JPH0557442B2 - - Google Patents

Info

Publication number
JPH0557442B2
JPH0557442B2 JP16446186A JP16446186A JPH0557442B2 JP H0557442 B2 JPH0557442 B2 JP H0557442B2 JP 16446186 A JP16446186 A JP 16446186A JP 16446186 A JP16446186 A JP 16446186A JP H0557442 B2 JPH0557442 B2 JP H0557442B2
Authority
JP
Japan
Prior art keywords
valve
diameter hole
small diameter
inflow
oil chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16446186A
Other languages
Japanese (ja)
Other versions
JPS6319404A (en
Inventor
Masaru Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP16446186A priority Critical patent/JPS6319404A/en
Publication of JPS6319404A publication Critical patent/JPS6319404A/en
Publication of JPH0557442B2 publication Critical patent/JPH0557442B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流量制御弁に係り、特に、本願出願人
の先願(特願昭61−11709号、特願昭61−11710
号、特願昭61−31699号、特願昭61−31700号)に
係る各装置の主弁として最適に採用し得る流量制
御弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flow control valve, and in particular, the present invention relates to a flow rate control valve, and in particular, the present invention relates to a flow rate control valve, and in particular, to
The present invention relates to a flow rate control valve that can be optimally adopted as a main valve of various devices related to (Japanese Patent Application No. 61-31699, Japanese Patent Application No. 61-31700).

〔先願の技術〕[Technology of prior application]

本願出願人は、上記した先願、例えば特願昭61
−11709号にて、第4図に例示する装置を提案し
た。
The applicant of this application has filed the above-mentioned earlier application, for example, Japanese Patent Application No. 61
In No.-11709, we proposed the device illustrated in FIG.

第4図に示す装置は、主弁10、第1パイロツ
ト弁20及び第2パイロツト弁30によつて構成
されている流量制御装置であり、主弁10は弁本
体11と、この弁本体11内に上下方向(軸方
向)へ摺動自在に嵌挿した弁体12と、この弁体
12を下方へ付勢するばね13を主要構成部材と
している。弁本体11は、大径孔11aの上下両
側に同一径の小径孔11b,11cをそれぞれ同
軸的に設けてなり下方の段部に弁座11dを形成
してなる段付内孔を有するとともに、流入路P1
が連通する環状溝11eや流出路P2が連通する
環状溝11fを有している。
The device shown in FIG. 4 is a flow control device composed of a main valve 10, a first pilot valve 20, and a second pilot valve 30. The main components are a valve body 12 that is slidably inserted in the vertical direction (axial direction), and a spring 13 that biases the valve body 12 downward. The valve body 11 has a stepped inner hole in which small diameter holes 11b and 11c of the same diameter are coaxially provided on both upper and lower sides of a large diameter hole 11a, and a valve seat 11d is formed in a lower step. Inflow path P1
It has an annular groove 11e with which it communicates and an annular groove 11f with which the outflow path P2 communicates.

弁体12は、大径孔11a内に圧力バランスさ
れた状態(上下両端部に作用する流入路P1内の
圧力が常に相殺される状態)にて摺動自在に嵌挿
されてテーパ面12a1にて弁座11dに着座し
たり離脱して流入路P1と流出路P2間を連通遮
断するポペツト弁部12aと、同ポペツト弁部1
2aの下側に設けられて下方の小径孔11b内に
延び同小径孔11bとの間に流出路P2が常時連
通する油室R1を形成する連結部12bと、同連
結部12bの下側に設けられて下方の小径孔11
bに摺動自在に嵌挿され同小径孔11b端に油室
R2を形成するスプール部12cを一体的に備え
るとともに、ポペツト弁部12aの上側に設けら
れて上方の小径孔11cに摺動自在に嵌挿され同
小径孔11c端に油室R3を形成する小径筒部1
2dを一体的に備えている。しかして、油室R2
は第1パイロツト弁20に接続されるとともに第
2パイロツト弁30の第1切換弁31に接続さ
れ、また油室R3は絞り14を介して流入路P1
に接続されるとともに、第2パイロツト弁30の
第2切換弁32に接続されている。
The valve body 12 is slidably inserted into the large-diameter hole 11a in a pressure-balanced state (a state in which the pressure in the inflow path P1 acting on both the upper and lower ends is always canceled out) and is inserted into the tapered surface 12a1. a poppet valve portion 12a that seats on or leaves the valve seat 11d to cut off communication between the inflow path P1 and the outflow path P2, and the poppet valve portion 1
A connecting portion 12b is provided on the lower side of the connecting portion 2a and forms an oil chamber R1 that extends into the lower small diameter hole 11b and has an outflow passage P2 communicating with the small diameter hole 11b at all times. A lower small diameter hole 11 is provided.
A spool portion 12c is integrally provided which is slidably inserted into the small diameter hole 11b and forms an oil chamber R2 at the end of the small diameter hole 11b, and is provided above the poppet valve portion 12a so as to be slidable into the upper small diameter hole 11c. A small-diameter cylindrical portion 1 that is fitted into the small-diameter hole 11c and forms an oil chamber R3 at the end of the small-diameter hole 11c.
2d is integrally provided. However, oil chamber R2
is connected to the first pilot valve 20 and to the first switching valve 31 of the second pilot valve 30, and the oil chamber R3 is connected to the inlet passage P1 via the throttle 14.
It is connected to the second switching valve 32 of the second pilot valve 30.

