JPH055779B2 - - Google Patents

Info

Publication number
JPH055779B2
JPH055779B2 JP60018005A JP1800585A JPH055779B2 JP H055779 B2 JPH055779 B2 JP H055779B2 JP 60018005 A JP60018005 A JP 60018005A JP 1800585 A JP1800585 A JP 1800585A JP H055779 B2 JPH055779 B2 JP H055779B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
sintering
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60018005A
Other languages
Japanese (ja)
Other versions
JPS61178471A (en
Inventor
Koichi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60018005A priority Critical patent/JPS61178471A/en
Publication of JPS61178471A publication Critical patent/JPS61178471A/en
Publication of JPH055779B2 publication Critical patent/JPH055779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、例えばガソリンエンジン、ガスタ
ービンエンジン等の部品材料として適用される窒
化珪素焼結体の製造方法に関するものである。 従来の技術 従来から、窒化珪素焼結体の製造にあたつて
は、原料粉末を高温で加圧しながら焼結を進行さ
せるいわゆる加圧焼結法が行なわれている。その
加圧焼結法によれば、理論密度に近い緻密な焼結
体が得られ、また無加圧焼結法に比べ低温での焼
結が可能であるという利点がある。 一方、窒化珪素焼結体の製造にあたつては、で
きるだけ低温で焼結させることによつて、直接的
には燃料費を節減し、関接的には炉材等の減少を
図ることができるという利益があることから、
Y2O3やAl2O3などの焼結助剤が添加される。それ
等の焼結助剤を添加することによつて、焼結過程
において低温で液相が生成し、窒化珪素が粒子単
位で移動する粘性流動機構による焼結が行なわ
れ、焼結速度が速くなる。そのため、従来、窒化
珪素の加圧焼結にあたつても、Y2O3やAl2O3等の
酸化物系助剤が添加れていた。 発明が解決しようとする問題点 しかし、以上の従来の窒化珪素焼結体の製造方
法では次のような問題があつた。 すなわち、上述したようにY2O3やAl2O3等の焼
結助剤を添加すると焼結過程において低温で液相
が生成され、その効果によつて焼結効果が向上さ
れるという利点がある。しかし、その反面得られ
た焼結体は1000℃以上で強度低下をひきおこすと
いう問題があつた。 この発明は以上の従来の事情に鑑みてなされた
ものであつて、高温強度の高い窒化珪素焼結体を
得ることができる窒化珪素焼結体の製造方法を提
供することを目的とするものである。 問題点を解決するための手段 すなわちこの発明の窒化珪素焼結体の製造方法
は、原料粉末を高温で加圧しながら焼結を進行さ
せる窒化珪素焼結体の製造方法において、原料粉
末にサイアロン粉末を内比で4〜20wt%添加す
ることを特徴とするものである。 以下にこの発明をさらに具体的に説明する。 先ず原料粉末の加圧焼結は、HP法、HIP法等
の周知の手段によつて行なうことができる。 サイアロン粉末は、一般に Si(6−z)AlzOzN(8−z)(O≦z≦4.2)で
示される組成を有し、それに適合する組成のもの
はいずれでも良い。また、サイアロン粉末の添加
量を4〜20wt%とするのは次の理由による。す
なわち、サイアロン粉末の添加量が4%未満で
は、焼結性が悪く密度が上らなくなり、逆にサイ
アロン粉末の添加量が20wt%を越えると窒化珪
素焼結体の強度がサイアロンの強度におきかえら
れ、強度が低くなるからである。 実施例 以下にこの発明の実施例を示す。 実施例 1 けい酸エチル((C2H5O)4Si)とアルミニウム
イソプロポキシド(Al〔OCH(CH323)とを、
SiとAlとの原子比が1:1となるように配合し、
イソブタノール((CH32CHCH2OH)中に溶解
混合した。その混合液を85℃に加熱し、加水分解
した後乾燥し、空気中で600℃まで加熱して1時
間予備焼成した。得られた粉末にさらに22.1wt%
(内比)のカーボンブラツクを添加混合した粉末
をN2気流中で1430℃に加熱して4時間焼成し、
0.2μmのサイアロン粉末(Si3Al3O3N5)を得た
(z=3)。そのサイアロン粉末を窒化珪素粉末に
混合して、窒化珪素粉末90wt%にサイアロン粉
末10wt%の原料粉末を得た。その原料粉末をエ
タノールを分散媒としてボールミルにて20時間混
合乾燥して得た粉末を、400Kg/cm2の圧力で金型
成形し、さらに1000Kg/cm2の静水圧を加えた。そ
れにより得られた成形体に窒素気流中で400Kg/
cm2の圧力を加えながら1750℃に2時間保持するホ
ツトプレスを施した。その結果得られた窒化珪素
焼結体についてJIS規格に基づき室温および1200
℃(N2雰囲気)で3点曲げ試験を行なつた。 実施例 2 他は実施例1と同様にして、窒化珪素96wt%
にサイアロン粉末を4wt%混合した原料粉末から
窒化珪素焼結体を製造し、実施例1と同様に3点
曲げ試験を行なつた。 実施例 3 他は実施例1および実施例2と同様にし、窒化
珪素粉末85wt%にサイアロン粉末を15wt%混合
した原料粉末から窒化珪素焼結体を製造し、同様
に3点曲げ試験を行なつた。 実施例 4 他は各実施例と同様にして、窒化珪素粉末
80wt%にサイアロン粉末を20wt%混合した原料
粉末から窒化珪素焼結体を製造し、3点曲げ試験
を行なつた。 比較例 1 他は各実施例と同様にして、窒化珪素粉末
98wt%にサイアロン粉末を2wt%混合し、得られ
た原料粉末から窒化珪素焼結体を製造して3点曲
げ試験を行なつた。 比較例 2 他は上述の各実施例と同様にして、窒化珪素粉
末75wt%にサイアロン粉末を25wt%混合した原
料粉末から窒化珪素焼結体を製造し、3点曲げ試
験を行なつた。 以上の各実施例および比較例における窒化珪素
に対するサイアロンの添加条件と得られる窒化珪
素焼結体の3点曲げ強度を第1表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a method for manufacturing a silicon nitride sintered body, which is used as a component material for, for example, gasoline engines, gas turbine engines, etc. BACKGROUND ART Conventionally, in the production of silicon nitride sintered bodies, a so-called pressure sintering method has been used in which sintering proceeds while pressing raw material powder at high temperature. According to the pressure sintering method, a dense sintered body close to the theoretical density can be obtained, and there is an advantage that sintering can be performed at a lower temperature than the pressureless sintering method. On the other hand, when producing silicon nitride sintered bodies, by sintering at as low a temperature as possible, it is possible to directly reduce fuel costs and indirectly reduce the amount of furnace materials, etc. Because there is an advantage of being able to
Sintering aids such as Y 2 O 3 and Al 2 O 3 are added. By adding such sintering aids, a liquid phase is generated at low temperatures during the sintering process, and sintering is performed by a viscous flow mechanism in which silicon nitride moves particle by particle, increasing the sintering speed. Become. For this reason, oxide-based auxiliary agents such as Y 2 O 3 and Al 2 O 3 have conventionally been added during pressure sintering of silicon nitride. Problems to be Solved by the Invention However, the above conventional method for manufacturing a silicon nitride sintered body has the following problems. In other words, as mentioned above, adding a sintering aid such as Y 2 O 3 or Al 2 O 3 has the advantage that a liquid phase is generated at a low temperature during the sintering process, and this effect improves the sintering effect. There is. However, on the other hand, there was a problem in that the strength of the obtained sintered body decreased at temperatures above 1000°C. The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that can obtain a silicon nitride sintered body with high high-temperature strength. be. Means for Solving the Problems That is, the method for manufacturing a silicon nitride sintered body of the present invention is a method for manufacturing a silicon nitride sintered body in which sintering is progressed while pressing raw material powder at high temperature. It is characterized by adding 4 to 20 wt% of the internal ratio. This invention will be explained in more detail below. First, the raw material powder can be sintered under pressure by a known method such as the HP method or the HIP method. Sialon powder generally has a composition represented by Si(6-z)AlzOzN(8-z) (O≦z≦4.2), and any composition compatible with this may be used. Further, the reason why the amount of Sialon powder added is 4 to 20 wt% is as follows. In other words, if the amount of Sialon powder added is less than 4%, the sinterability will be poor and the density will not increase, and on the other hand, if the amount of Sialon powder added exceeds 20wt%, the strength of the silicon nitride sintered body will be replaced by the strength of Sialon. This is because the strength decreases. Examples Examples of the present invention are shown below. Example 1 Ethyl silicate ((C 2 H 5 O) 4 Si) and aluminum isopropoxide (Al[OCH(CH 3 ) 2 ] 3 ) were
Blend so that the atomic ratio of Si and Al is 1:1,
Dissolved and mixed in isobutanol ((CH 3 ) 2 CHCH 2 OH). The mixture was heated to 85°C, hydrolyzed, dried, heated to 600°C in air, and precalcined for 1 hour. An additional 22.1wt% was added to the resulting powder.
(internal ratio) of carbon black was added and mixed, and the powder was heated to 1430°C in a N2 stream and fired for 4 hours.
A sialon powder (Si 3 Al 3 O 3 N 5 ) of 0.2 μm was obtained (z=3). The Sialon powder was mixed with silicon nitride powder to obtain a raw material powder containing 90 wt% of silicon nitride powder and 10 wt% of Sialon powder. The powder obtained by mixing and drying the raw material powder in a ball mill for 20 hours using ethanol as a dispersion medium was molded into a mold at a pressure of 400 Kg/cm 2 , and a hydrostatic pressure of 1000 Kg/cm 2 was further applied. The resulting molded product weighed 400 kg/kg in a nitrogen stream.
Hot pressing was carried out by holding at 1750° C. for 2 hours while applying a pressure of cm 2 . The resulting silicon nitride sintered body was heated at room temperature and at 1200°C according to JIS standards.
A three-point bending test was conducted at °C ( N2 atmosphere). Example 2 The rest was the same as Example 1, but silicon nitride 96wt%
A silicon nitride sintered body was manufactured from a raw material powder in which 4 wt% of SiAlON powder was mixed with the sintered body, and a three-point bending test was conducted in the same manner as in Example 1. Example 3 The rest was the same as in Example 1 and Example 2, and a silicon nitride sintered body was manufactured from a raw material powder in which 85 wt% of silicon nitride powder was mixed with 15 wt% of sialon powder, and a three-point bending test was conducted in the same manner. Ta. Example 4 Silicon nitride powder was prepared in the same manner as in each example except for
A silicon nitride sintered body was manufactured from a raw material powder containing 80 wt% and 20 wt% of Sialon powder, and a three-point bending test was conducted. Comparative Example 1 Silicon nitride powder was prepared in the same manner as in each example except for
A silicon nitride sintered body was manufactured from the raw material powder obtained by mixing 98 wt% and 2 wt% of Sialon powder, and a three-point bending test was conducted. Comparative Example 2 A silicon nitride sintered body was manufactured from a raw material powder obtained by mixing 75 wt% of silicon nitride powder and 25 wt% of sialon powder in the same manner as in each of the above-mentioned examples, and a three-point bending test was conducted. Table 1 shows the conditions for adding sialon to silicon nitride and the three-point bending strength of the obtained silicon nitride sintered bodies in each of the above examples and comparative examples.

【表】 第1表を見ると明らかなように、実施例1のも
のは1200℃において108Kg/mm2という3点曲げ強
度を示し、他の実施例の焼結体も室温で97Kg/mm2
以上、1200℃において90Kg/mm2以上という高い3
点曲げ強度を示す。それに対し、サイアロン粉末
の添加量が2wt%の比較例1では、室温で74Kg/
mm2、1200℃で69Kg/mm2程度と強度が低く、さらに
サイアロン粉末の添加量が25wt%の比較例2の
焼結体では、室温で72Kg/mm2、1200℃で66Kg/mm2
程度と強度が低かつた。 発明の効果 以上のようにこの発明の窒化珪素焼結体の製造
方法によれば、原料粉末にサイアロン粉末を内比
で4〜20wt%添加して加圧焼結するようにした
ことによつて、強度、特に高温強度の高い窒化珪
素焼結体を製造することができる。
[Table] As is clear from Table 1, the sintered bodies of Example 1 exhibited a three-point bending strength of 108 Kg/mm 2 at 1200°C, and the sintered bodies of other Examples also exhibited a 3-point bending strength of 97 Kg/mm 2 at room temperature.
Above, the high level 3 of 90Kg/mm 2 or more at 1200℃
Indicates point bending strength. On the other hand, in Comparative Example 1 where the amount of Sialon powder added was 2wt%, 74Kg/
mm 2 , the strength is low at about 69 Kg/mm 2 at 1200°C, and furthermore, the sintered body of Comparative Example 2 with the addition amount of sialon powder of 25 wt% has a strength of 72 Kg/mm 2 at room temperature and 66 Kg/mm 2 at 1200°C.
The degree and intensity were low. Effects of the Invention As described above, according to the method for producing a silicon nitride sintered body of the present invention, sialon powder is added to the raw material powder in an internal ratio of 4 to 20 wt% and pressure sintered. , it is possible to produce a silicon nitride sintered body with high strength, especially high temperature strength.

Claims (1)

【特許請求の範囲】[Claims] 1 原料粉末を高温で加圧しながら焼結を進行さ
せる窒化珪素焼結体の製造方法において、原料粉
末にサイアロン粉末を内比で4〜20wt%添加す
ることを特徴とする窒化珪素焼結体の製造方法。
1. A method for producing a silicon nitride sintered body in which sintering is progressed while pressing a raw material powder at high temperature, which is characterized by adding sialon powder to the raw material powder in an internal ratio of 4 to 20 wt%. Production method.
JP60018005A 1985-01-31 1985-01-31 Manufacture of silicon nitride sintered body Granted JPS61178471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018005A JPS61178471A (en) 1985-01-31 1985-01-31 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018005A JPS61178471A (en) 1985-01-31 1985-01-31 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS61178471A JPS61178471A (en) 1986-08-11
JPH055779B2 true JPH055779B2 (en) 1993-01-25

Family

ID=11959567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018005A Granted JPS61178471A (en) 1985-01-31 1985-01-31 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61178471A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569278A (en) * 1979-07-06 1981-01-30 Tokyo Shibaura Electric Co Manufacture of heat resistant high strength sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569278A (en) * 1979-07-06 1981-01-30 Tokyo Shibaura Electric Co Manufacture of heat resistant high strength sintered body

Also Published As

Publication number Publication date
JPS61178471A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
US4943401A (en) Process for making silicon nitride articles
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0212893B2 (en)
US4500644A (en) Preparation and composition of sialon grain and powder
JPH055779B2 (en)
US5302329A (en) Process for producing β-sialon based sintered bodies
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JPH0355402B2 (en)
JPH03261611A (en) Production of silicon nitride composite powder
JPH0319163B2 (en)
JPS63270360A (en) High-density sintered silicon oxynitride and production thereof
JPH055780B2 (en)
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPS61291461A (en) Method of burning silicon carbide sintered body
JPS6021945B2 (en) Silicon nitride sintered body
JPH082973A (en) Silicon nitride sintered compact and its production
JPS6357388B2 (en)
JP2536448B2 (en) Aluminum nitride sintered body
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder
JPH11130542A (en) Production of aluminum nitride sintered compact
JPS61122167A (en) High strength silicon nitride base sintered body and manufacture
JPH06293566A (en) Production of sintered silicon nitride compact
JPH0575716B2 (en)