JPH03166910A - Manufacture of carbon fiber reinforced thermoplastic resin sheet - Google Patents

Manufacture of carbon fiber reinforced thermoplastic resin sheet

Info

Publication number
JPH03166910A
JPH03166910A JP1304868A JP30486889A JPH03166910A JP H03166910 A JPH03166910 A JP H03166910A JP 1304868 A JP1304868 A JP 1304868A JP 30486889 A JP30486889 A JP 30486889A JP H03166910 A JPH03166910 A JP H03166910A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
sheet
mat
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1304868A
Other languages
Japanese (ja)
Inventor
Yasuji Matsumoto
松本 泰次
Seiji Hanatani
誠二 花谷
Mamoru Kamishita
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1304868A priority Critical patent/JPH03166910A/en
Publication of JPH03166910A publication Critical patent/JPH03166910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To improve the mechanical properties and surface qualities and also raise the uniformity by adding binder to a mat-shaped substance made of mixed thermoplastic resin fibers and carbon fibers and then compressing them into a sheet-shaped substance and laminating a thermoplastic resin sheet thereon and heating and pressing them thereafter. CONSTITUTION:First, a blended mat of thermoplastic resin fibers and carbon fibers to be a matrix is made, whereby the handling property of the mat is improved and, since the thermoplastic resin is dispersed previously uniformly in the inner part of a fiber reinforced layer, the sufficient and uniform infiltration of the resin into the fiber reinforced mat can be obtained. Next, after giving a binder in the blended mat, it is made into a sheet-shaped substance with high density through compression. As binders, it is preferred to employ resin such as epoxy resin, unsaturate polyester resin and PVA resin, and it is preferable that the adhesive rate is in the range of 0.1 - 20wt%. In the next place, the blended sheet substance obtained herein is superimposed and laminated with the thermoplastic sheet substance and then they are heated and pressed at the temperature of softening and melting temperature or higher of the thermoplastic resin.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、炭素繊維を強化材とし、熱可塑性樹脂を母材
(マトリックス)とするスタンピング(プレス成形,打
抜き加工)可能な炭素繊維強化熱可塑性樹脂シートの製
造方法に関する.く従来の技術〉 熱可塑性樹脂を結合材とする繊維強化熱可塑性樹脂シー
トはスタンパブルシ一トと呼ばれ、威形用中間素材とし
て各方面で使用されている.その特徴として加熱軟化さ
せて流動状態にある間に金型内に供給して加圧威形し、
冷却固化させるだけで戒形品が得られるために、熱硬化
性樹脂を結合材としたいわゆるSMCと比較すると、熱
硬化時間が不要なために戒形サイクルが短くなり、生産
効率が向上すると同時にプレス装置もSMCのよな特別
なa能は必要なく、汎用のプレス装置をそのまま利用で
きる.さらに熱可塑性であるから、リサイクルが効く、
デザインの自由度が大きいなどの利点を有している.そ
のため最近ではSMCあるいは鋼材などの代替が一部で
は既に行われ、将来的には大型パーツ用素材として自動
車,機械分野での伸びが期待されている. 従来、これらの繊維(主としてガラス繊維)男化熱可塑
性樹脂シートの製造は、ドライプロセス法とウェットプ
ロセス法により実施されている.前者の方式では、例え
ば特公昭63 − 4486号公報に開示されているよ
うに、少なくとも一枚の強化總維マットと少なくとも一
枚の熱可塑性樹脂シートを重ね合わせて、ダブルベルト
の間に扶持してラξネーターの加熱加圧帯域に供給して
樹脂層を溶融状態で加圧し、マット中に樹脂を十分含浸
させ次いで冷却加圧帯域において、樹脂とマントに圧力
を加えつつ樹脂を固化せ、樹脂とマットから構成される
繊維強化樹脂の固体シートとして引き出している.一方
、後者のウェットプロセスでは、例えば粉状の樹脂とチ
ッップ状の強化繊維の分散液(分散媒としては道常は水
が使用される)を作り、メッシュベルト上で湿布状ウェ
ブに威形し、乾燥させた後加熱加圧し、次いで冷却固化
させることにより製品として取り出す方法がある.ウェ
ットプロセス法では予め樹脂粒子が均一かつ十分に強化
繊維層内部に分散し、かつ強化繊維の分布.分散が良好
であるため、均質なシートが得られかつ表面の美しさに
優れるという利点を持つ半面、分散液の調製さらに湿布
状ウエブをつくる工程で、均一に繊維を分散させるため
には繊維の長さがドライプロセス法と比較した場合短く
ならざるを得す、そのため製品の強度及び耐衝撃性で劣
るという欠点を有している.一方ドライプロセス法では
加熱加圧により樹脂をマットに含浸させる工程で、樹脂
がマットに十分廻りこまない箇所が生じる、あるいは欠
陥,ボイドが発生ずる上に、さらにウェットプロセス法
に比較して表面が荒れるという欠点がある半面、ウェッ
トプロセス法に比べて使用可能な繊維長が大きくなるの
で、製品の強度及び耐衝撃性からみると有利である.ド
ライプロセス法において、表面の品質を改善するために
例えばU S P−4.379.801号公報他に開示
されている如く、長いMII!iを含有している樹脂の
内部層と外部の樹脂層との間に織物の表面ベールを配置
する方法が提案されている,この方法による製品では外
側の樹脂層は強化繊維を含有しておらず、その意味にお
いて不均質な材料となってしまう.またυS P−4,
044,188号公報他に開示されている如く、短い繊
維または無材質の充填材を含有する樹脂層を、長い繊維
を含有している樹脂層の外側に用いることが提案されて
いるが、この方法によっても外層と内層の構造が異なり
、外層の機械的特性が低く不均質な材料となることは免
れない. また強化用繊維として炭素繊維を使用する場合、ガラス
繊維と比較すると可撓性,取扱い性に劣り、特に加熱加
圧する工程において繊維の損傷あるいは折損による短繊
維化が起こり、期待したほどの製品品質が得られない傾
向がある. く発明が解決しようとするia> 本発明の目的はドライプロセス法において、強化用繊゜
維として炭素繊維を、マトリックスとして熱可塑性樹脂
を用いて、曲げ強度や衝撃強度等の機械的性質及び表面
品質に優れた均一性の高い構造を有する炭素繊維強化熱
可塑性樹脂シートの製造方法を提案することである. 〈5題を解決するための手段〉 本発明は、強化用IaIi維マットと熱可塑性樹脂シー
トを重ね合わせて積層し、加熱しながら樹脂層を軟化溶
融状態で加圧し、次いで冷却・加圧しながら樹脂を固化
させる繊維強化熱可塑性樹脂シートの製造方法において
、予めマトリックスとなる熱可塑性樹脂の繊維と炭素繊
維の混紡マット状物を作り、これに第3成分であるバイ
ンダーを加えて圧縮することにより混紡シート状物とな
し、ついで該シート状物とマトリックスとなる熱可塑性
樹脂シートを積層して、当該熱可塑性樹脂の軟化溶融温
度以上の温度領域で加熱・加圧することを特徴とする炭
素繊維強化熱可塑性樹脂シートの製造方法である. 〈作 用〉 本発明によれば、まずマトリックスとなる熱可塑性樹脂
の繊維と炭素繊維との混紡マットを作ることにより、前
述したマットの取扱い性を向上させるとともに、予め熱
可塑性樹脂を強化繊維層内部に均一に分散させることに
なるので、加熱加圧工程において、強化織維マット中へ
の樹脂の含浸も十分でかつ均質なものが得られることに
なる.ここで混紡すべき熱可塑性樹脂の織維と炭素繊維
の混紡比率は特に限定するものではないが、熱可塑性樹
脂繊維の量比が小さすぎる場合には、混紡マットの取扱
い性が十分でなく、加圧工程での繊維の損傷、折損の可
能性が高くなり、一方熱可塑性樹脂繊維の量比が大きす
ぎると、所望の炭素繊維含有率とするためには重ね合わ
せる熱可塑性樹脂シートを極端に薄くせざるを得す、そ
のため表面の樹脂量が不足して、炭素繊維が表面に露出
してしまう箇所が現れ、表面品質が低下してしまう.従
って所望の織維含有率により、適宜混紡比率を選択する
必要がある. 次に得られた混紡マットに第3威分てあるバインダーを
付与した後、圧縮することにより高嵩密度のシート状物
に加工する.混紡したマット状物そのままでは嵩密度が
小さく、また形態安定性に劣り、以後の取扱い時に繊維
ムラ偏在が生じ厚み方向での不均一性の原因になるなど
強化用マットとしでは不十分である.そこでバインダー
成分を混紡マット状物に付与した後、加熱圧縮すること
により嵩密度が高く、形態安定性に優れた均質な混紡シ
ートが得られ、取扱い性も良好となる.ここで用いるバ
インダー成分とは、一般の乾式及び湿式抄造において使
用されるバインダーと同義で、接着能力を有し繊維表面
を侵さないことが基準条件となるが、さらにマトリック
スとなる熱可塑性樹脂との相性及び引き続く威形加工、
さらにはプレス成形の際に要求される耐熱性を考慮する
と、エボキシ系.不飽和ポリエステル系,PVA系など
の樹脂が好適である.付与方法としてバインダー溶液中
への浸漬あるいは噴霧などが適用可能である.バインダ
ーの付着率は特に限定するものではないが、当然少なす
ぎるとバインダー能力が不十分になり、また多すぎると
マトリックスとなる熱可塑性樹脂の加工特性に悪影響を
及ぼすので、0.1〜20wt%(対繊維重量%)の範
囲内で選択するのが好ましい. 圧縮する方法としては、サクシッン吸引又は吹き付けに
よる加圧、さらに機械的圧縮(ローラープレス板)など
が適用可能であり、ta維層に与えるダメージが小さく
なるような条件を選択する必要がある.圧縮シートの厚
み.嵩密度は、最終の炭素繊維強化熱可塑性樹脂シート
の繊維含有率及び製品厚みにより適宜選択することにな
る.次いで得られた混紡シート状物を、熱可塑性シート
状物と重ね合わせて積層し、当該熱可塑性樹脂の軟化溶
融温度以上の温度領域で加熱・加圧し、混紡シート内の
熱可塑性樹脂と表面の熱可塑性樹脂シートにより強化繊
維層に樹脂を十分含浸させた後、冷却しながら圧力を加
え樹脂を固化させて炭素MIIw!強化熱可塑性樹脂シ
ートを得る.本発明においてはこのように予め熱可塑性
樹脂繊維を混紡により炭素繊維層中に均一に分散させて
いるため、加熱溶融時に繊維層内への樹脂の通り込みが
速やかで、かつ十分に行うことができる.従来の方法で
はマトリックスとしての熱可塑性樹脂は全てシートから
繊維層内部に供給することになるので、内部の樹脂の流
動性を確保するために温度,圧力を高めに設定せざるを
得す、そのため表面の樹脂が流れすぎて表面品質が損な
われる傾向があった.しかし本発明によれば、従来に比
較して重ね合わせる熱可塑性樹脂シートを薄くできるた
めに、前述した表層と内部の流動性の差はなくなり、表
面品質も改善される. このようにして得られる炭素繊維強化熱可塑性樹脂シー
トは長い繊維を使用でき、かつ加工時のSaWの損傷も
最小限に抑えられるため、得られる製品は強度.耐衝撃
性に優れ、また表面品質も良好なものとなる. 〈実施例〉 第1表に示す石炭ピッチから製造された汎用グレードの
炭素繊維に、ポリプロピレン樹脂の繊維(単糸径10u
)を第2表に示す配合比率で平均的に両者を分散させて
、汎用の開織機であるコーミングローラーにより開織し
ながら、飛散する綿状体を風洞を通してネットコンベア
上にサクション吸引により堆積させ、混紡マット状物を
得た.得られたマント状物にエポキシ樹脂の水分散液を
噴霧し、対繊維(炭素繊維とポリプロピレン樹脂の繊!
!)重量%で3%になるようにエボキシ樹脂の付着量を
制御した.これを110℃の温度条件下脱水乾燥しなが
らローラーにより圧縮して混紡シートを作威した.得ら
れた圧縮シートと熱可塑性樹脂シート(ポリプロピレン
)を第3表に示す条件で重ね合わせて積層し、ダブルス
チールベルトの間に扶持し、210℃に保持した加熱I
F城でローラーにより加圧・ニツビングした後、加圧し
つつ冷却し炭素繊維強化熱可塑性樹脂シートとした.得
られたスタンパブルシ一トの評価結果を第3表に示した
が、本発明によれば従来法で製造したものと比較して、
曲げ強度6耐WIil性に優れ、表面品質も良好なこと
は明らかである. く発明の効果〉 前述したごとく、本発明により製造される炭素繊維強化
熱可塑性樹脂シートは、予めマトリックスとなる熱可塑
性樹脂繊維と炭素繊維を混紡しているために加熱加圧成
形時において、補強繊維層内への樹脂の含浸を均一かつ
速やかに行うことができ、繊維の偏在,欠陥の発生など
が抑えられ、得られるシートも均一な寸法.物性が得ら
れる.また可撓性,加工性に劣る炭素繊維マットに熱可
塑性樹脂繊維を混紡することにより、マットの取扱い性
が向上し、さらに加圧時の炭素繊維の損傷.折損による
短繊維化も抑制され、長繊維を使うことによるメリット
(製品の強度および耐衝撃性)を最大限に享受できる.
また積層する熱可塑性樹脂シートも薄くでき、均一な流
動性を与えることが可能になるため表面品質も良好にな
る.従って、大型パーツ用素材として自動車の外板,内
坂向け用途、あるいは炭素繊維の導電性を生かしたEM
Iシールド材としてOA機器等のハウジング用等に使用
することが可能で、従来品以上の用途が期待できる.
[Detailed description of the invention] Industrial application field> The present invention is a carbon fiber reinforced thermoplastic resin that can be stamped (press molded, punched) using carbon fiber as a reinforcing material and a thermoplastic resin as a base material (matrix). Concerning a method for manufacturing plastic resin sheets. Prior Art> Fiber-reinforced thermoplastic resin sheets using thermoplastic resin as a binder are called stampable sheets, and are used in various fields as intermediate materials for appearance. Its characteristic is that it is heated and softened and then fed into a mold while it is in a fluid state and pressurized to shape it.
Because molded products can be obtained simply by cooling and solidifying, compared to so-called SMC, which uses thermosetting resin as a binder, the molding cycle is shortened because no heat curing time is required, improving production efficiency. The press equipment does not require special capabilities such as SMC, and general-purpose press equipment can be used as is. Furthermore, since it is thermoplastic, it is easy to recycle.
It has advantages such as a high degree of freedom in design. For this reason, it has already been replaced by SMC or steel materials in some areas, and its use as a material for large parts is expected to grow in the automobile and machinery fields in the future. Conventionally, these fibrous (mainly glass fiber) masculinizing thermoplastic resin sheets have been produced by dry process methods and wet process methods. In the former method, for example, as disclosed in Japanese Patent Publication No. 63-4486, at least one reinforced fiber mat and at least one thermoplastic resin sheet are overlapped and supported between double belts. The mat is supplied to the heated and pressurized zone of the ξ lanator to pressurize the resin layer in a molten state, sufficiently impregnating the resin into the mat, and then in the cooling and pressurized zone, solidifying the resin while applying pressure to the resin and the mantle, It is drawn out as a solid sheet of fiber-reinforced resin composed of resin and mat. On the other hand, in the latter wet process, for example, a dispersion of powdered resin and chip-shaped reinforcing fibers (water is usually used as the dispersion medium) is made and shaped into a poultice-like web on a mesh belt. There is a method of taking out the product by drying, heating and pressurizing, and then cooling and solidifying. In the wet process method, the resin particles are uniformly and sufficiently dispersed inside the reinforcing fiber layer in advance, and the reinforcing fibers are distributed evenly. Since the dispersion is good, it has the advantage that a homogeneous sheet can be obtained and the surface is excellent. However, in the process of preparing the dispersion liquid and making the poultice-like web, it is necessary to disperse the fibers evenly. The length has to be shorter compared to the dry process method, which has the disadvantage that the strength and impact resistance of the product are inferior. On the other hand, in the dry process method, in the process of impregnating the mat with resin by heating and pressurizing, there are places where the resin does not fully wrap around the mat, or defects and voids occur, and the surface is also rougher than in the wet process method. Although it has the disadvantage of roughening, it is advantageous in terms of product strength and impact resistance because the usable fiber length is longer than in the wet process method. In dry process methods, to improve the surface quality, long MII! A method has been proposed in which a surface veil of fabric is placed between an inner layer of resin containing i and an outer resin layer.In products produced by this method, the outer resin layer does not contain reinforcing fibers. In that sense, it becomes a heterogeneous material. Also υSP-4,
As disclosed in No. 044,188 and elsewhere, it has been proposed to use a resin layer containing short fibers or a non-material filler on the outside of a resin layer containing long fibers. The structure of the outer and inner layers differs depending on the method, and it is inevitable that the outer layer will be a non-uniform material with poor mechanical properties. Furthermore, when carbon fiber is used as a reinforcing fiber, it is less flexible and easier to handle than glass fiber, and the fibers become short due to damage or breakage, especially during the process of heating and pressurizing, resulting in lower product quality than expected. There is a tendency that it cannot be obtained. The purpose of the present invention is to improve mechanical properties such as bending strength and impact strength and surface The purpose of this paper is to propose a method for manufacturing carbon fiber-reinforced thermoplastic resin sheets that have excellent quality and a highly uniform structure. <Means for Solving the Five Problems> The present invention involves laminating a reinforcing IaI fiber mat and a thermoplastic resin sheet, pressing the resin layer in a softened and molten state while heating, and then applying pressure while cooling and applying pressure. In a method for producing a fiber-reinforced thermoplastic resin sheet in which the resin is solidified, a blended mat of thermoplastic resin fibers and carbon fibers serving as a matrix is prepared in advance, and a binder as a third component is added to this and compressed. Carbon fiber reinforcement characterized by forming a blended sheet-like material, then laminating the sheet-like material with a thermoplastic resin sheet serving as a matrix, and heating and pressurizing the mixture in a temperature range equal to or higher than the softening and melting temperature of the thermoplastic resin. This is a method for manufacturing thermoplastic resin sheets. <Function> According to the present invention, by first making a blended mat of thermoplastic resin fibers and carbon fibers serving as a matrix, the handleability of the mat described above is improved, and the thermoplastic resin is added to the reinforcing fiber layer in advance. Since the resin is uniformly dispersed inside, the resin is sufficiently impregnated into the reinforced woven mat during the heating and pressing process, and a homogeneous material can be obtained. The blending ratio of thermoplastic resin woven fibers and carbon fibers to be blended here is not particularly limited, but if the ratio of thermoplastic resin fibers is too small, the blended mat will not have sufficient handling properties. There is a high possibility that the fibers will be damaged or broken during the pressurizing process. On the other hand, if the ratio of thermoplastic resin fibers is too large, the stacking of thermoplastic resin sheets will have to be extreme in order to achieve the desired carbon fiber content. As a result, the amount of resin on the surface becomes insufficient, resulting in areas where carbon fibers are exposed on the surface and the surface quality deteriorates. Therefore, it is necessary to select an appropriate blending ratio depending on the desired fiber content. Next, a third binder is added to the resulting blended mat, which is then compressed to form a sheet with a high bulk density. The blended mat-like material as it is is not sufficient as a reinforcing mat, as it has a low bulk density and poor morphological stability, and fibers become unevenly distributed during subsequent handling, causing non-uniformity in the thickness direction. Therefore, by applying a binder component to a blended mat-like material and then heating and compressing it, a homogeneous blended sheet with high bulk density and excellent shape stability can be obtained, and it is also easy to handle. The binder component used here has the same meaning as the binder used in general dry-type and wet-type papermaking, and the standard conditions are that it has adhesive ability and does not attack the fiber surface, but in addition, it must have adhesive ability and not attack the fiber surface. Compatibility and continued machining,
Furthermore, considering the heat resistance required during press molding, epoxy type. Resins such as unsaturated polyester and PVA are suitable. Possible application methods include immersion in a binder solution or spraying. The adhesion rate of the binder is not particularly limited, but if it is too low, the binder ability will be insufficient, and if it is too high, it will have a negative effect on the processing properties of the thermoplastic resin that forms the matrix, so it should be 0.1 to 20 wt%. It is preferable to select within the range of (% by weight of fiber). As a compression method, pressure by suction suction or spraying, mechanical compression (roller press plate), etc. can be applied, and conditions must be selected to minimize damage to the TA fiber layer. Thickness of compressed sheet. The bulk density will be appropriately selected depending on the fiber content and product thickness of the final carbon fiber reinforced thermoplastic resin sheet. Next, the obtained blended sheet material is laminated with a thermoplastic sheet material, and heated and pressurized in a temperature range equal to or higher than the softening melting temperature of the thermoplastic resin to bond the thermoplastic resin in the blended sheet with the surface. After fully impregnating the reinforcing fiber layer with resin using a thermoplastic resin sheet, pressure is applied while cooling to solidify the resin and carbon MIIw! Obtain a reinforced thermoplastic resin sheet. In the present invention, since the thermoplastic resin fibers are uniformly dispersed in the carbon fiber layer by blending in advance, the resin can quickly and thoroughly penetrate into the fiber layer during heating and melting. can. In the conventional method, all the thermoplastic resin as a matrix is supplied from the sheet to the inside of the fiber layer, so the temperature and pressure have to be set high to ensure the fluidity of the resin inside. There was a tendency for the resin on the surface to flow too much, resulting in a loss of surface quality. However, according to the present invention, the overlapping thermoplastic resin sheets can be made thinner than in the past, so the above-mentioned difference in fluidity between the surface layer and the inside is eliminated, and the surface quality is also improved. The carbon fiber-reinforced thermoplastic resin sheet obtained in this way allows the use of long fibers, and damage to the SaW during processing can be minimized, so the resulting product has high strength. It has excellent impact resistance and good surface quality. <Example> Polypropylene resin fibers (single diameter 10μ
) are dispersed on average in the blending ratio shown in Table 2, and while the weaving is being opened using a combing roller, which is a general-purpose opening machine, the scattered flocs are passed through a wind tunnel and deposited on a net conveyor by suction suction. A blended mat-like material was obtained. An aqueous dispersion of epoxy resin is sprayed onto the cloak-like material obtained, and fibers (carbon fiber and polypropylene resin fibers) are formed.
! ) The amount of epoxy resin deposited was controlled to be 3% by weight. This was compressed with a roller while being dehydrated and dried at a temperature of 110°C to produce a blended sheet. The obtained compressed sheet and thermoplastic resin sheet (polypropylene) were stacked and laminated under the conditions shown in Table 3, supported between double steel belts, and heated at 210°C.
After being pressurized and knitted with a roller in the F castle, it was cooled while being pressurized to form a carbon fiber-reinforced thermoplastic resin sheet. The evaluation results of the obtained stampable sheets are shown in Table 3, and according to the present invention, compared to those manufactured by the conventional method,
It is clear that it has excellent bending strength 6 WIil resistance and good surface quality. Effects of the Invention> As mentioned above, the carbon fiber reinforced thermoplastic resin sheet produced by the present invention is a blend of thermoplastic resin fibers serving as a matrix and carbon fibers, so that reinforcement is not applied during heating and pressure molding. The resin can be impregnated into the fiber layer uniformly and quickly, preventing uneven distribution of fibers and the occurrence of defects, and the resulting sheet also has uniform dimensions. Physical properties can be obtained. In addition, by blending thermoplastic resin fibers with carbon fiber mats, which have poor flexibility and processability, the handling properties of the mats are improved, and the carbon fibers are less likely to be damaged when pressurized. The shortening of fibers due to breakage is also suppressed, and the benefits of using long fibers (product strength and impact resistance) can be maximized.
Additionally, the laminated thermoplastic resin sheets can be made thinner and have uniform fluidity, resulting in better surface quality. Therefore, it can be used as a material for large parts for automobile outer panels, interior slopes, or for EM that takes advantage of the conductivity of carbon fiber.
It can be used as an I-shield material for housings of OA equipment, etc., and is expected to have more applications than conventional products.

Claims (1)

【特許請求の範囲】[Claims] 強化用繊維マットと熱可塑性樹脂シートを重ね合わせて
積層し、加熱しながら樹脂層を軟化溶融状態で加圧し、
次いで冷却・加圧しながら樹脂を固化させる繊維強化熱
可塑性樹脂シートの製造方法において、予めマトリック
スとなる熱可塑性樹脂の繊維と炭素繊維の混紡マット状
物を作り、これに第3成分であるバインダーを加えて圧
縮することにより混紡シート状物となし、ついで該シー
ト状物とマトリックスとなる熱可塑性樹脂シートを積層
して、当該熱可塑性樹脂の軟化溶融温度以上の温度領域
で加熱・加圧することを特徴とする炭素繊維強化熱可塑
性樹脂シートの製造方法。
The reinforcing fiber mat and thermoplastic resin sheet are laminated and heated, and the resin layer is pressed to soften and melt.
Next, in a method for manufacturing a fiber-reinforced thermoplastic resin sheet in which the resin is solidified while being cooled and pressurized, a blended mat of thermoplastic resin fibers and carbon fibers serving as a matrix is prepared in advance, and a binder as a third component is added to this. In addition, it is compressed to form a blended sheet-like material, and then the sheet-like material and a thermoplastic resin sheet serving as a matrix are laminated and heated and pressurized in a temperature range equal to or higher than the softening and melting temperature of the thermoplastic resin. A method for producing a characteristic carbon fiber reinforced thermoplastic resin sheet.
JP1304868A 1989-11-27 1989-11-27 Manufacture of carbon fiber reinforced thermoplastic resin sheet Pending JPH03166910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304868A JPH03166910A (en) 1989-11-27 1989-11-27 Manufacture of carbon fiber reinforced thermoplastic resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304868A JPH03166910A (en) 1989-11-27 1989-11-27 Manufacture of carbon fiber reinforced thermoplastic resin sheet

Publications (1)

Publication Number Publication Date
JPH03166910A true JPH03166910A (en) 1991-07-18

Family

ID=17938248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304868A Pending JPH03166910A (en) 1989-11-27 1989-11-27 Manufacture of carbon fiber reinforced thermoplastic resin sheet

Country Status (1)

Country Link
JP (1) JPH03166910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586210A (en) * 1991-09-30 1993-04-06 Nkk Corp Production of fiber-reinforced thermoplastic resin sheet
JP2007084649A (en) * 2005-09-21 2007-04-05 Teijin Ltd Carbon fiber composite sheet and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586210A (en) * 1991-09-30 1993-04-06 Nkk Corp Production of fiber-reinforced thermoplastic resin sheet
JP2007084649A (en) * 2005-09-21 2007-04-05 Teijin Ltd Carbon fiber composite sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
CA1104315A (en) Mixed fibrous mat and method for molding fiber- reinforced composite material
US7268092B2 (en) Sheet molding compound having improved characteristics
JPH0440372B2 (en)
MX2007007967A (en) Polymer/wucs mat for use in sheet molding compounds.
US6008147A (en) Fiber glass mat for laminating to foam, foam laminate precursor, foam laminate, and methods of making the mat and the foam laminate
WO1996040477A1 (en) Glass fiber mat for stampable sheet, process for the production of the mat, stampable sheet made from said mat, process for the production of the sheet, and equipment for the production thereof
CN111205596A (en) Epoxy chopped carbon fiber mat prepreg for rapid prototyping and production process thereof
JPH059301A (en) Stamping-molding material and stamped-molding
FI84843B (en) FOERFARANDE FOER FRAMSTAELLNING AV FIBERFOERSTAERKT RAOMATERIAL FOER PLAST.
JPH03166910A (en) Manufacture of carbon fiber reinforced thermoplastic resin sheet
CN1008752B (en) Can guide and support fibre gasket and the manufacture method thereof that to store
JPH0137503B2 (en)
GB2312446A (en) Manufacturing fibre-reinforced composite articles
CN1044511C (en) Making of soaked sealing cushion
JPH01299828A (en) Sheetlike material
JP2005144867A (en) Fiber-reinforced inorganic molded sheet and its production method
DE2449549A1 (en) PROCESS FOR PRODUCING A FIBER-REINFORCED COMPOSITE MATERIAL
GB2102037A (en) Jute reinforcement of plastics materials
JP6458589B2 (en) Sheet material, integrated molded product, and integrated molded product manufacturing method
JP2767329B2 (en) Prepreg for resin mold to form surface layer of resin mold
AU711527B2 (en) Thermoplastic moldable composite sheet containing hollow microspheres
JP2002127136A (en) Method for manufacturing glass filament-reinforced thermoplastic resin sheet and method for manufacturing porous molded body
JPH05138790A (en) Manufacture of friction material
JP2008516038A (en) Sheet-like molding material having bonded strands
JPH04331137A (en) Laminated product and method for forming the same