JPH055794B2 - - Google Patents

Info

Publication number
JPH055794B2
JPH055794B2 JP59157039A JP15703984A JPH055794B2 JP H055794 B2 JPH055794 B2 JP H055794B2 JP 59157039 A JP59157039 A JP 59157039A JP 15703984 A JP15703984 A JP 15703984A JP H055794 B2 JPH055794 B2 JP H055794B2
Authority
JP
Japan
Prior art keywords
water
ceramic material
weight
parts
absorption rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59157039A
Other languages
Japanese (ja)
Other versions
JPS6136157A (en
Inventor
Fumikazu Tanemura
Tooru Pponda
Shigetoshi Oota
Yoshiharu Kajita
Tatsushi Kachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINO YOGYO KK
Original Assignee
MINO YOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINO YOGYO KK filed Critical MINO YOGYO KK
Priority to JP59157039A priority Critical patent/JPS6136157A/en
Publication of JPS6136157A publication Critical patent/JPS6136157A/en
Publication of JPH055794B2 publication Critical patent/JPH055794B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク材料に関し、特に透水性及
び保水性を備えた舗装材料として有用な特性を備
えたセラミツク材料に関する。 従来、道路、駐車場、建物の敷地などの舗装材
料としてはコンクリート、アスフアルト、各種タ
イル、れんが、インターロツキングブロツクなど
が広く用いられている。そして、近年、雨水流出
抑制、地下水のかん養、植生の保全などを目的と
する透性水舗装が一部用いられている。 透水性舗装としては、透水性アスフアルト舗
装、透水性コンクリート舗装などが用いられてい
る。しかし、これらの透水性舗装材料は砂、砂
利、砕石などを主成分とし、これらの主成分をア
スフアルトやセメントなどを結合材に用いて固め
てあるため、透水性には優れるが、材料そのもの
に本来吸水性はなく、雨水はこれらの透水性舗装
材料中には止まらず、下層へ透水してしまう。 そのため、これらの透水性舗装は雨が止み、日
射をうけると速やかに乾燥した状態となり、従来
のアスフアルト舗装やコンクリート舗装、タイル
舗装などと同様に、晴天時のこれらの舗装表面温
度は40〜50℃、場合によつては50℃以上となり問
題であつた。特に夏期には日中熱くなつた路面が
夜間になつても保有した熱気を発散し、住宅地な
どでは夜間の暑さを増長するなどの悪影響を生活
環境に及ぼしている。 本発明は上述のような観点から、従来の舗装材
料を用いた場合に関して生じていた上記欠点をき
わめて簡易、かつ有効に改良することを目的とす
るものである。 本発明者らは、上述のような目的を達成すべく
種々研究を重ねた結果、吸水率が低く透水性を有
する磁器質セラミツク材料と比較的吸水率が高い
セラミツク材料とを主成分とし、これに結合材お
よび焼結材を添加した後、主成分の溶融温度以下
の焼成温度で焼成することによつて、適度な気孔
率と所望の透性水を有し、かつ保水性を有するセ
ラミツク材料が得られることを知見して本発明を
完成した。 したがつて、本発明は、25.4〜0.25mmの粒度範
囲内に整粒した4%未満の吸水率を有する磁器質
セラミツク材料の20〜80重量部からなる第1成分
と、25.4〜0.25mmの粒度範囲に整粒した5%以上
の吸水率を有するセラミツク材料の80〜20重量部
からなる第2成分を主成分とし、これに粘結材お
よび焼結材を添加した後、主成分の溶融温度以下
の焼成温度で材料粒子相互を焼結させて得られ
る、平均気孔0.1mm以上の連続気孔を有し、透水
係数10-2cm/sec以上の透水性を有するとともに、
保水率が2.5%以上であることを特徴とする透水
性および保水性を有するセラミツク材料である。 本発明の透水性及び保水性を有するセラミツク
材料には第1成分として陶土、カオリン、長石な
どを混合して得られる磁器質材料の内、吸水率が
4%未満である磁器質材料を使用するが、この代
りとして例えば陶磁器屑、硝子屑などの各種磁器
質材料屑、あるいはタイル屑、せつ器屑、道路用
磁器質カラー骨材などの磁器質材料も使用するこ
とができる。そしてこれらの一種、もしくは二種
以上を粉砕し25.4〜0.25mmの粒度範囲内の比較的
狭い範囲内に整粒したもの20〜80重量部を使用す
る。また第2成分としては吸水率が5%以上、好
ましくは5〜20%の範囲内の吸水率を有するセラ
ミツク材料を使用するが、この代りとして、例え
ば愛知県三河地区などの瓦産地から産出する瓦屑
や土管屑、あるいはれんがなどのセラミツク材料
も使用することができる。そして、これらの、一
種、もしくは二種以上を粉砕し、25.4〜0.25mmの
粒度範囲内の比較的狭い範囲内に整粒したもの80
〜20重量部を使用する。 この所定の粒度範囲に整粒した主材料中へ、成
形後の型保持性をもたせるために公知の湖材、有
機バインダー、粘土、水ガラスなどの一種、もし
くは二種以上を一次バインダーとして、又フリツ
ト、釉薬、ガラス粉などの一種、もしくは二種以
上を焼結剤即ち二次バインダーとして加える。次
にこれらの混合体を用途に応じて板状、もしくは
その他の形状に成形した後、主材料の溶融温度以
下の焼成温度で材料粒子相互を強固に結合せしめ
るように焼成させる。こうして材料粒子相互の粒
子間空隙が連続した組織を有し、平均気孔径
0.1m/m以上、JIS A1218が規定している透水係
数が10-2cm/sec以上の透水性を有し、かつ保水
率が2.5%以上の保水性を有するセラミツク材料
が提供される。尚、本文中の保水率とは乾燥した
材料を清水中に24時間浸漬した後清水中から取り
出し、乾いたタオルの上に1時間放置後の材料の
保水量を重量増加率(%)で表わした値である。 本発明セラミツク材料の組織の模式図を第1図
に示す。図中、1の透水性空隙は透水性をもたら
す連続した粒子間空隙である。同じく、2の保水
性粒子は吸水率5%以上を有するセラミツク材料
粒子であり、透水性空隙を通つて来た水はこの保
水性粒子中に吸水される。これにより製品に保水
性が附与される。そして、晴天時には保水性粒子
中の水は徐々に蒸発し透水性空隙を通り、気化熱
を奪つて大気中に拡散し、晴天時に製品表面温度
の上昇を抑制する。尚、余剰の水は透水性空隙を
通つて下層へ順次透水する。また3の非保水性粒
子は吸水率4%未満の磁器質材料粒子であり、4
のボンド部は二次バインダーによる粒子相互の焼
結部である。 尚、保水性粒子と非保水性粒子の分布状態は第
2図の断面図に示すような非保水性粒子の単一相
5と保水性粒子と非保水性粒子の混合層6からな
る層状構成による分布状態であつても、本発明の
目的から逸脱するものではないことはいうまでも
ない。 次に、本発明における主成分の配合割合ならび
に粒度を前述の如く限定した理由について述べ
る。 (1) 粒度を比較的狭い範囲内に整粒することによ
り、材料粒子相互の粒子間空隙を制御し、これ
によつて平均気孔径0.1mm以上の連続気孔を有
し、透水係数10-2cm/sec以上の透水性が得ら
れる。 (2) 主材料粒度を25.4mm以上にすると製品の機械
的強度が減少し、粒度が0.25mmより小さい微粒
を用いると気孔径が小さくなり、透水係数が
10-2cm/sec以下となつて実用的な透水性が得
られない。 (3) 前記第2成分は5%以上、好ましくは5〜20
%の範囲内の吸水率を有するセラミツク材料の
80〜20重量部を用いることにより、保水率2.5
%以上の保水性が得られる。尚、吸水率5%未
満のセラミツク材料は製品の保水率を低減さ
せ、一方、吸水率が20%を超えると材料の強度
が弱く製品の強度、耐摩耗性を低減させる。ま
た吸水性を有するセラミツク材料の配合比は20
重量部未満であると十分な保水性が得られず、
また80重量部を超えると、製品の機械的強度及
び耐摩耗性を減少させる。 (4) 吸水率4%未満の磁器質材料20〜80重量部を
用いることにより、製品の機械的強度及び耐摩
耗性を向上させる。 また、焼結剤としてフリツト、釉薬、ガラス粉
砕物などを用いるのはこれらが比較的低い温度で
液相となり、その上この焼結剤が材料粒子相互の
接触点に集中しやすく、材料粒子相互の粒子間空
隙を閉塞させないためである。 更に、透水性を向上させるために材料の混合時
に一種、もしくは二種以上の有機質物質を適量添
加したりすることは、本発明の目的から逸脱する
ものではないことはいうまでもない。 次に実施例をあげて、本発明の内容をより詳細
に説明する。 実施例 1 合成した磁器質材料を粉砕し、1.68〜1.0mmに
整粒したもの50重量部にデンプンのり5重量部を
加えて混練し、さらにフリツトを粉末で10重量部
加え、混練したものをAとする。他方5.66〜3.66
mmに整粒した吸水率12%の多孔質セラミツク材料
にデンプンのり5重量部を加えて混練したものを
Aと混合する。以上のように調製した原料をプレ
ス成形機を用いて平板に成形し、トンネルキルン
にて最高温度1100℃、保持時間60分の操車条件下
で焼成した。焼成後の品質を表2に示す。 実施例 2 2.0〜1.0mmの粒度範囲に整粒した道路用磁器質
カラー骨材40重量部にデンプンのり4重量部を加
えて混練し、さらにフリツトを粉末で10重量部加
え混練したものをBとする。他方、3.66〜2.0mm
に整粒した吸水率8%の土器質材料60重量部にデ
ンプンのり6重量部を加えて混練したものをBと
混合する。以上のように調製した原料をプレス成
形機を用いて平板に成形し、トンネルキルンにて
最高温度1080℃、保持時間60分の操車条件下で焼
成した。焼成後の品質を表2に示す。
The present invention relates to a ceramic material, and more particularly to a ceramic material having properties useful as a paving material with water permeability and water retention. Conventionally, concrete, asphalt, various tiles, bricks, interlocking blocks, etc. have been widely used as paving materials for roads, parking lots, building sites, etc. In recent years, permeable pavement has been used in some areas for purposes such as controlling rainwater runoff, recharging groundwater, and preserving vegetation. As permeable pavement, permeable asphalt pavement, permeable concrete pavement, etc. are used. However, these permeable pavement materials are mainly composed of sand, gravel, crushed stone, etc., and these main components are hardened using asphalt, cement, etc. as a binder, so although they have excellent water permeability, the materials themselves have They are not inherently water-absorbing, so rainwater does not stay in these permeable pavement materials, but permeates into the lower layer. Therefore, these permeable pavements dry quickly when the rain stops and are exposed to sunlight, and like conventional asphalt pavement, concrete pavement, tile pavement, etc., the surface temperature of these pavements on sunny days is 40 to 50℃. ℃, and in some cases over 50℃, which was a problem. Particularly in the summer, roads that get hot during the day radiate the hot air they retain even at night, which has negative effects on the living environment, such as increasing the heat at night in residential areas. From the above-mentioned viewpoint, the object of the present invention is to extremely simply and effectively improve the above-mentioned drawbacks that occur when conventional paving materials are used. As a result of various studies to achieve the above-mentioned object, the inventors of the present invention have found that the main components are a porcelain ceramic material with low water absorption and water permeability, and a ceramic material with a relatively high water absorption. By adding a binder and a sintering material to the material and firing at a firing temperature below the melting temperature of the main component, a ceramic material with appropriate porosity, desired water permeability, and water retention is produced. The present invention was completed based on the finding that the following could be obtained. Therefore, the present invention provides a first component consisting of 20 to 80 parts by weight of a porcelain ceramic material having a water absorption rate of less than 4%, sized within the particle size range of 25.4 to 0.25 mm; The main component is a second component consisting of 80 to 20 parts by weight of a ceramic material having a water absorption rate of 5% or more that has been sized to a particle size range, and after adding a caking material and a sintering material to this, the main component is melted. It has continuous pores with an average pore size of 0.1 mm or more and has a water permeability coefficient of 10 -2 cm/sec or more, which is obtained by sintering material particles at a firing temperature below that temperature, and
A ceramic material with water permeability and water retention, characterized by a water retention rate of 2.5% or more. The ceramic material having water permeability and water retention properties of the present invention uses a porcelain material having a water absorption rate of less than 4% among porcelain materials obtained by mixing china clay, kaolin, feldspar, etc. as the first component. However, instead of this, various porcelain material scraps such as ceramic scraps and glass scraps, or porcelain materials such as tile scraps, mortar scraps, and porcelain color aggregate for roads can also be used. Then, 20 to 80 parts by weight of one or more of these pulverized and sized particles within a relatively narrow particle size range of 25.4 to 0.25 mm is used. Furthermore, as the second component, a ceramic material having a water absorption rate of 5% or more, preferably in the range of 5 to 20% is used. Ceramic materials such as tile scraps, clay pipe scraps, or bricks can also be used. Then, one or more of these are crushed and sized into a relatively narrow particle size range of 25.4 to 0.25 mm80.
~20 parts by weight are used. Into this main material sized to a predetermined particle size range, one or more of known lake materials, organic binders, clay, water glass, etc. are added as a primary binder to provide mold retention after molding. One or more types of frit, glaze, glass powder, etc. are added as a sintering agent or secondary binder. Next, the mixture is formed into a plate shape or other shape depending on the purpose, and then fired at a firing temperature below the melting temperature of the main material so as to firmly bond the material particles to each other. In this way, the interparticle voids between the material particles have a continuous structure, and the average pore size
A ceramic material is provided which has a water permeability of 0.1 m/m or more, a water permeability coefficient of 10 -2 cm/sec or more as defined by JIS A1218, and a water retention rate of 2.5% or more. In addition, the water retention rate in the text is the amount of water retained by the material after immersing the dry material in clean water for 24 hours, taking it out from the clean water, and leaving it on a dry towel for 1 hour, expressed as a weight increase rate (%). This is the value. A schematic diagram of the structure of the ceramic material of the present invention is shown in FIG. In the figure, water permeable voids 1 are continuous interparticle voids that provide water permeability. Similarly, the water-retaining particles in No. 2 are ceramic material particles having a water absorption rate of 5% or more, and water that has passed through the water-permeable pores is absorbed into these water-retaining particles. This imparts water retention to the product. Then, on sunny days, the water in the water-retaining particles gradually evaporates, passes through the water-permeable pores, absorbs the heat of vaporization, and diffuses into the atmosphere, suppressing the rise in product surface temperature on sunny days. Incidentally, excess water passes through the permeable pores to the lower layer. In addition, the non-water retaining particles of 3 are porcelain material particles with a water absorption rate of less than 4%;
The bond portion is a sintered portion between particles due to a secondary binder. The distribution state of the water-retaining particles and non-water-retaining particles is a layered structure consisting of a single phase 5 of non-water-retaining particles and a mixed layer 6 of water-retaining particles and non-water-retaining particles, as shown in the cross-sectional view of FIG. It goes without saying that even a distribution state according to the above does not deviate from the purpose of the present invention. Next, the reason why the blending ratio and particle size of the main components in the present invention are limited as described above will be described. (1) By regulating the particle size within a relatively narrow range, the interparticle voids between material particles can be controlled, resulting in continuous pores with an average pore diameter of 0.1 mm or more, and a hydraulic conductivity of 10 -2 Water permeability of cm/sec or higher can be obtained. (2) If the particle size of the main material is 25.4 mm or more, the mechanical strength of the product will decrease, and if fine particles with a particle size of less than 0.25 mm are used, the pore size will become smaller and the permeability coefficient will decrease.
If it is less than 10 -2 cm/sec, practical water permeability cannot be obtained. (3) The second component is 5% or more, preferably 5 to 20%.
of ceramic materials with water absorption within the range of %
By using 80 to 20 parts by weight, water retention rate is 2.5
% or more of water retention can be obtained. Ceramic materials with a water absorption rate of less than 5% will reduce the water retention rate of the product, while if the water absorption rate exceeds 20%, the strength of the material will be weak and the strength and wear resistance of the product will be reduced. In addition, the blending ratio of water-absorbing ceramic material is 20
If it is less than part by weight, sufficient water retention will not be obtained;
Moreover, if it exceeds 80 parts by weight, the mechanical strength and abrasion resistance of the product will decrease. (4) By using 20 to 80 parts by weight of a porcelain material with a water absorption rate of less than 4%, the mechanical strength and wear resistance of the product are improved. In addition, when frits, glazes, crushed glass, etc. are used as sintering agents, they become liquid at relatively low temperatures, and the sintering agents tend to concentrate at the points of contact between the material particles. This is to prevent the interparticle voids from being blocked. Furthermore, it goes without saying that it does not deviate from the purpose of the present invention to add an appropriate amount of one or more organic substances when mixing materials in order to improve water permeability. Next, the content of the present invention will be explained in more detail with reference to Examples. Example 1 5 parts by weight of the synthesized porcelain material was crushed and sized to 1.68 to 1.0 mm, 5 parts by weight of starch paste was added and kneaded, and 10 parts by weight of frit powder was added and kneaded. Let it be A. the other 5.66 to 3.66
5 parts by weight of starch paste was added to a porous ceramic material having a water absorption rate of 12%, which was sized to a size of 5 mm, and then kneaded and mixed with A. The raw material prepared as described above was formed into a flat plate using a press molding machine, and fired in a tunnel kiln at a maximum temperature of 1100°C and a holding time of 60 minutes. Table 2 shows the quality after firing. Example 2 40 parts by weight of porcelain color aggregate for roads sized to a particle size range of 2.0 to 1.0 mm was mixed with 4 parts by weight of starch paste, and 10 parts by weight of powdered frit was added and kneaded. shall be. On the other hand, 3.66~2.0mm
60 parts by weight of a pottery material with a water absorption rate of 8% sized to 60 parts by weight is mixed with 6 parts by weight of starch paste and mixed with B. The raw material prepared as described above was formed into a flat plate using a press molding machine, and fired in a tunnel kiln at a maximum temperature of 1080°C and a holding time of 60 minutes. Table 2 shows the quality after firing.

【表】【table】

【表】 以上のようにして製造した本発明透水性及び保
水性を有するセラミツク材料は平均気孔径0.1mm
以上の連続気孔を有するため優れた透水性を示
し、かつ保水性に優れたものとなる。本発明によ
るセラミツク材料は透水性及び保水性を付与した
ことにより、舗装材料として用いた場合、雨の降
り始め及び雨量が少ない場合は雨水を材料が吸
収、保水し、雨量が多くなつた場合は順次下層へ
透水させる。こうして雨天時に吸収した雨水は晴
天時の日中には徐々に蒸発し、その蒸発熱により
舗装表面温度の上昇を抑制し、住宅地の歩道や公
園では生活環境の改善効果がある。また、プール
サイドなどに用いた場合は素足での歩行性改善効
果が得られる。
[Table] The ceramic material of the present invention having water permeability and water retention properties manufactured as described above has an average pore diameter of 0.1 mm.
Since it has the above-mentioned continuous pores, it exhibits excellent water permeability and excellent water retention. The ceramic material of the present invention has water permeability and water retention properties, so when used as a paving material, the material absorbs and retains rainwater at the beginning of rain and when the amount of rain is low, and when the amount of rain increases. Water is allowed to permeate to the lower layers. In this way, the rainwater absorbed during rainy days gradually evaporates during sunny days, and the heat of evaporation suppresses the rise in pavement surface temperature, improving the living environment of sidewalks in residential areas and parks. Furthermore, when used near the pool, it can improve walking ability in bare feet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の組織の模式図、第2図は本発
明の組織の一例を示す断面図である。 1……透水性空隙、2……保水性粒子、3……
非保水性粒子、4……ボンド部、5……非保水性
粒子の単一層、6……保水性粒子と非保水性粒子
の混合層。
FIG. 1 is a schematic diagram of the structure of the present invention, and FIG. 2 is a sectional view showing an example of the structure of the present invention. 1... Water-permeable voids, 2... Water-retentive particles, 3...
Non-water retaining particles, 4... Bond part, 5... Single layer of non-water retaining particles, 6... Mixed layer of water retaining particles and non-water retaining particles.

Claims (1)

【特許請求の範囲】 1 25.4〜0.25mmの粒度範囲に整粒した4%未満
の吸水率を有する磁器質セラミツク材料の20〜80
重量部からなる第1成分と、25.4〜0.25mmの粒度
範囲に整粒した5%以上の吸水率を有するセラミ
ツク材料の80〜20重量部からなる第2成分とを主
成分とし、これに粘結材および焼結材を添加した
後、主成分の溶融温度以下の焼成温度で材料粒子
相互を焼結させて得られる、平均気孔径0.1mm以
上の連続気孔を有し、透水係数10-2cm/sec以上
の透水性を有するとともに、保水率が2.5%以上
であることを特徴とする、透水性および保水性を
有するセラミツク材料。 2 該第2成分のセラミツク材料の吸水率が5〜
20%である、特許請求の範囲第1項に記載の透水
性および保水性を有するセラミツク材料。
[Claims] 1. 20 to 80 porcelain ceramic material having a water absorption rate of less than 4%, sized to a particle size range of 25.4 to 0.25 mm.
The main components are a first component consisting of parts by weight and a second component consisting of 80 to 20 parts by weight of a ceramic material having a water absorption rate of 5% or more and sized to a particle size range of 25.4 to 0.25 mm. After adding the binder and sintering material, the material particles are sintered together at a firing temperature below the melting temperature of the main component.It has continuous pores with an average pore diameter of 0.1 mm or more, and has a hydraulic conductivity of 10 -2. A ceramic material having water permeability and water retention, characterized by having a water permeability of cm/sec or more and a water retention rate of 2.5% or more. 2 The water absorption rate of the second component ceramic material is 5 to 5.
Ceramic material having water permeability and water retention of 20% as claimed in claim 1.
JP59157039A 1984-07-27 1984-07-27 Water-permeable and water-holding ceramic material Granted JPS6136157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59157039A JPS6136157A (en) 1984-07-27 1984-07-27 Water-permeable and water-holding ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59157039A JPS6136157A (en) 1984-07-27 1984-07-27 Water-permeable and water-holding ceramic material

Publications (2)

Publication Number Publication Date
JPS6136157A JPS6136157A (en) 1986-02-20
JPH055794B2 true JPH055794B2 (en) 1993-01-25

Family

ID=15640852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59157039A Granted JPS6136157A (en) 1984-07-27 1984-07-27 Water-permeable and water-holding ceramic material

Country Status (1)

Country Link
JP (1) JPS6136157A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193477A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics
JP2013227768A (en) * 2012-04-25 2013-11-07 Komatsu Seiren Co Ltd Interlocking block

Also Published As

Publication number Publication date
JPS6136157A (en) 1986-02-20

Similar Documents

Publication Publication Date Title
US4874153A (en) Process for producing ceramic products using the sludge obtained by sewage treatment
EP2617696A1 (en) Porous ceramic sintered body
CN105330318A (en) Multi-pore high-strength sintering permeable floor brick
CN105330326A (en) Anti-cracking toughened and sintered high-strength water permeable brick
CN105330250A (en) High-strength energy-saving water-permeable ground tile with dredged mud added
KR101066194B1 (en) A water-retentive bottom ash block and its process of manufacture
CN108484120A (en) A kind of ceramic water-permeable brick and its manufacture craft of sponge urban water-through pavement system
JP2007145669A (en) Water-retainable block and its production method
JP4138398B2 (en) Concrete pavement and concrete block with water retention function
CN107324837A (en) A kind of permeable drainage paving slab brick of water conservation and preparation method thereof
JP2006241803A (en) Water-absorbing pavement, and aggregate for use therein
JP3446409B2 (en) Method for producing water-permeable ceramic block
JPH055794B2 (en)
JPH0148226B2 (en)
JP2002187784A (en) Porous ceramics, method of manufacturing the same, paving material, roof laying material, external wall material and plant growth container material comprising the same
JP4255802B2 (en) Pavement
JP2004217495A (en) Porous ceramics and its manufacturing method, porous bonded body effectively utilizing porous body and its manufacturing method, and method of its utilization
JP4792555B2 (en) Porous ceramic member and manufacturing method thereof
JP2896300B2 (en) Porcelain pavement material and its manufacturing method
CN105367124A (en) High-quality water-permeable floor tile with high comprehensive performance
JP2001146703A (en) Permeable block and manufacturing method
JP2002180410A (en) Paving material and method of manufacturing its mold
JP3216034B2 (en) Porous sintered body and method for producing the same
JP7432212B1 (en) Terrazzo structure and method for manufacturing terrazzo structure
US20240060247A1 (en) Ground structure and construction method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees