JPH055739A - Preparing method of specimen for laser magnetic immunoassay - Google Patents

Preparing method of specimen for laser magnetic immunoassay

Info

Publication number
JPH055739A
JPH055739A JP15910991A JP15910991A JPH055739A JP H055739 A JPH055739 A JP H055739A JP 15910991 A JP15910991 A JP 15910991A JP 15910991 A JP15910991 A JP 15910991A JP H055739 A JPH055739 A JP H055739A
Authority
JP
Japan
Prior art keywords
antibody
sample
specific antibody
antigen
microbeads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15910991A
Other languages
Japanese (ja)
Inventor
Koichi Arishima
功一 有島
Mitsutoshi Hoshino
光利 星野
Koichi Fujiwara
幸一 藤原
Shuichi Shibata
修一 柴田
Hiroko Mizutani
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15910991A priority Critical patent/JPH055739A/en
Publication of JPH055739A publication Critical patent/JPH055739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a preparing method of a specimen which avoids cohesion between microbeads through the intermediary of an antigen and an antibody which causes a problem when the antigen and the antibody are caught, in a laser magnetic immunoassay. CONSTITUTION:A preparing method of a specimen comprises at least a first process wherein a liquid containing suspended microbeads with which a first specific antibody for an antigen to be detected is combined beforehand and the specimen are made to react with each other, a second process wherein the caught specimen and a second specific antibody for a specimen combined with biotin beforehand are made to react with each other, a third process wherein a liquid containing dispersely-suspended tagging material of magnetic particulates is added thereafter and the biotin in the specific antibody and avidin in the tagging material are made to react with each other, and a fourth process wherein the tagging maternal not having reacted yet is separated and removed. In another way, a process wherein a third specific antibody combined with the viotin beforehand is add to an anti-antibody for the second specific antibody and the second specific antibody and the third specific antibody are made to react with each other is provided behind the second process, and a part of the second specific antibody used in the second process is made to coexist in the first process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗原抗体反応を利用し
た免疫検査法に関するものである。更に詳しくは、先に
本発明者らが発明したレーザ磁気免疫測定法に用いられ
る検体調製法に関するものである。
FIELD OF THE INVENTION The present invention relates to an immunoassay method utilizing an antigen-antibody reaction. More specifically, it relates to a sample preparation method used in the laser magnetic immunoassay method previously invented by the present inventors.

【0002】[0002]

【従来の技術】後天性免疫不全症候群、成人T細胞白血
病等のような新型ウイルス性疾病、あるいは各種ガンの
早期検査法として、抗原抗体反応を利用した免疫測定法
の開発が、現在、世界的規模で推進されている。
2. Description of the Related Art Development of an immunoassay utilizing an antigen-antibody reaction is currently in progress worldwide as an early test method for new viral diseases such as acquired immunodeficiency syndrome, adult T-cell leukemia, and various cancers. Being promoted on a scale.

【0003】従来から知られる微量免疫測定法として
は、ラジオイムノアッセイ(以下、RIA法と記す)、
酵素イムノアッセイ(EIA)、蛍光イムノアッセイ
(FIA)法等が既に実用化されている。これらの方法
は、それぞれアイソトープ、酵素、蛍光物質を標識とし
て付加した抗原または抗体を用い、これと特異的に反応
する抗体または抗原の有無を検出する方法である。
As a conventionally known microimmunoassay method, a radioimmunoassay (hereinafter referred to as RIA method),
Enzyme immunoassay (EIA), fluorescent immunoassay (FIA) method and the like have already been put to practical use. These methods are methods of detecting the presence or absence of an antibody or an antigen that specifically reacts with an antigen or an antibody to which an isotope, an enzyme or a fluorescent substance is added as a label, respectively.

【0004】本発明者らは先に特願昭61−22456
7号、同61−252427号、同61−254164
号、同62−22062号、同62−22603号、同
62−152791号、同62−152792号、同6
2−184902号としてレーザ磁気免疫測定法及び測
定装置についての発明を特許出願している。これらの新
しい免疫測定法は標識材料として磁性微粒子を用いて、
例えば磁気標識された検体の有無を干渉縞から検出する
点に特徴があり、アイソトープを用いないでピコグラム
以下の超微量検出が可能である。本発明者らは上述の発
明に基づき、磁性微粒子を抗原あるいは抗体に標識し、
初めてウイルスの検出等を行なった。
The present inventors previously disclosed Japanese Patent Application No. 61-22456.
No. 7, No. 61-252427, No. 61-254164
No. 62-20262, No. 62-22603, No. 62-152791, No. 62-152792, No. 6
No. 2-184902, a patent application has been filed for an invention relating to a laser magnetic immunoassay method and measuring apparatus. These new immunoassays use magnetic particles as the labeling material,
For example, it is characterized in that the presence or absence of a magnetically labeled sample is detected from interference fringes, and it is possible to detect an ultratrace amount of a picogram or less without using an isotope. Based on the above-mentioned invention, the present inventors label the magnetic particles with an antigen or an antibody,
The virus was detected for the first time.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、前述
したレーザ磁気免疫測定法において、抗原(あるいは抗
体)捕捉時に問題となる抗原(あるいは抗体)を介して
のマイクロビーズ間の凝集を回避する検体調製法を提供
することにある。
An object of the present invention is to avoid aggregation between microbeads via an antigen (or antibody) which becomes a problem when capturing the antigen (or antibody) in the above-mentioned laser magnetic immunoassay. A method of preparing a sample is provided.

【0006】[0006]

【課題を解決するための手段】従来のELISA法で一
般的に行なわれている方法は、96穴のマイクロプレー
トの底面に抗原あるいは抗体を固定して、その表面に患
者血清中の目的とする抗体あるいは抗原を捕捉するもの
であるから、その抗原抗体反応は固相反応である。これ
に対して、本発明のレーザ磁気免疫測定法の場合、検出
感度を向上する方法として、マイクロプレートの代わり
にマイクロビーズを用いている。この理由は、抗原抗体
反応の自由度を上げることによって、微量の抗原または
抗体を効率よく抗原抗体反応させるためと、未反応の磁
性微粒子標識材料をB/F分離(Bound/Fre
e、すなわち検体と結合した磁性微粒子と結合していな
い磁性微粒子とに分離)のためである。すなわち、マイ
クロビーズ及び磁性微粒子標識材料として、例えば、そ
れぞれ直径2μm、0.03μmのものを用いれば、大
きさ、質量が大きく違うからマイクロビーズと磁性微粒
子標識材料は遠心力によって容易に分離できる。
The method generally used in the conventional ELISA method is to immobilize an antigen or an antibody on the bottom surface of a 96-well microplate, and to target it in the patient serum in the surface thereof. The antigen-antibody reaction is a solid-phase reaction because it captures an antibody or an antigen. On the other hand, in the case of the laser magnetic immunoassay method of the present invention, microbeads are used instead of the microplate as a method for improving the detection sensitivity. The reason for this is to increase the degree of freedom in the antigen-antibody reaction so that a minute amount of the antigen or antibody can be efficiently reacted with the antigen, and the unreacted magnetic fine particle labeling material is subjected to B / F separation (Bound / Fre).
e, that is, the magnetic fine particles bound to the sample are separated from the magnetic fine particles not bound. That is, if microbeads and magnetic fine particle labeling materials having diameters of 2 μm and 0.03 μm, respectively, are used, the microbeads and the magnetic fine particle labeling materials can be easily separated by centrifugal force because their sizes and masses are greatly different.

【0007】抗体結合マイクロビーズに抗原を捕捉する
際に、抗原量と、マイクロビーズ量の量比関係によって
は、抗原を介してマイクロビーズの凝集が生じることは
周知のことである。抗原結合マイクロビーズに抗体を捕
捉する場合も同様な現象が生じる。この現象は検出すべ
き抗原あるいは抗体が多価であるために、抗原あるいは
抗体を介してマイクロビーズが結合するために生じるも
のである。ちなみに、この現象を、積極的に免疫反応の
診断に用いる方法がPA法(ビーズ凝集法)であって、
抗原あるいは抗体検査に広く用いられている。しかし、
PA法は検出感度がμグラム/ml程度であり、微量の
抗原検出はできない。
It is well known that when capturing an antigen on antibody-bound microbeads, agglomeration of the microbeads occurs via the antigen depending on the amount ratio of the amount of the antigen and the amount of the microbead. A similar phenomenon occurs when the antibody is captured by the antigen-bound microbeads. This phenomenon occurs because microbeads are bound via the antigen or antibody because the antigen or antibody to be detected is multivalent. By the way, the PA method (bead agglutination method) is a method for actively using this phenomenon for diagnosing an immune reaction.
Widely used for antigen or antibody tests. But,
The PA method has a detection sensitivity of about μg / ml and cannot detect a small amount of antigen.

【0008】さて、マイクロビーズを用いて抗原あるい
は抗体を捕捉した後、抗原あるいは抗体をサンドイッチ
する形で磁性微粒子標識材料を結合して、この磁性微粒
子の存在量から抗原あるいは抗体の量を測定するレーザ
磁気免疫測定の場合、マイクロビーズの凝集が生じる
と、抗原あるいは抗体がマイクロビーズの凝集塊の中に
埋没してしまうから、第二のビオチン化された特異抗体
と反応できなくなり磁性微粒子標識材料を更に結合する
ことができなくなる。
After capturing the antigen or antibody using microbeads, the magnetic fine particle labeling material is bound in the form of sandwiching the antigen or antibody, and the amount of the antigen or antibody is measured from the existing amount of the magnetic fine particles. In the case of laser magnetic immunoassay, when agglutination of microbeads occurs, the antigen or antibody will be buried in the agglutination mass of microbeads, and it will not be able to react with the second biotinylated specific antibody. Cannot be combined further.

【0009】本発明の第1の方法に従えば、抗原捕捉時
の抗原を介してのマイクロビーズの凝集を防止すること
ができる。すなわち、検出すべき抗原に対する第一の特
異抗体が予め結合されたマイクロビーズ浮遊液と、検体
とを反応させ、該マイクロビーズ表面に検体を捕捉する
第一工程と、捕捉された該検体と、予めビオチンを結合
した該検体に対する第二の特異抗体とを更に反応させ、
該検体を第一と第二の特異抗体とでサンドイッチする第
二工程と、前記第二工程後に、磁性微粒子標識材料の分
散浮遊液を加え、前記第二の特異抗体中のビオチンと、
該磁性微粒子標識材料中のアビジンとを反応させ、該マ
イクロビーズに捕捉された該検体のみを磁気標識する第
三工程と、前記第三工程において反応しなかった該磁性
微粒子標識材料を分離・除去する第四工程とを少なくと
も含む検体調製方法において、第一工程時に、第二工程
で使用する第二の特異抗体の一部を共存させることを特
徴とする検体調製方法が提供される。
According to the first method of the present invention, it is possible to prevent the aggregation of microbeads via the antigen at the time of capturing the antigen. That is, the first specific antibody against the antigen to be detected is pre-bound microbead suspension, the sample is reacted, the first step of capturing the sample on the surface of the microbeads, the captured sample, Further reacting with a second specific antibody against the sample previously bound with biotin,
A second step of sandwiching the sample with a first and a second specific antibody, and after the second step, a dispersion suspension of magnetic fine particle labeling material is added, and biotin in the second specific antibody,
A third step of reacting with avidin in the magnetic fine particle labeling material to magnetically label only the sample captured by the microbeads, and separating / removing the magnetic fine particle labeling material that has not reacted in the third step In the method for preparing a specimen, which comprises at least the fourth step, there is provided a method for preparing a specimen, characterized in that, during the first step, a part of the second specific antibody used in the second step is allowed to coexist.

【0010】また、汎用性の高い検体調製法として、二
次抗体法に対しても応用できる。即ち、検出すべき抗原
に対する第一の特異抗体が予め結合されたマイクロビー
ズ浮遊液と検体とを反応させ、該マイクロビーズ表面に
検体を捕捉する第一工程と、捕捉された該検体と、該検
体に対する第二の特異抗体とを更に反応させ、該検体を
第一と第二の特異抗体とでサンドイッチする第二工程
と、前記第二工程後に、該第二の特異抗体に対する抗抗
体に予めビオチンを結合させた第三の特異抗体を加え、
第二の特異抗体と、第三の特異抗体とを反応させる第三
工程と、前記第三工程後に磁性微粒子標識材料の分散浮
遊液を加え、前記第三の特異抗体中のビオチンと、該磁
性微粒子標識材料中のアビジンとを反応させ、該マイク
ロビーズに捕捉された該検体のみを磁気標識する第四工
程と、前記第四工程において反応しなかった該磁性微粒
子標識材料を分離・除去する第五工程とを少なくとも含
む検体調製方法において、第一工程時に、第二工程で使
用する第二の特異抗体の一部を共存させることを特徴と
する検体調製方法が提供される。
Further, as a versatile sample preparation method, it can be applied to the secondary antibody method. That is, a first step of reacting a microbead suspension previously bound with a first specific antibody against an antigen to be detected and a sample, and capturing the sample on the surface of the microbead, the captured sample, and A second step of further reacting with a second specific antibody against the sample, sandwiching the sample with the first and second specific antibodies, and after the second step, an anti-antibody against the second specific antibody is previously prepared. Add a third specific antibody bound to biotin,
A third step of reacting the second specific antibody with the third specific antibody, and a dispersion suspension of the magnetic fine particle labeling material is added after the third step, and biotin in the third specific antibody and the magnetic A fourth step of reacting with avidin in the fine particle labeling material to magnetically label only the sample captured by the microbeads, and a step of separating and removing the magnetic fine particle labeling material that has not reacted in the fourth step In a sample preparation method comprising at least five steps, there is provided a sample preparation method characterized by allowing a part of the second specific antibody used in the second step to coexist during the first step.

【0011】以上、検体として、ウイルス等の抗原を検
査する場合の方法を説明したが、本発明の検体調製方法
は、抗原と同様に、抗体検査にも適用できる。即ち、こ
の場合、抗体捕捉用のマイクロビーズとして、目的とす
る抗体と特異的に反応する抗原を、予め該マイクロビー
ズに結合させたものを用いる。上記の第一の検体調製方
法では、該マイクロビーズに抗体を捕捉し、次に、目的
とする抗体に対するビオチン化抗抗体を反応させ、その
後に本発明の磁性微粒子標識材料を加え、検体を磁気標
識すればよい。また、上記の第二の検体調製方法(2次
抗体法)の場合も同様に、該マイクロビーズに抗体を捕
捉後、該抗体に対する抗抗体を反応させ、更に該抗抗体
に対するビオチン化2次抗体を反応させた後に、本発明
の磁性微粒子標識材料を加え、検体を磁気標識すればよ
い。
Although the method for testing an antigen such as a virus as a sample has been described above, the sample preparation method of the present invention can be applied to an antibody test as well as an antigen. That is, in this case, as the microbeads for capturing the antibody, those obtained by previously binding the antigen that specifically reacts with the target antibody to the microbeads are used. In the above-mentioned first sample preparation method, an antibody is captured on the microbeads, and then a biotinylated anti-antibody for the target antibody is reacted, and then the magnetic fine particle labeling material of the present invention is added, and the sample is magnetically added. Just label it. Also in the case of the above-mentioned second sample preparation method (secondary antibody method), similarly, after capturing the antibody on the microbeads, an anti-antibody against the antibody is reacted, and a biotinylated secondary antibody against the anti-antibody is further reacted. After the reaction with the above, the magnetic fine particle labeling material of the present invention may be added to magnetically label the sample.

【0012】また、本発明の検体調製方法は、上述した
抗原や抗体の他、ホルモンや生理活性物質等の微量の蛋
白を検出する場合にも適用させることができる。
The sample preparation method of the present invention can also be applied to the detection of trace amounts of proteins such as hormones and physiologically active substances in addition to the above-mentioned antigens and antibodies.

【0013】[0013]

【実施例】以下、実施例に基づき本発明の検体調製方法
を詳しく説明する。 (実施例1)抗体を標識したポリマビーズ(ビーズ濃度
0.2wt%)浮遊液30μl、抗原として α−フ
ェトプロテインの希釈列(蛋白濃度 10-15 〜 10
-8g/mlの範囲で10倍希釈 8段階)の各段階 3
0μl、および予めビオチンを結合した抗α−フェトプ
ロテイン抗体(抗体濃度 10-2 mg/ml)5μl
を混合し、37℃で2時間攪拌しながら反応させた。
EXAMPLES The sample preparation method of the present invention will be described in detail below based on examples. (Example 1) Polymer beads labeled with antibody (bead concentration: 0.2 wt%) 30 μl suspension, α-fetoprotein dilution series as antigen (protein concentration 10 −15 to 10 −10)
Each step of 10-fold dilution in a range of -8 g / ml 8 steps 3
0 μl, and 5 μl of anti-α-fetoprotein antibody (antibody concentration 10 −2 mg / ml) previously bound with biotin
Were mixed and reacted at 37 ° C. for 2 hours with stirring.

【0014】次に各反応液にビオチンを結合した抗α−
フェトプロテイン抗体(抗体濃度0.3 mg/ml)
を30μl添加し、37℃で1時間反応させた後、未反
応のビオチン結合抗体を分離した。
Next, anti-α-in which each reaction solution was bound with biotin
Fetoprotein antibody (antibody concentration 0.3 mg / ml)
Was added and reacted at 37 ° C. for 1 hour, and then unreacted biotin-conjugated antibody was separated.

【0015】さらに未反応ビオチン結合抗体を分離した
各反応液に、アビジンを結合した磁性微粒子(マグネタ
イト濃度 0.1mg/ml)を20μl添加し、37
℃で1時間反応させた後、未反応の磁性微粒子を分離
後、全量200μlとなるよう1%BSA(牛アルブミ
ン)−HEPES緩衝液で希釈し、測定試料を作製し
た。 各測定試料200μlから30μlを分取し、レ
ーザ磁気免疫測定装置で干渉強度を測定し検量線を得
た。その結果を図1の(a)に示した。
Further, 20 μl of avidin-bonded magnetic fine particles (magnetite concentration 0.1 mg / ml) was added to each reaction solution from which unreacted biotin-conjugated antibody was separated, and 37
After reacting at 1 ° C. for 1 hour, unreacted magnetic fine particles were separated and then diluted with 1% BSA (bovine albumin) -HEPES buffer to a total volume of 200 μl to prepare a measurement sample. 30 μl of 200 μl of each measurement sample was sampled and the interference intensity was measured by a laser magnetic immunoassay device to obtain a calibration curve. The result is shown in FIG.

【0016】(比較対照例)前記実施例1の比較を行な
うため、通常の免疫測定法と同様に抗原をマイクロビー
ズに捕捉する工程ではビオチン結合した抗体を共存しな
い試料を調製した。まず、抗体を標識したポリマビーズ
(ビーズ濃度0.2wt%)浮遊液 30μl、抗原と
して α−フェトプロテインの希釈列(蛋白濃度 10
-15 〜10-8 g/mlの範囲で10倍希釈 8段階)
の各段階 30μlを混合し、37℃で2時間攪拌しな
がら反応させた。以下、実施例1と同等の処理を行な
い、全量200μlの測定試料を作製した。各測定試料
200μlから30μlを分取し、レーザ磁気免疫測定
装置で干渉強度を測定し検量線を得た。その測定結果を
図1の(b)に示した。
(Comparative Control Example) In order to compare Example 1 described above, a sample in which a biotin-bound antibody does not coexist was prepared in the step of capturing an antigen on a microbead as in the usual immunoassay method. First, 30 μl of a suspension of polymer beads (bead concentration: 0.2 wt%) labeled with an antibody, a dilution series of α-fetoprotein as an antigen (protein concentration: 10
-10 to 10-fold dilution in the range of -15 to 10 -8 g / ml 8 steps)
Each step (30 μl) was mixed and reacted at 37 ° C. for 2 hours with stirring. Then, the same treatment as in Example 1 was performed to prepare a total of 200 μl of measurement sample. 30 μl of 200 μl of each measurement sample was sampled and the interference intensity was measured by a laser magnetic immunoassay device to obtain a calibration curve. The measurement result is shown in FIG.

【0017】図1の横軸は、検出したα−フェトプロテ
インの濃度および抗原を含まないコントロールであり、
縦軸はレーザ磁気免疫測定法により測定された干渉光強
度である。図中の折れ線(a)は本発明の抗原捕捉時に
ビオチン化抗体を共存させた場合の検量線であって、折
れ線(b)は比較対照例であるビオチン化抗体を共存さ
せない場合の検量線である。
The horizontal axis of FIG. 1 represents the detected concentration of α-fetoprotein and a control containing no antigen,
The vertical axis represents the interference light intensity measured by the laser magnetic immunoassay method. The polygonal line (a) in the figure is a calibration curve when a biotinylated antibody was made to coexist during antigen capture of the present invention, and the polygonal line (b) is a calibration curve when a biotinylated antibody, which is a comparative control example, was not made to coexist. is there.

【0018】図1に示した測定結果から明らかなよう
に、抗原をマイクロビーズに捕捉するときにビオチンを
結合した抗体を共存させることにより、全抗原領域にお
いて検出感度が大きく向上する。抗原捕捉時にビオチン
化抗体を共存させることによる効果は大幅な感度向上で
あることがわかる。
As is clear from the measurement results shown in FIG. 1, the coexistence of the biotin-bound antibody when capturing the antigen on the microbeads greatly improves the detection sensitivity in the entire antigen region. It can be seen that the effect of coexisting a biotinylated antibody at the time of antigen capture is a significant improvement in sensitivity.

【0019】本効果の機構について言及すると、マイク
ロビーズ上の抗体による抗原捕捉の反応において、マイ
クロビーズに捕捉された抗原がさらに別のマイクロビー
ズと結合し、マイクロビーズが抗原を介して凝集するこ
とになる。このような凝集体は、立体障害により次に反
応すべきビオチン化抗体と反応しにくくなる。これに対
し、本発明の検体調製方法のように、ビオチン化抗体を
共存させた場合は、まずビオチン化抗体が抗原と反応
し、ついでマイクロビーズ上の抗体と反応するため、マ
イクロビーズに捕捉された抗原にはビオチン化抗体が結
合していることとなる。このため、抗原は他のマイクロ
ビーズとは反応しにくくなり、凝集はできにくくなると
ともに、確実にビオチン化抗体が反応することになる。
このため、極低濃度の抗原領域に対しても感度を有し、
かつ高濃度領域においても多数のマイクロビーズの凝集
が抑制され、感度の低下が大幅に抑えられるという効果
が得られる。
Regarding the mechanism of this effect, in the reaction of capturing an antigen by the antibody on the microbead, the antigen captured by the microbead binds to another microbead and the microbead aggregates via the antigen. become. Such aggregates are less likely to react with the biotinylated antibody to be reacted next due to steric hindrance. On the other hand, when the biotinylated antibody is allowed to coexist as in the sample preparation method of the present invention, the biotinylated antibody first reacts with the antigen and then with the antibody on the microbeads, so that they are captured by the microbeads. The biotinylated antibody is bound to the antigen. For this reason, the antigen is less likely to react with other microbeads, less likely to be aggregated, and the biotinylated antibody is surely reacted.
Therefore, it has sensitivity to the extremely low concentration of the antigen region,
In addition, even in the high concentration region, the aggregation of many microbeads is suppressed, and the effect of significantly suppressing the decrease in sensitivity can be obtained.

【0020】なお、本実施例ではα−フェトプロテイン
が抗原の場合について述べたが、上記機構より明らかな
ように得られる効果は抗原に依存しない。また、共存さ
せるビオチン化抗体の量は抗原を検出しようとする範囲
に依存する。
In this example, the case where α-fetoprotein was an antigen was described, but the effect obtained as apparent from the above mechanism does not depend on the antigen. Further, the amount of biotinylated antibody coexisted depends on the range in which the antigen is to be detected.