第1パイロツト弁20は、供給路P3を通して
導入された圧油を所定値に減圧する減圧弁21
と、この減圧弁21から絞り22を通して油室R
2に付与されるパイロツト圧を電流付与値に応じ
て比例制御する電流制御リリーフ弁23によつて
構成されている。第2パイロツト弁30は、油室
R2に付与されるパイロツト圧により作動を制御
される第1切換弁31と、この第1切換弁31に
よつて作動を制御される第2切換弁32によつて
構成されている。第1切換弁31は、油室R2か
ら通路P4を通して付与されるパイロツト圧が設
定値未満であるとき図示のように非作動状態にあ
つて供給路P3と第2切換弁32の接続を断ちま
たパイロツト圧が設定値以上であるとき作動状態
となつて供給路P3を第2切換弁32に接続させ
る。第2切換弁32は、第1切換弁31によつて
供給路P3に接続されたとき作動して油室R3に
連通する通路P5とリザーバTに連通する戻り路
P6を連通させ、また第1切換弁31によつて供
給路P3との接続を断たれて戻り路P6に接続さ
れたとき図示のように非作動となつて油室R3に
連通する通路P5と戻り路P6の連通を遮断す
る。
The first pilot valve 20 is a pressure reducing valve 21 that reduces the pressure of the pressure oil introduced through the supply path P3 to a predetermined value.
The pressure reducing valve 21 passes through the throttle 22 to the oil chamber R.
The current control relief valve 23 proportionally controls the pilot pressure applied to the valve 2 in accordance with the current applied value. The second pilot valve 30 includes a first switching valve 31 whose operation is controlled by the pilot pressure applied to the oil chamber R2, and a second switching valve 32 whose operation is controlled by the first switching valve 31. It is structured as follows. When the pilot pressure applied from the oil chamber R2 through the passage P4 is less than the set value, the first switching valve 31 is in an inoperable state as shown in the figure and disconnects the supply path P3 from the second switching valve 32. When the pilot pressure is equal to or higher than the set value, it is activated and connects the supply path P3 to the second switching valve 32. The second switching valve 32 operates when connected to the supply path P3 by the first switching valve 31, and connects the passage P5 communicating with the oil chamber R3 and the return path P6 communicating with the reservoir T. When the switching valve 31 disconnects the supply path P3 and connects it to the return path P6, it becomes inactive as shown in the figure, cutting off communication between the path P5 communicating with the oil chamber R3 and the return path P6. .

上記のように構成した流量制御装置において
は、主弁10の弁体12におけるポペツト弁部1
2aに流入路P1内圧力が常に相殺されるように
作用し、また同ポペツト弁部12aとスプール部
12cに流出路P2内圧力が常に相殺されるよう
に作用するため、如何なる状態においても流入路
P1内圧力や流出路P2内圧力の変動によつて主
弁10の弁体12が軸方向へ押動されることはな
い。
In the flow control device configured as described above, the poppet valve portion 1 of the valve body 12 of the main valve 10
2a so that the pressure inside the inflow passage P1 always cancels out, and the poppet valve part 12a and the spool part 12c always act on the poppet valve part 12a and the spool part 12c so that the pressure inside the outflow passage P2 always cancels out. The valve body 12 of the main valve 10 is not pushed in the axial direction due to fluctuations in the pressure inside P1 or the pressure inside the outflow path P2.

また第1パイロツト弁20におけるリリーフ弁
23への電流付与値が設定値未満であつて油室R
2に付与されるパイロツト圧が設定値未満である
場合には、図示のごとく、第2パイロツト弁30
における第1切換弁31が非作動状態にあつて供
給路P3と第2切換弁32の接続を断つており、
第2切換弁32が非作動状態にあつて油室R3と
戻り路P6の連通を遮断している。このため、主
弁10の弁体12は流入路P1から絞り14を通
して油室R3に付与される油圧及びばね13の作
用によりポペツト弁部12aを弁座11dに着座
させており、流入路P1と流出路P2の連通が適
確に遮断されている。
Also, if the value of the current applied to the relief valve 23 in the first pilot valve 20 is less than the set value, the oil chamber R
If the pilot pressure applied to the second pilot valve 30 is less than the set value, the second pilot valve 30
The first switching valve 31 is in an inoperable state and disconnects the supply path P3 from the second switching valve 32;
The second switching valve 32 is in a non-operating state, cutting off communication between the oil chamber R3 and the return path P6. Therefore, the valve body 12 of the main valve 10 seats the poppet valve portion 12a on the valve seat 11d by the action of the spring 13 and the hydraulic pressure applied to the oil chamber R3 from the inflow path P1 through the throttle 14. Communication of the outflow path P2 is appropriately blocked.

しかして、第1パイロツト弁20におけるリリ
ーフ弁23への電流付与値を設定値以上として油
室R2に付与されるパイロツト圧を設定値以上と
すると、第2パイロツト弁30における第1切換
弁31が作動して供給路P3を第2切換弁32に
接続するため、第2切換弁32が作動して油室R
3を戻り路P6に連通させる。このため、油室R
3内の油圧は略ゼロとなり、主弁10の弁体12
は油室R2内のパイロツト圧(第1パイロツト弁
20によつて設定値以上の或る値に設定されてい
る)による押圧力とばね13の作用力がバランス
する位置にて保持され流入路P1から流出路P2
へ流れる流量が規定される。したがつて、第1パ
イロツト弁20におけるリリーフ弁23への電流
付与値を変えて油室R2に付与されるパイロツト
圧を変えることにより、主弁10の弁体12の位
置を調整できてポペツト弁部12aのテーパ面1
21a1と弁座11d間に形成される可変絞り部
の流路面積を調節でき、流入路P1から流出路P
2へ流れる流量を調整することができる。
Therefore, when the value of current applied to the relief valve 23 in the first pilot valve 20 is made equal to or more than the set value and the pilot pressure given to the oil chamber R2 is made equal to or more than the set value, the first switching valve 31 in the second pilot valve 30 becomes more than the set value. The second switching valve 32 operates to connect the supply path P3 to the second switching valve 32, and the second switching valve 32 operates to connect the supply path P3 to the second switching valve 32.
3 is communicated with the return path P6. For this reason, oil chamber R
3 becomes almost zero, and the valve body 12 of the main valve 10
is maintained at a position where the pressing force due to the pilot pressure in the oil chamber R2 (set to a certain value higher than the set value by the first pilot valve 20) and the acting force of the spring 13 are balanced, and the inflow path P1 Outflow path P2
The flow rate flowing to is specified. Therefore, by changing the current applied to the relief valve 23 in the first pilot valve 20 and changing the pilot pressure applied to the oil chamber R2, the position of the valve body 12 of the main valve 10 can be adjusted and the poppet valve Tapered surface 1 of portion 12a
The flow path area of the variable throttle section formed between the valve seat 21a1 and the valve seat 11d can be adjusted, and the flow path area can be adjusted from the inflow path P1 to the outflow path P.
2 can be adjusted.

以上の説明から明らかなように、上記した流量
制御装置の主弁10は、ポペツト弁としての機
能、すなわち流入路P1と流出路P2間の連通を
適確に遮断する(洩れなく遮断する)機能を備え
ながら、油室R2に付与されるパイロツト圧に応
じて流入路P1から流出路P2に流れる流量を容
易かつ正確に調整できる利点を備えている。
As is clear from the above description, the main valve 10 of the flow rate control device described above has the function of a poppet valve, that is, the function of appropriately blocking communication between the inflow path P1 and the outflow path P2 (blocking without leakage). However, it has the advantage that the flow rate flowing from the inflow path P1 to the outflow path P2 can be easily and accurately adjusted in accordance with the pilot pressure applied to the oil chamber R2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した流量制御装置の主弁10に
おいては、弁体12のポペツト弁部12aにおけ
るテーパ面12a1の頂角θが弁座11dへの適
確なシート性を確保する必要性から所定角(通常
40〜60度)に限定されるため、ポペツト弁部12
aの軸方向ストロークに対する可変絞り部の流路
面積(当該弁の流量を規定する開口面積)の変化
率が大きく、同流路面積を所望の値に設定しづら
いといつた問題がある。
By the way, in the main valve 10 of the flow control device described above, the apex angle θ of the tapered surface 12a1 in the poppet valve portion 12a of the valve body 12 is set at a predetermined angle ( usually
40 to 60 degrees), the poppet valve part 12
There is a problem in that the rate of change in the flow path area (opening area that defines the flow rate of the valve) of the variable restrictor with respect to the axial stroke of a is large, and it is difficult to set the flow path area to a desired value.

また、ポペツト弁部12aのテーパ面12a1
と弁座11d間に形成される可変絞り部を流れる
圧油により大きなフローフオースが発生して弁体
12が軸方向へ押動されることがあるため、折角
設定した上記流路面積が影響を受けることがあ
る。
Further, the tapered surface 12a1 of the poppet valve portion 12a
A large flow force may be generated by the pressure oil flowing through the variable restrictor formed between the valve seat 11d and the valve seat 11d, and the valve body 12 may be pushed in the axial direction. Sometimes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、上記
した主弁10として採用し得る流量制御弁を、 大径孔の両側に同一径の小径孔をそれぞれ同軸
的に設けてなり、一方の小径孔と前記大径孔間の
段部に弁座を形成するとともに、同弁座の前記大
径孔側に第1流入出路を接続し、また一方の小径
孔の中間部に第2流入出路を接続してなる弁本体
と、 前記大径孔内に前記第1流入出路から受ける圧
力が常に相殺される状態にて嵌挿されてテーパ面
にて前記弁座に着座したり離脱して前記両流入出
路間を連通遮断するポペツト弁部と、同ポペツト
弁部の一側に設けられて前記一方の小径孔内に延
び同小径孔の前記大径孔側端部に前記弁座を通し
て前記第1流入出路に連通する第1油室を形成す
る連結部と、同連結部の一側に設けられて前記一
方の小径孔に摺動自在に嵌挿され前記弁本体にお
ける前記第2流入出路の小径孔側端部に形成した
開口とにより前記ポペツト弁部のテーパ面と弁座
間に形成される流路面積より流路面積が常に小さ
い可変絞り部を構成するスプール部と、同スプー
ル部の一側に設けられて前記一方の小径孔内に前
記第1油室に常に連通する第2油室を形成する第
2連結部と、同第2連結部の一側に設けられて前
記一方の小径孔に摺動自在に嵌挿され同小径孔端
にパイロツト圧が付与される第3油室を形成する
ピストン部を一体的に備えるとともに、前記ポペ
ツト弁部の他側に設けられて前記他方の小径孔に
摺動自在に嵌挿され同小径孔端に前記両流入出路
のうち流入路となる流路に絞りを介して常に接続
されるとともに戻り路に選択的に接続される第4
油室を形成する小径部を一体的に備える弁体と、 同弁体を前記第3油室に向けて付勢するばねを
具備する構成とした。
In order to solve the above-described problems, the present invention provides a flow control valve that can be adopted as the main valve 10 described above, in which a large-diameter hole and small-diameter holes of the same diameter are coaxially provided on both sides of the large-diameter hole, and one small-diameter hole is provided. A valve seat is formed in a stepped portion between the large diameter hole and a first inflow/outflow passage is connected to the large diameter hole side of the valve seat, and a second inflow/outflow passage is connected to an intermediate portion of one of the small diameter holes. a valve body that is fitted into the large-diameter hole in such a manner that pressures received from the first inflow and outflow passages are always canceled out, and seated on the valve seat on a tapered surface, and separated from the valve seat so that both the inflow and outflow passages are connected to each other; a poppet valve section that cuts off communication between the outlet passages; and a poppet valve section that is provided on one side of the poppet valve section, extends into the one small diameter hole, and passes through the valve seat to the large diameter hole side end of the small diameter hole to allow the first inflow to pass through the valve seat. a connecting portion forming a first oil chamber communicating with the outlet passage; and a small diameter hole of the second inlet/outlet passage in the valve body, which is provided on one side of the connecting portion and is slidably inserted into the one small diameter hole. A spool portion that constitutes a variable throttle portion whose flow path area is always smaller than the flow path area formed between the tapered surface of the poppet valve portion and the valve seat by the opening formed at the side end portion, and a spool portion on one side of the spool portion. a second connecting portion provided on one side of the second connecting portion to form a second oil chamber always communicating with the first oil chamber in the one small diameter hole; It is integrally provided with a piston portion that forms a third oil chamber that is slidably inserted and applies pilot pressure to the end of the small diameter hole, and is provided on the other side of the poppet valve portion and is connected to the other small diameter hole. A fourth hole is slidably inserted into the small-diameter hole and is always connected to the inflow path of the two inflow and outflow paths through a throttle, and selectively connected to the return path.
The valve body is configured to include a valve body that integrally includes a small diameter portion that forms an oil chamber, and a spring that urges the valve body toward the third oil chamber.

〔発明の作用・効果〕[Action/effect of the invention]

本発明による流量制御弁においては、第3油室
にパイロツト圧が付与されて弁体がばねに抗して
軸方向へ移動することにより、流入路と流出路が
ポペツト弁部のテーパ面と弁座間に形成される流
路、第1油室、第2油室、スプール部と第2流入
出路の小径孔側端部に形成した開口とにより構成
される可変絞り部を通して連通して、ポペツト弁
部のテーパ面と弁座間に形成される流路が前記可
変絞り部の流路面積より流路面積が常に大きい単
なる通路として機能し、流入路から流出路へ流れ
る流量が流路面積の最も小さい可変絞り部にて規
定される。
In the flow control valve according to the present invention, pilot pressure is applied to the third oil chamber and the valve body moves in the axial direction against the spring, so that the inflow passage and the outflow passage are connected to the tapered surface of the poppet valve portion and the valve body. The poppet valve communicates with the flow path formed between the seats, the first oil chamber, the second oil chamber, the spool section, and the variable throttle section formed by the opening formed at the end of the small diameter hole of the second inflow/outflow path. The flow path formed between the tapered surface of the section and the valve seat functions as a simple passage whose flow path area is always larger than the flow path area of the variable throttle section, and the flow rate flowing from the inflow path to the outflow path has the smallest flow path area. Defined by the variable aperture section.

しかして、第2流入出路の小径孔側端部に形成
される開口は、その形状を他のものに制約される
ことなく適宜に設定可能であり、弁体の軸方向ス
トロークに対する可変絞り部の流路面積の変化率
を適宜に小さくすることができる。したがつて、
可変絞り部の流路面積を所望の値に設定しやすく
することができる。
Therefore, the shape of the opening formed at the end of the second inlet/outlet passage on the small diameter hole side can be set as appropriate without being restricted by other things, and the variable throttle part can be adjusted to the axial stroke of the valve body. The rate of change in flow path area can be appropriately reduced. Therefore,
The flow path area of the variable throttle section can be easily set to a desired value.

また、本発明による流量制御弁においては、ポ
ペツト弁部のテーパ面と弁座間に形成される流路
が単なる通路として機能し、かつスプール部と第
2流入出路の小径孔側端部に形成した開口とによ
り構成される可変絞り部にて液体が絞られるよう
にしたため、ポペツト弁部のテーパ面と弁座間に
形成される流路を流れる圧油により発生するフロ
ーフオースを殆ど無くすことができるとともに、
可変絞り部を流れる圧油により発生するフローフ
オースを第4図に示したものに比して小さなもの
とすることができて、弁体のフローフオースによ
る軸方向移動を小さくすることができ、所望の値
に設定した可変絞り部の流路面積がフローフオー
スの影響をさほど受けないようにすることができ
る。なお、本発明者の実験結果によれば、本発明
による流量制御弁において弁体に作用するフロー
フオースは第4図に示した弁体に作用するフロー
フオースの略半分になることが判明した。
Further, in the flow control valve according to the present invention, the flow path formed between the tapered surface of the poppet valve portion and the valve seat functions as a mere passage, and the flow path formed at the end of the spool portion and the small diameter hole side of the second inflow and outflow path functions as a mere passage. Since the liquid is throttled by the variable throttle section formed by the opening, it is possible to almost eliminate the flow force generated by the pressure oil flowing through the flow path formed between the tapered surface of the poppet valve section and the valve seat.
The flow force generated by the pressure oil flowing through the variable restrictor can be made smaller than that shown in Fig. 4, and the axial movement of the valve body due to the flow force can be reduced, thereby achieving the desired value. It is possible to prevent the flow path area of the variable throttle section set to be affected by the flow force to a large extent. According to the experimental results of the present inventor, it has been found that the flow force acting on the valve body in the flow control valve according to the present invention is approximately half of the flow force acting on the valve body shown in FIG.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明
する。
An embodiment of the present invention will be described below based on the drawings.

第1図は本発明による流量制御弁を示してい
て、同流量制御弁40は、第1部材41A、第2
部材41B、第3部材41C及び第4部材41D
(この部材は、第1部材41Aの下端内孔内に嵌
合固定されているスリーブであるが、第1部材4
1Aと一体として実施することも可能である)か
らなる弁本体41と、この弁本体41内に上下方
向(軸方向)へ摺動自在に嵌挿した弁体42と、
この弁体42を下方へ付勢するばね43を主要構
成部材としている。弁本体41は、大径孔41a
の上下両側に同一径の小径孔41b,41cをそ
れぞれ同軸的に設けてなり下方の段部に弁座41
dを形成してなる段付内孔を有するとともに、弁
座41dに近接する側の大径孔端に形成されて流
入路P11が連通する環状溝41eや、下方の小
径孔41bの中間部に対応して形成されて流出路
P12が連通する環状溝41fを有している。
FIG. 1 shows a flow control valve according to the present invention, and the flow control valve 40 includes a first member 41A, a second member 41A, and a second member 41A.
Member 41B, third member 41C, and fourth member 41D
(This member is a sleeve that is fitted and fixed in the inner hole at the lower end of the first member 41A.
1A); a valve body 42 fitted into the valve body 41 so as to be slidable in the vertical direction (axial direction);
The main component is a spring 43 that urges the valve body 42 downward. The valve body 41 has a large diameter hole 41a.
Small diameter holes 41b and 41c of the same diameter are provided coaxially on both the upper and lower sides of the valve seat 41.
d, and an annular groove 41e formed at the large diameter hole end on the side close to the valve seat 41d and communicating with the inflow passage P11, and an intermediate part of the lower small diameter hole 41b. It has an annular groove 41f formed correspondingly and communicating with the outflow path P12.

弁体42は、大径孔41a内に圧力バランスさ
れた状態(上下両端部に作用する流入路P11内
の圧力が常に相殺される状態)にて摺動自在に嵌
挿されてテーパ面42a1にて弁座41dに着座
したり離脱して流入路P11と流出路P12間を
連通遮断するポペツト弁部42aと、同ポペツト
弁部42aの下側に設けられて下方の小径孔41
b内に延び同小径孔41bとの間に弁座41dを
通して流入路P11に連通する第1油室R11を
形成する連結部42bと、同連結部42bの下側
に設けられて下方の小径孔41bに摺動自在に嵌
挿され第4部材41Dに形成した開口41g(こ
の開口の形状は第2図にて例示したものの一つが
採用されている)とにより弁体42が上動するこ
とによつてポペツト弁部42aのテーパ面42a
1と弁座41d間に形成される流路面積より流路
面積が常に小さい可変絞り部Aを構成するスプー
ル部42cと、同スプール部42cの下側に設け
られて下方の小径孔41b内に連通路P20を通
して第1油室R11に常に連通する第2油室R1
2を形成する第2連結部42dと、同第2連結部
42dの下側に設けられて下方の小径孔41bに
摺動自在に嵌挿され同小径孔端にパイロツト圧が
付与される第3油室R13を形成するピストン部
42eを一体的に備えるとともに、ポペツト弁部
42aの上側に設けられて上方の小径孔41cに
摺動自在に嵌挿され同小径孔41c端に絞り44
を介して環状溝41eに常に接続されるとともに
戻り路P6に選択的に接続される第4油室R14
(第3図参照)を形成する小径筒部42fを一体
的に備えている。
The valve body 42 is slidably inserted into the large-diameter hole 41a in a pressure-balanced state (a state in which the pressure in the inflow path P11 acting on both the upper and lower ends is always canceled out) and is inserted into the tapered surface 42a1. A poppet valve portion 42a that seats on or leaves the valve seat 41d to cut off communication between the inflow path P11 and the outflow path P12, and a small diameter hole 41 provided below the poppet valve portion 42a.
A connecting portion 42b that extends into the small diameter hole 41b and forms a first oil chamber R11 that communicates with the inflow passage P11 through the valve seat 41d, and a lower small diameter hole provided below the connecting portion 42b. 41b and is slidably inserted into the opening 41g formed in the fourth member 41D (the shape of this opening is one of those illustrated in FIG. 2), so that the valve body 42 moves upward. Therefore, the tapered surface 42a of the poppet valve portion 42a
1 and the valve seat 41d, and a spool portion 42c forming a variable throttle portion A whose flow path area is always smaller than the flow path area formed between the valve seat 41d and the valve seat 41d; The second oil chamber R1 always communicates with the first oil chamber R11 through the communication passage P20.
2, and a third connecting portion 42d that is provided below the second connecting portion 42d and is slidably inserted into the lower small diameter hole 41b, and a pilot pressure is applied to the end of the small diameter hole. A piston part 42e forming an oil chamber R13 is integrally provided, and a throttle 44 is provided on the upper side of the poppet valve part 42a and is slidably inserted into an upper small diameter hole 41c.
A fourth oil chamber R14 is always connected to the annular groove 41e and selectively connected to the return path P6.
(See FIG. 3) is integrally provided with a small diameter cylindrical portion 42f.

上記のように構成した流量制御弁は、第3図に
て例示したように、第3油室R13を第1パイロ
ツト弁20に接続するとともに第2パイロツト弁
30の第1切換弁31に接続し、また第4油室R
14を第2パイロツト弁30の第2切換弁32に
接続することにより、流量制御装置の主弁として
採用される。なお、第1パイロツト弁20及び第
2パイロツト弁30の構成は第4図に示したもの
と全く同じである。
The flow rate control valve configured as described above has the third oil chamber R13 connected to the first pilot valve 20 and connected to the first switching valve 31 of the second pilot valve 30, as illustrated in FIG. , and the fourth oil chamber R
By connecting 14 to the second switching valve 32 of the second pilot valve 30, it can be used as the main valve of the flow control device. The configurations of the first pilot valve 20 and the second pilot valve 30 are exactly the same as those shown in FIG. 4.

ところで、上記のように構成した流量制御弁に
おいては、如何なる状態においても流出路P12
内圧力が弁体42に軸方向の力を作用させること
はなく、しかも弁体42におけるポペツト弁部4
2aに流入路P11内圧力が常に相殺されるよう
に作用し、また同ポペツト弁部42aとスプール
部42cに第1油室R11内圧力が常に相殺され
るように作用し、更にスプール部42cとピスト
ン部42eに第2油室R12内圧力が常に相殺さ
れるように作用するため、如何なる状態において
も流入路内圧力や流出路内圧力の変動によつて弁
体42が軸方向へ押動されることはない。
By the way, in the flow control valve configured as described above, in any state, the outflow path P12
The internal pressure does not exert any axial force on the valve body 42, and the poppet valve portion 4 of the valve body 42
2a so that the internal pressure of the inflow passage P11 always cancels out, and the poppet valve part 42a and the spool part 42c act so that the internal pressure of the first oil chamber R11 always cancels out, and the spool part 42c and Since the pressure inside the second oil chamber R12 acts on the piston portion 42e so as to always cancel it out, the valve body 42 is pushed in the axial direction by fluctuations in the pressure inside the inflow path and the pressure inside the outflow path under any conditions. It never happens.

また、第3油室R13に付与されるパイロツト
圧による押圧力が小さく、しかも第4油室R14
が戻り路P6との連通を遮断されておれば、弁体
42は流入路P11から絞り44を通して第4油
室R14に付与される油圧及びばね43の作用に
より上記したパイロツト圧による押圧力に抗して
ポペツト弁部42aを弁座41dに着座させてお
り、流入路P11と流出路P12の連通が適確に
遮断されている。
Further, the pressing force due to the pilot pressure applied to the third oil chamber R13 is small, and the pressure applied to the fourth oil chamber R14 is small.
If the communication with the return path P6 is cut off, the valve body 42 resists the pressing force due to the pilot pressure described above due to the hydraulic pressure applied to the fourth oil chamber R14 from the inflow path P11 through the throttle 44 and the action of the spring 43. The poppet valve portion 42a is seated on the valve seat 41d, and communication between the inflow path P11 and the outflow path P12 is appropriately interrupted.

更に、第3油室R13に付与されるパイロツト
圧による押圧力がばね43の取付荷重より大き
く、しかも第4油室R14が戻り路P6と接続さ
れて連通しておれば、第4油室R14内の油圧は
略ゼロとなつていて、弁体42は第3油室R13
内のパイロツト圧による押圧力とばね43の作用
力がバランスする位置まで押動されている。この
ため、流入路P11と流出路P12は、ポペツト
弁部42aのテーパ面42a1と弁座41d間に
形成される流路、第1油室R11、連通路P2
0、第2油室R12、スプール部42cと第4部
材41Dに形成した開口41gとにより構成され
る可変絞り部Aを通して連通していて、ポペツト
弁部42aのテーパ面42a1と弁座41d間に
形成される流路が可変絞り部Aの流路面積より流
路面積が常に大きい単なる通路として機能し、流
入路P11から流出路P12へ流れる流量が流路
面積の最も小さい可変絞り部Aにて規定される。
したがつて、第3油室R13に付与されるパイロ
ツト圧を変えることより、弁体42の位置を調整
できて可変絞り部Aでの絞り量を調整でき、流入
路P11から流出路P12へ流れる流量を調整す
ることができる。
Furthermore, if the pressing force due to the pilot pressure applied to the third oil sac R13 is greater than the mounting load of the spring 43, and the fourth oil sac R14 is connected and communicated with the return path P6, the fourth oil sac R14 The oil pressure inside is approximately zero, and the valve body 42 is in the third oil chamber R13.
It is pushed to a position where the pressing force by the pilot pressure inside and the acting force of the spring 43 are balanced. Therefore, the inflow path P11 and the outflow path P12 are a flow path formed between the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d, the first oil chamber R11, and the communication path P2.
0, the second oil chamber R12, the spool portion 42c and the opening 41g formed in the fourth member 41D communicate through the variable throttle portion A, and the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d communicate with each other. The formed flow path functions as a simple passage whose flow path area is always larger than the flow path area of the variable throttle section A, and the flow rate flowing from the inflow path P11 to the outflow path P12 is at the variable throttle section A with the smallest flow path area. stipulated.
Therefore, by changing the pilot pressure applied to the third oil chamber R13, the position of the valve body 42 can be adjusted, and the amount of throttling at the variable throttle section A can be adjusted, and the fluid flows from the inflow path P11 to the outflow path P12. Flow rate can be adjusted.

しかして、第4部材41Dに形成される開口4
1gは、その形状を他のものに制約されることな
く適宜に設定可能であり、弁体42の軸方向スト
ロークに対する可変絞り部Aの流路面積の変化率
を適宜に小さくすることができる。したがつて、
可変絞り部Aの流路面積を所望の値に設定しやす
くすることができる。
Therefore, the opening 4 formed in the fourth member 41D
1g, the shape can be set as appropriate without being restricted by other things, and the rate of change in the flow path area of the variable restrictor A with respect to the axial stroke of the valve body 42 can be appropriately reduced. Therefore,
The flow path area of the variable throttle section A can be easily set to a desired value.

また、本実施例の流量制御弁においては、ポペ
ツト弁部42aのテーパ面42a1と弁座41d
間に形成される流路が単なる通路として機能し、
かつスプール部42cと第4部材41Dに形成し
た開口41gとにより構成される可変絞り部Aに
て流体が絞られるようにしたため、ポペツト弁部
42aのテーパ面42a1と弁座41d間に形成
される流路を流れる圧油により発生するフローフ
オースを殆ど無くすことができるとともに、可変
絞り部Aを流れる圧油により発生するフローフオ
ースを第4図に示したものに比して小さなものと
することができて、弁体42のフローフオースに
よる軸方向移動を小さくすることができ、所望の
値に設定した可変絞り部Aの流路面積がフローフ
オースの影響をさほど受けないようにすることが
できる。なお、本発明者の実験結果によれば、弁
体42に作用するフローフオースは第4図に示し
た弁体12に作用するフローフオースの略半分に
なることが判明した。
In addition, in the flow control valve of this embodiment, the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d
The flow path formed between them functions as a mere passage,
In addition, since the fluid is throttled by the variable throttle section A formed by the spool section 42c and the opening 41g formed in the fourth member 41D, a variable throttle section A is formed between the tapered surface 42a1 of the poppet valve section 42a and the valve seat 41d. The flow force generated by the pressure oil flowing through the flow path can be almost eliminated, and the flow force generated by the pressure oil flowing through the variable restrictor A can be made smaller than that shown in FIG. The axial movement of the valve body 42 due to the flow force can be reduced, and the flow path area of the variable restrictor A, which is set to a desired value, can be made less influenced by the flow force. According to the experimental results of the present inventor, it has been found that the flow force acting on the valve body 42 is approximately half of the flow force acting on the valve body 12 shown in FIG.

第5図は本発明の他の実施例を示していて、同
図に示した流量制御弁においては、弁本体41の
第2部材41Bと第4部材41Dが一体的に結合
された状態にて第1部材41A内に組付けられて
おり、第2部材41Bと第4部材41D内には弁
体42とばね43が予め組込まれている。このた
め、この流量制御弁においては、組付性がよいと
いつた利点やばね43の取付荷重を予め調整する
ことができるといつた利点がある。なお、その他
の構成は第1図に示した流量制御弁の構成と全く
同じである。また、第5図に示した実施例の作
用・効果は上述した第1図〜第3図にて示した実
施例の作用・効果と実質的に同じであるため、そ
の説明は省略する。
FIG. 5 shows another embodiment of the present invention, and in the flow control valve shown in the figure, the second member 41B and the fourth member 41D of the valve body 41 are integrally connected. The valve body 42 and the spring 43 are assembled in the first member 41A, and the valve body 42 and the spring 43 are assembled in the second member 41B and the fourth member 41D. Therefore, this flow control valve has the advantage of being easy to assemble and that the mounting load of the spring 43 can be adjusted in advance. Note that the other configurations are exactly the same as the configuration of the flow control valve shown in FIG. Further, since the operations and effects of the embodiment shown in FIG. 5 are substantially the same as those of the embodiment shown in FIGS. 1 to 3 described above, the explanation thereof will be omitted.

なお、上記した実施例においては、第4油室R
14を絞り44を介して環状溝41eに連通させ
て、環状溝41eに接続された流路を流入路P1
1とするとともに環状溝41fに接続された流路
を流出路P12としたが、第4油室R14を絞り
44を介して環状溝41fに連通させて、環状溝
41fに接続された流路を流入路とするとともに
環状溝41eに接続された流路を流出路として
も、上記実施例と同様の作用・効果が期待でき
る。また、上記実施例においては、弁本体41の
大径孔41aの下端部に環状溝41eを形成し
て、この環状溝41eに流入路P11を連通させ
たが、第6図にて示したように、大径孔41aを
環状溝41eの径まで大きくして同大径孔41a
に流入路P11を連通させるようにしても、上記
実施例と同様の作用・効果が期待できる。
In addition, in the above-described embodiment, the fourth oil chamber R
14 is communicated with the annular groove 41e via the throttle 44, and the flow path connected to the annular groove 41e is connected to the inflow path P1.
1 and the flow path connected to the annular groove 41f was defined as the outflow path P12, but the fourth oil chamber R14 was made to communicate with the annular groove 41f via the throttle 44, and the flow path connected to the annular groove 41f was defined as the outflow path P12. Even if the flow path connected to the annular groove 41e is used as the inflow path and the flow path connected to the annular groove 41e is used as the outflow path, the same functions and effects as in the above embodiment can be expected. Further, in the above embodiment, an annular groove 41e is formed at the lower end of the large diameter hole 41a of the valve body 41, and the inflow passage P11 is communicated with the annular groove 41e. Then, the large diameter hole 41a is enlarged to the diameter of the annular groove 41e.
Even if the inflow path P11 is communicated with the inflow path P11, the same actions and effects as in the above embodiment can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に流量制御弁の一実施例を示す
要部拡大断面図、第2図は第1図に示した開口の
形状例を示す端面図、第3図は第1図に示した流
量制御弁を主弁として構成した流量制御装置の一
例を示す全体構成図、第4図は特願昭61−11709
号にて提案した流量制御装置の一例を示す全体構
成図、第5図は本発明による流量制御弁の他の実
施例を示す要部拡大断面図、第6図は本発明によ
る流量制御弁の変形例を主弁として構成した流量
制御装置を示す全体構成図である。 符号の説明、40……流量制御弁(主弁)、4
1……弁本体、41a……大径孔、41b,41
c……小径孔、41d……弁座、41g……開
口、42……弁体、42a……ポペツト弁部、4
2a1……テーパ面、42b……連結部、42c
……スプール部、42d……第2連結部、42e
……ピストン部、42f……小径部、43……ば
ね、44……絞り、A……可変絞り部、P11…
…流入路(第1流入出路)、P12……流出路
(第2流入出路)、P6……戻り路、R11……第
1油室、R12……第2油室、R13……第3油
室、R14……第4油室。
FIG. 1 is an enlarged sectional view of essential parts showing one embodiment of the flow control valve according to the present invention, FIG. 2 is an end view showing an example of the shape of the opening shown in FIG. 1, and FIG. 3 is the same as shown in FIG. An overall configuration diagram showing an example of a flow rate control device configured with a flow rate control valve as a main valve, Figure 4 is based on Japanese Patent Application No. 61-11709
FIG. 5 is an enlarged cross-sectional view of main parts showing another embodiment of the flow control valve according to the present invention, and FIG. 6 is a diagram showing an example of the flow control valve according to the present invention. FIG. 3 is an overall configuration diagram showing a flow rate control device in which a modification is configured as a main valve. Explanation of symbols, 40...Flow rate control valve (main valve), 4
1...Valve body, 41a...Large diameter hole, 41b, 41
c...Small diameter hole, 41d...Valve seat, 41g...Opening, 42...Valve body, 42a...Poppet valve portion, 4
2a1...Tapered surface, 42b...Connecting portion, 42c
...Spool part, 42d...Second connection part, 42e
...Piston part, 42f...Small diameter part, 43...Spring, 44...Aperture, A...Variable aperture part, P11...
...Inflow path (first inflow/output path), P12...Outflow path (second inflow/output path), P6...Return path, R11...First oil chamber, R12...Second oil chamber, R13...Third oil chamber Chamber, R14...4th oil chamber.

Claims (1)

【特許請求の範囲】 1 大径孔の両側に同一径の小径孔をそれぞれ同
軸的に設けてなり、一方の小径孔と前記大径孔間
の段部に弁座を形成するとともに、同弁座の前記
大径孔側に第1流入出路を接続し、また一方の小
径孔の中間部に第2流入出路を接続してなる弁本
体と、 前記大径孔内に前記第1流入出路から受ける圧
力が常に相殺される状態にて嵌挿されてテーパ面
にて前記弁座に着座したり離脱して前記両流入出
路間を連通遮断するポペツト弁部と、同ポペツト
弁部の一側に設けられて前記一方の小径孔内に延
び同小径孔の前記大径孔側端部に前記弁座を通し
て前記第1流入出路に連通する第1油室を形成す
る連結部と、同連結部の一側に設けられて前記一
方の小径孔に摺動自在に嵌挿され前記弁本体にお
ける前記第2流入出路の小径孔側端部に形成した
開口とにより前記ポペツト弁部のテーパ面と弁座
間に形成される流路面積より流路面積が常に小さ
い可変絞り部を構成するスプール部と、同スプー
ル部の一側に設けられて前記一方の小径孔内に前
記第1油室に常に連通する第2油室を形成する第
2連結部と、同第2連結部の一側に設けられて前
記一方の小径孔に摺動自在に嵌挿され同小径孔端
にパイロツト圧が付与される第3油室を形成する
ピストン部を一体的に備えるとともに、前記ポペ
ツト弁座の他側に設けられて前記他方の小径孔に
摺動自在に嵌挿され同小径孔端に前記両流入出路
のうち流入路となる流路に絞りを介して常に接続
されるとともに戻り路に選択的に接続される第4
油室を形成する小径部を一体的に備える弁体と、 同弁体を前記第3油室に向けて付勢するばねを
具備してなる流量制御弁。
[Scope of Claims] 1 Small diameter holes of the same diameter are coaxially provided on both sides of a large diameter hole, and a valve seat is formed in the step between one of the small diameter holes and the large diameter hole, and A valve body having a first inflow/outflow passage connected to the large diameter hole side of the seat and a second inflow/outflow passage connected to an intermediate portion of one of the small diameter holes; a poppet valve portion that is inserted into the valve seat in a state where the pressures received are always canceled out and seats on the valve seat with a tapered surface, and separates from the valve seat to cut off communication between the two inflow and outflow passages, and one side of the poppet valve portion. a connecting portion that is provided and extends into the one small diameter hole and forms a first oil chamber that communicates with the first inflow/output passage through the valve seat at an end of the small diameter hole on the large diameter hole side; An opening provided on one side and slidably inserted into the one small diameter hole, and formed at the small diameter hole side end of the second inflow/output passage in the valve body, is formed between the tapered surface of the poppet valve portion and the valve seat. a spool portion constituting a variable throttle portion whose flow path area is always smaller than the flow path area formed in the spool portion; a second connecting portion forming a second oil chamber; and a second connecting portion provided on one side of the second connecting portion and slidably inserted into the one small diameter hole and applying pilot pressure to the end of the small diameter hole. 3. A piston part that forms an oil chamber is integrally provided, and the piston part is provided on the other side of the poppet valve seat and is slidably inserted into the other small diameter hole, and a piston part that forms one of the two inflow and outflow passages is provided at the end of the small diameter hole. A fourth channel is always connected to the inflow channel via a throttle and is selectively connected to the return channel.
A flow control valve comprising: a valve body integrally provided with a small diameter portion forming an oil chamber; and a spring urging the valve body toward the third oil chamber.
JP16446186A 1986-07-11 1986-07-11 Flow rate control valve Granted JPS6319404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16446186A JPS6319404A (en) 1986-07-11 1986-07-11 Flow rate control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16446186A JPS6319404A (en) 1986-07-11 1986-07-11 Flow rate control valve

Publications (2)

Publication Number Publication Date
JPS6319404A JPS6319404A (en) 1988-01-27
JPH0557442B2 true JPH0557442B2 (en) 1993-08-24

Family

ID=15793612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16446186A Granted JPS6319404A (en) 1986-07-11 1986-07-11 Flow rate control valve

Country Status (1)

Country Link
JP (1) JPS6319404A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756871B2 (en) * 2005-02-10 2011-08-24 株式会社ブリヂストン Pneumatic radial tire

Also Published As

Publication number Publication date
JPS6319404A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
AU672713B2 (en) Two stage pressure control valve
JPH0557442B2 (en)
JPH0557443B2 (en)
JPH0557441B2 (en)
JPH0557444B2 (en)
JPH043190Y2 (en)
WO2019216193A1 (en) Electromagnetic flow control valve
JP2561717Y2 (en) Two-way relief valve
JPH0556401B2 (en)
JPH0237009Y2 (en)
JPH0645042Y2 (en) Control valve
JPS62171504A (en) Fluid control device
JPS59155691A (en) Fluid device
JPH0198774A (en) Pressure control valve
JP2628665B2 (en) Pressure control valve
JPH0381006B2 (en)
JPH0438923B2 (en)
JPH09126205A (en) Hydraulic controller
JPH07317702A (en) Counter balance valve
JPH0237508B2 (en)
JP2001003906A (en) Hydraulic control device
JPS62194007A (en) Fluid control device
JPS591908B2 (en) 2 port 2 position switching valve
JP2001165110A (en) Selector valve
JPH0439477A (en) Pilot type electromagnetic valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees