾燥してプリ
プレグを得る工程と、このプリプレグを所定の異
形状のキヤビテイを有する成形型内に配置し、
100Kgf/cm2以上の面圧で前記プリプレグを加熱
加圧する工程と、を有し、この加熱加圧工程によ
り前記プリプレグの前記熱硬化性樹脂と前記炭素
繊維とを前記キヤビテイ内で流動化させることを
特徴とする異形状繊維強化プラスチツクの製造方
法。
[Claims] 1. Carbon fibers having a length of 10 to 100 mm are distributed two-dimensionally and irregularly as a reinforcing material in a matrix made of thermosetting resin, and the thickness is 1.
Irregularly shaped fiber-reinforced plastic characterized by having a diameter of mm or less. 2. The irregularly shaped fiber-reinforced plastic according to claim 1, wherein the carbon fiber has a volume ratio of 15 to 60% with respect to the matrix. 3. A step of impregnating a nonwoven fabric made of carbon fiber with a tensile strength of 300 Kgf/mm 2 or more with a thermosetting resin and drying it to obtain a prepreg, and placing this prepreg in a mold having a predetermined irregularly shaped cavity.
a step of heating and pressing the prepreg with a surface pressure of 100 Kgf/cm 2 or more, and fluidizing the thermosetting resin and the carbon fiber of the prepreg in the cavity by this heating and pressing step. A method for producing irregularly shaped fiber-reinforced plastic characterized by:
JP1245510A 1989-09-21 1989-09-21 Profile fiber reinforced plastic and its manufacture Granted JPH03106619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245510A JPH03106619A (en) 1989-09-21 1989-09-21 Profile fiber reinforced plastic and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245510A JPH03106619A (en) 1989-09-21 1989-09-21 Profile fiber reinforced plastic and its manufacture

Publications (2)

Publication Number Publication Date
JPH03106619A JPH03106619A (en) 1991-05-07
JPH0558371B2 true JPH0558371B2 (en) 1993-08-26

Family

ID=17134755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245510A Granted JPH03106619A (en) 1989-09-21 1989-09-21 Profile fiber reinforced plastic and its manufacture

Country Status (1)

Country Link
JP (1) JPH03106619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2290045A (en) * 1994-05-26 1995-12-13 Kobe Steel Ltd Deformed fiber reinforced plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2290045A (en) * 1994-05-26 1995-12-13 Kobe Steel Ltd Deformed fiber reinforced plastic
DE19519241C2 (en) * 1994-05-26 1999-03-18 Kobe Steel Ltd Molded part made of fiber-reinforced plastic

Also Published As

Publication number Publication date
JPH03106619A (en) 1991-05-07

Similar Documents

Publication Publication Date Title
US5039465A (en) Method and apparatus for forming fiber reinforced plastic preforms from a wet slurry
US4882114A (en) Molding of fiber reinforced plastic articles
DK171970B1 (en) Air permeable, plate-like, fibrous structure and process for its manufacture
US6093359A (en) Reinforced thermoplastic composite systems
KR0159510B1 (en) Method of preparing thermoplastic resin product reinforced with fibers
CN87102407A (en) Fiber-reinforced composite material and method for producing same
CA2094837A1 (en) Method and apparatus for binding fibers in a fiber reinforced preform
EP0148762B1 (en) Improvements in fibre reinforced moulded plastics articles
CN109228408A (en) Method for producing fiber-reinforced resin base material or resin molded article, and plasticizing ejector used in the production method
US5820801A (en) Reinforced thermoplastic molding technique method
JPH0558371B2 (en)
JPH05508591A (en) Composite product manufacturing method and composite product
US4921518A (en) Method of making short fiber reinforced glass and glass-ceramic matrix composites
CA2176416C (en) Reinforced thermoplastic molding technique method and apparatus
JP2511027B2 (en) Method of making preforms from fiber reinforced materials
CN1008752B (en) Can guide and support fibre gasket and the manufacture method thereof that to store
JPH0137503B2 (en)
US5814256A (en) Process of producing preforms containing light weight filler particles
JPS6029613B2 (en) Molding method for fiber-reinforced thermosetting resin
JP2541064B2 (en) Method for producing thermosetting resin molding material and method for producing thermosetting resin molded article
JPS6290203A (en) Manufacture of ligneous molded material
JPH0457163B2 (en)
JPH03166910A (en) Manufacture of carbon fiber reinforced thermoplastic resin sheet
JPH09193150A (en) Production of glass fiber preform
JPH07223209A (en) Fibrous molding and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070826

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees