JPH0558230B2 - - Google Patents

Info

Publication number
JPH0558230B2
JPH0558230B2 JP59178885A JP17888584A JPH0558230B2 JP H0558230 B2 JPH0558230 B2 JP H0558230B2 JP 59178885 A JP59178885 A JP 59178885A JP 17888584 A JP17888584 A JP 17888584A JP H0558230 B2 JPH0558230 B2 JP H0558230B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
current collector
electrode current
oxyhalide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59178885A
Other languages
Japanese (ja)
Other versions
JPS6155868A (en
Inventor
Yasutoshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59178885A priority Critical patent/JPS6155868A/en
Publication of JPS6155868A publication Critical patent/JPS6155868A/en
Publication of JPH0558230B2 publication Critical patent/JPH0558230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、従来の注液式のオキシハライド電池
より高容量で、あらゆるコードレス機器用電源と
して使用可能な注液式のオキシハライド電池に関
するものである。 従来の技術 正極活物質にオキシハライドを用いる非水電池
では、オキシハライドとして塩化チオニル、塩化
スルフリル等を、負極活物質には活性金属である
リチウム等を用いる電池が開発されている。 このオキシハライド電池は、電池の溶媒が正極
活物質を兼ねるため、エネルギー密度が大きく、
開路電圧は3.7Vを示すなど、優れた特性を有す
るものの、電池長期貯蔵後の放電では、放電初期
に負極上に生成した保護膜のため、電圧遅延が生
ずるという問題がある。この電圧遅延を解決する
ため、電池極板群と、電解液等を添加したオキシ
ハライド溶液とを分離しておき、電池使用時に電
池内へオキシハライド溶液を注入し、電池の活性
化をはかる、いわゆる注液式の電池とする方方法
が採られている。注液式の電池とすることで貯蔵
時の電池の自己放電等の劣化も抑制され、電池寿
命の極めて長い、優れた電池となる。又、電池を
注液式とすることで、電池内に電解液のオキシハ
ライド溶液を持つ電池では、負極の自己放電を促
進して使えなかつた塩化アルミニウム等のルイス
酸が電解質として使用可能となり、高率放電が出
来るという利点も有する(N.Doddapaneni et
al、Proc.30th Power Sources Symposium 7
−10 June 1982、p.201、Published by The
Electrochem.Soc.Inc.)。 オキシハライド電池では正極活物質が液体であ
るため、多孔質の正極集電体中で放電反応を起こ
させる必要がある。そのため正極集電体の多孔
度、細孔分布等の物性は、電池特性に大きく影響
する(S.Szpak et al、J.Power Sources、10
(1983)343)。それにもかかわらず、正極集電体
中での放電反応に必要な大きさの細孔径である有
効細孔径に関して論じた文献及び特許はない。 発明が解決しようとする問題点 以上のように従来明らかにされていなかつた正
極集電体の有効細孔径を解明するとともに、この
結果をもとに従来電池よりも更に高容量の注液式
のオキシハライド電池を得ることを目的とするも
のである。 問題点を解決するための手段 本発明は、注液式オキシハライド電池を高率放
電した時の正極集電体の有効細孔径を明らかに
し、放電反応に有効に関与する細孔表面積が大き
なカーボンを正極集電体に用いることで、従来の
アセチレンブラツクを正極集電体に用いた電池よ
り、高容量の注液式のオキシハライド電池を提供
するものである。 作 用 凝集状態の違う種々のフアーネスブラツク及び
従来の正極集電体材料であるアセチレンブラツク
を用いて、種々の細孔分布を有する正極集電体を
作成し、電池試験を行なつた。 オキシハライド電池では、放電時、正極集電体
中でオキシハライドの還元反応が起き、反応生成
物のうち、正極活物質で、溶媒でもあるオキシハ
ライドに不溶の塩は、正極集電体内に析出する。
この放電生成物の集電体反応面への析出で放電終
了に至る。 注液式のオキシハライド電池の利点は、他の非
水電池では不可能なほど高率での放電が可能な点
である。 同電池を高率で放電すると、放電反応におい
て、反応種の拡散が支配的となり、正極集電体の
細孔のうち、充分な径を有する細孔のみが反応に
関与する様になると考えられる。 又、オキシハライド電池では、放電容量は、有
効反応表面積の反応生成物での被覆で決定される
ので、放電容量と有効反応表面積との間には相関
がある。そこで、凝集状態の違う種々のカーボン
を正極集電体材料とすることで、細孔分布の異な
る正極集電体を作り、電池試験を行なつて、放電
容量と反応表面積の関係を調べた。本発明は正極
集電体の有効細孔径の結果から、従来のアセチレ
ンブラツクによる正極集電体より大きな有効反応
表面積を有する正極集電体を用いて電池を作るこ
とで、電池特性の改善をはかるものである。 実施例 凝集状態の異なる四種のフアーネスブラツク及
び従来の正極集電体材料であるアセチレンブラツ
クを用いて正極集電体を作成し、電池試験を行な
つた。正極集電体は、ニツケルエキスパンド集電
網にテフロンを11%バインダーとして含むカーボ
ンペーストを塗布し、真空乾燥することにより作
成した。負極にはリチウムを用い、ニツケル集電
網にリチウム薄膜を圧着して極板とした。セパレ
ータは厚さ0.13mm、多孔度92%のガラス繊維より
なる不織布を使用し、電解質として4.5M塩化ア
ルミニウムと0.1M塩化リチウムを塩化チオニル
に添加した。 電池構造を第1図に示す。第1図は本発明にな
る電池の一実施例を示すものであり、図において
1は正極集電体、2は正極リード、3はセパレー
タ、4は負極、5はテフロンよりなる極板固定治
具である。正極板は10mm×20mm×0.3mmとし負極
板も同一面積とした。放電は、電池へ電解質を含
む塩化チオニルを注液後ただちに30mA/cm2で端
子電圧2.5Vまで定電流で行なつた。なお、放電
容量は、正極集電体により規制される様リチウム
及び塩化チオニルは過剰に使用した。 本実施例で使用したカーボン及び同カーボンに
より作成した正極集電体の物性を表1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a liquid injection type oxyhalide battery that has a higher capacity than conventional liquid injection type oxyhalide batteries and can be used as a power source for all cordless devices. BACKGROUND ART In non-aqueous batteries that use oxyhalides as positive electrode active materials, batteries have been developed that use thionyl chloride, sulfuryl chloride, etc. as oxyhalides and active metals such as lithium as negative electrode active materials. This oxyhalide battery has a high energy density because the battery solvent also serves as the positive electrode active material.
Although it has excellent characteristics such as an open circuit voltage of 3.7V, there is a problem in that during discharge after long-term battery storage, a voltage delay occurs due to the protective film formed on the negative electrode at the beginning of discharge. In order to solve this voltage delay, the battery plate group and the oxyhalide solution containing electrolyte etc. are separated, and when the battery is used, the oxyhalide solution is injected into the battery to activate the battery. A so-called injection type battery is used. By using a liquid injection type battery, deterioration such as self-discharge of the battery during storage is suppressed, resulting in an excellent battery with an extremely long battery life. In addition, by making the battery an injection type, Lewis acids such as aluminum chloride, which cannot be used in batteries with an oxyhalide electrolyte solution inside the battery because they promote self-discharge of the negative electrode, can now be used as an electrolyte. It also has the advantage of being able to perform high rate discharge (N. Doddapaneni et al.
al, Proc.30th Power Sources Symposium 7
−10 June 1982, p.201, Published by The
Electrochem.Soc.Inc.). In oxyhalide batteries, since the positive electrode active material is a liquid, it is necessary to cause a discharge reaction in a porous positive electrode current collector. Therefore, physical properties such as porosity and pore distribution of the positive electrode current collector greatly affect battery characteristics (S.Szpak et al, J.Power Sources, 10
(1983) 343). Nevertheless, there are no literature or patents that discuss the effective pore size, which is the pore size necessary for the discharge reaction in the positive electrode current collector. Problems to be Solved by the Invention As described above, we have clarified the effective pore diameter of the positive electrode current collector, which has not been clarified in the past, and based on this result, we have developed a liquid injection type battery with a higher capacity than conventional batteries. The purpose is to obtain an oxyhalide battery. Means for Solving the Problems The present invention clarifies the effective pore diameter of a positive electrode current collector when an injection type oxyhalide battery is discharged at a high rate, and aims to clarify the effective pore diameter of a positive electrode current collector when a liquid injection type oxyhalide battery is discharged at a high rate. By using acetylene black as a positive electrode current collector, an injection type oxyhalide battery with a higher capacity than a conventional battery using acetylene black as a positive electrode current collector is provided. Function Positive electrode current collectors with various pore distributions were prepared using various furnace blacks with different agglomeration states and acetylene black, which is a conventional positive electrode current collector material, and battery tests were conducted. In oxyhalide batteries, during discharge, a reduction reaction of oxyhalide occurs in the positive electrode current collector, and among the reaction products, salts that are insoluble in the oxyhalide, which is the positive electrode active material and solvent, are deposited in the positive electrode current collector. do.
The discharge ends when the discharge products are deposited on the current collector reaction surface. The advantage of injection-type oxyhalide batteries is that they can discharge at higher rates than other non-aqueous batteries. When the same battery is discharged at a high rate, diffusion of reactive species becomes dominant in the discharge reaction, and only pores with a sufficient diameter among the pores of the positive electrode current collector become involved in the reaction. . Further, in an oxyhalide battery, the discharge capacity is determined by the coverage of the effective reaction surface area with the reaction product, so there is a correlation between the discharge capacity and the effective reaction surface area. Therefore, by using various carbons with different agglomeration states as positive electrode current collector materials, positive electrode current collectors with different pore distributions were created, and battery tests were conducted to investigate the relationship between discharge capacity and reaction surface area. Based on the results of the effective pore diameter of the positive electrode current collector, the present invention aims to improve battery characteristics by manufacturing a battery using a positive electrode current collector that has a larger effective reaction surface area than the conventional positive electrode current collector made of acetylene black. It is something. Example A positive electrode current collector was prepared using four types of furnace blacks having different agglomeration states and acetylene black, which is a conventional positive electrode current collector material, and a battery test was conducted. The positive electrode current collector was created by applying a carbon paste containing 11% Teflon as a binder to a nickel expanded current collection network and drying it under vacuum. Lithium was used for the negative electrode, and a thin lithium film was pressed onto a nickel current collector network to form an electrode plate. A nonwoven fabric made of glass fiber with a thickness of 0.13 mm and a porosity of 92% was used as the separator, and 4.5 M aluminum chloride and 0.1 M lithium chloride were added to thionyl chloride as electrolytes. The battery structure is shown in Figure 1. FIG. 1 shows an embodiment of the battery according to the present invention. In the figure, 1 is a positive electrode current collector, 2 is a positive electrode lead, 3 is a separator, 4 is a negative electrode, and 5 is a plate fixing jig made of Teflon. It is a ingredient. The positive electrode plate was 10 mm x 20 mm x 0.3 mm, and the negative electrode plate had the same area. Immediately after injecting thionyl chloride containing an electrolyte into the battery, discharging was carried out at a constant current of 30 mA/cm 2 up to a terminal voltage of 2.5 V. Note that lithium and thionyl chloride were used in excess so that the discharge capacity was regulated by the positive electrode current collector. Table 1 shows the physical properties of the carbon used in this example and the positive electrode current collector made from the carbon.

【表】 種類の欄のア=アセチレンブラツク、フア=フ
アーネスブラツクを表わす。 吸油量およびよう素吸着量は日本工業規格
JISK6221による 吸油量とは、カーボンの凝集の程度を表わす値
で、一定量のカーボン中の空隙を満すのに要する
油の量である。よう素吸着量はカーボンの表面積
を示す。 4.5M塩化アルミニウム・0.1M塩化リチウムを
電解質としたリチウム/塩化チオニル電池の30m
A/cm2での放電試験の結果を表2に示す。
[Table] A = acetylene black and fur = furnace black in the type column. Oil absorption amount and iodine adsorption amount comply with Japanese Industrial Standards
The oil absorption amount according to JISK6221 is a value representing the degree of carbon aggregation, and is the amount of oil required to fill the voids in a certain amount of carbon. The amount of iodine adsorption indicates the surface area of carbon. 30m of lithium/thionyl chloride battery with 4.5M aluminum chloride and 0.1M lithium chloride as electrolyte
The results of the discharge test at A/cm 2 are shown in Table 2.

【表】 単位カーボン重量当りの放電容量と正極集電体
用カーボンのよう素吸着量(比表面積)に相関は
なく、正極集電体内のすべての細孔が放電に関与
しているわけではないことが分かる。そこで正極
集電体の水銀圧入法による細孔体積の結果より各
細孔の表面積を求め、有効細孔径より大きな径の
細孔の積算面積が単位カーボン重量当り放電容量
と一次の相関を示す様に有効孔径を決定した。有
効細孔径を0.1μmとした時のそれぞれの電池単位
カーボン重量当り放電容量と有効反応表面積の関
係を第2図に示すが、極めて良い相関を示す。 以上の結果より、正極集電体の細孔分布を考慮
して有効反応表面積をアセチレンブラツクによる
集電体の12.0m2/gより大きくした正極集電体を
用い電池を組むことで、従来のアセチレンブラツ
クを正極集電体に用いた電池より、高容量の注液
式オキシハライド電池が製造可能となる。 本実施例ではオキシハライドとして塩化チオニ
ルを用いたが、塩化スルフリルでも同様の効果が
期待できる。 発明の効果 高率放電を要求される注液式のオキシハライド
電池での正極集電体の有効細孔径は0.1μm以上で
あることが分かつた。 本発明はこの結果をふまえ従来のアセチレンブ
ラツクを用いた正極集電体の有効反応表面積:
12.0m2/gより広い有効反応表面積を有する正極
集電体を用いることで、従来電池より高容量の注
液式のオキシハライド電池を提供するものであ
る。本発明電池用正極集電体には、アセチレンブ
ラツクに代えて高凝集のフアーネスブラツクに代
表されるカーボンブラツクが使用可能である。
[Table] There is no correlation between the discharge capacity per unit carbon weight and the amount of iodine adsorption (specific surface area) of carbon for the positive electrode current collector, and not all pores in the positive electrode current collector are involved in discharge. I understand that. Therefore, the surface area of each pore was calculated from the pore volume result of the mercury intrusion method of the positive electrode current collector, and it was found that the cumulative area of pores with a diameter larger than the effective pore diameter shows a first-order correlation with the discharge capacity per unit carbon weight. The effective pore diameter was determined. Figure 2 shows the relationship between the discharge capacity per unit carbon weight of each battery and the effective reaction surface area when the effective pore diameter is 0.1 μm, and it shows an extremely good correlation. From the above results, we found that by assembling a battery using a positive electrode current collector whose effective reaction surface area is larger than 12.0 m 2 /g of the acetylene black current collector, considering the pore distribution of the positive electrode current collector, it is possible to A high-capacity injection type oxyhalide battery can be manufactured from a battery using acetylene black as a positive electrode current collector. Although thionyl chloride was used as the oxyhalide in this example, similar effects can be expected with sulfuryl chloride. Effects of the Invention It was found that the effective pore diameter of the positive electrode current collector in an injection type oxyhalide battery that requires high rate discharge is 0.1 μm or more. Based on this result, the present invention has developed the effective reaction surface area of a positive electrode current collector using conventional acetylene black:
By using a positive electrode current collector having an effective reaction surface area larger than 12.0 m 2 /g, an injection type oxyhalide battery with a higher capacity than conventional batteries is provided. In the positive electrode current collector for the battery of the present invention, carbon black, typified by highly agglomerated furnace black, can be used instead of acetylene black.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる電池の一実施例を示す断
面図、第2図は従来電池A及び本発明になる電池
B〜Eの単位カーボン重量当り放電容量と正極集
電体の有効反応表面積の関係図である。 1……正極集電体、2……正極リード、3……
セパレータ、4……負極、5……極板固定治具。
FIG. 1 is a cross-sectional view showing an embodiment of the battery according to the present invention, and FIG. 2 is a diagram showing the discharge capacity per unit carbon weight and the effective reaction surface area of the positive electrode current collector of conventional battery A and batteries B to E according to the present invention. It is a relationship diagram. 1... Positive electrode current collector, 2... Positive electrode lead, 3...
Separator, 4... negative electrode, 5... electrode plate fixing jig.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質にオキシハライドを、正極集電体
にカーボンブラツクあるいはカーボンブラツクと
導電体等の複合体を用い、負極活物質に活性金属
を使用する注液式の非水電池において、前記正極
集電体をなすカーボンブラツクの0.1μm以上の直
径を有する孔の積算表面積が、単位重量当り12.0
m2/gをこえることを特徴とする非水電池。
1 In a non-aqueous injection battery that uses oxyhalide as the positive electrode active material, carbon black or a composite of carbon black and a conductor, etc. as the positive electrode current collector, and an active metal as the negative electrode active material, the positive electrode collector is The cumulative surface area of pores with a diameter of 0.1 μm or more in the carbon black that forms the electric body is 12.0 per unit weight.
A nonaqueous battery characterized by exceeding m 2 /g.
JP59178885A 1984-08-27 1984-08-27 Nonaqueous cell Granted JPS6155868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178885A JPS6155868A (en) 1984-08-27 1984-08-27 Nonaqueous cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178885A JPS6155868A (en) 1984-08-27 1984-08-27 Nonaqueous cell

Publications (2)

Publication Number Publication Date
JPS6155868A JPS6155868A (en) 1986-03-20
JPH0558230B2 true JPH0558230B2 (en) 1993-08-26

Family

ID=16056397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178885A Granted JPS6155868A (en) 1984-08-27 1984-08-27 Nonaqueous cell

Country Status (1)

Country Link
JP (1) JPS6155868A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033703B2 (en) * 2002-12-20 2006-04-25 Firefly Energy, Inc. Composite material and current collector for battery

Also Published As

Publication number Publication date
JPS6155868A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
US3508967A (en) Negative lithium electrode and electrochemical battery containing the same
US4029854A (en) Halogen electrode
JPH07201364A (en) Electrochemical secondary battery
JP2698340B2 (en) Electrochemical battery
JPS5914260A (en) Glass fiber separator for liquid anode battery
JP2000106213A (en) Lithium secondary battery and manufacture of positive electrode plate for use therein
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JPH0558230B2 (en)
JPH0558229B2 (en)
JP4436464B2 (en) Lithium ion battery
JPH10270090A (en) Manufacture of secondary lithium battery
JPH11297357A (en) Manufacture for polymer lithium ion secondary battery
JP2000003729A (en) Manufacture of secondary power supply
JP4379966B2 (en) Lithium battery
JPH0621180Y2 (en) Polymer solid electrolyte battery
JPH09180705A (en) Lithium battery
JPH07122301A (en) Nonaqueous electrolyte secondary battery
JPS6151765A (en) Nonaqueous battery
CN114374005A (en) Negative electrode potential monitoring method based on reference electrode for lithium battery
JP2021082519A (en) Secondary battery and manufacturing method thereof
JPH05151994A (en) Nonaqueous solvent secondary battery
JPH056309B2 (en)
JPH04196055A (en) Negative electrode for lithium secondary battery
JPH05299102A (en) High molecular solid electrolyte battery
JPS58115776A (en) Positive electrode for secondary battery