【0021】次に、二次抗体法の実施例をB型肝炎表面
抗原(HBs)の検出例で示す。 (実施例2)抗体を標識したポリマビーズ(ビーズ濃度
0.2wt%)浮遊液30μl、抗原として、B型肝
炎表面抗原(HBs)の希釈列(タンパク質濃度10
-15 〜 10-8 g/mlの範囲で10倍希釈 8段階)
の20μl、およびマウス抗HBsモノクローナル抗体
(抗体濃度 10-4 mg/ml)を混合し、37℃で
1時間攪拌しながら反応させた。
Next, an example of the secondary antibody method will be shown as an example of detecting hepatitis B surface antigens (HBs). (Example 2) Polymer beads labeled with antibody (bead concentration: 0.2 wt%) 30 μl of a suspension, a dilution series of hepatitis B surface antigens (HBs) as an antigen (protein concentration 10
-15 to 10 -8 g / ml 10-fold dilution 8 steps)
Was mixed with 20 μl of mouse anti-HBs monoclonal antibody (antibody concentration 10 −4 mg / ml), and the mixture was reacted at 37 ° C. for 1 hour with stirring.

【0022】次に各反応液にマウス抗HBsモノクロー
ナル抗体(抗体濃度 0.25mg/ml)を10μl
添加し、37℃で1時間反応後、未反応抗体を分離し
た。さらに、得られた各反応液に二次抗体として予めビ
オチン化されたヤギ抗マウス抗体(0.1 mg/m
l)を添加し、37℃で1時間反応させた。反応後、未
反応二次抗体を分離した。
Next, 10 μl of mouse anti-HBs monoclonal antibody (antibody concentration 0.25 mg / ml) was added to each reaction solution.
After adding and reacting at 37 ° C. for 1 hour, unreacted antibody was separated. Furthermore, a goat anti-mouse antibody (0.1 mg / m 2) previously biotinylated as a secondary antibody was added to each of the obtained reaction solutions.
1) was added and reacted at 37 ° C. for 1 hour. After the reaction, unreacted secondary antibody was separated.

【0023】最後に得られた各反応液に予めアビジンを
結合させた磁性微粒子(マグネタイト濃度 0.1mg
/ml)を10μl添加し、37℃で30分反応後、未
反応磁性微粒子を分離する。得られた反応液を全量80
μlとなるように緩衝液で希釈し、測定試料を作製し
た。各測定試料全量をレーザ磁気免疫測定装置で測定
し、その干渉光強度より検量線を得た。その結果を表1
に示した。
Magnetic particles (magnetite concentration: 0.1 mg) in which avidin was previously bound to each of the finally obtained reaction solutions
/ Ml) and 10 minutes of reaction at 37 ° C., unreacted magnetic fine particles are separated. The total amount of the obtained reaction liquid is 80
A measurement sample was prepared by diluting with a buffer solution to give μl. The total amount of each measurement sample was measured with a laser magnetic immunoassay device, and a calibration curve was obtained from the interference light intensity. The results are shown in Table 1.
It was shown to.

【表1】 [Table 1]

【0024】検出限界は抗原希釈列(10-15 〜 10
-8 g/mlの範囲で10倍希釈 8段階)をレーザ磁
気免疫測定装置で干渉光強度を測定し、抗原を含まない
対照試料の干渉強度と有意差を示す抗原濃度で示した。
従来のEIA法に比べ、実施例2では103 倍以上検出
感度が向上することがわかる。
The detection limit is the antigen dilution series (10 -15 to 10
The interference light intensity was measured with a laser magnetic immunoassay device at 10-fold dilution in the range of -8 g / ml (8 steps), and the interference intensity of the control sample containing no antigen was shown as an antigen concentration showing a significant difference.
It can be seen that the detection sensitivity is improved 10 3 times or more in Example 2 as compared with the conventional EIA method.

【0025】なお本実施例ではHBs抗原検出を例に述
べたが、本測定方法の原理から推測されるように二次抗
体法および抗体共存の効果は抗原の種類には依存しな
い。
In this Example, the detection of HBs antigen was described as an example, but the effects of the secondary antibody method and antibody coexistence do not depend on the type of antigen, as can be inferred from the principle of this measuring method.

【0026】[0026]

【発明の効果】本発明のレーザ磁気免疫測定方法は、実
施例で述べたAFP抗原検出に限られるものではなく、
現在広く実施されている抗体検査にももちろん適用でき
る。抗体検査に適用した場合、検出感度が高い特徴を活
かして、例えば、血液中で抗体量の少ないIgE抗体の
検出が短時間で可能になるからアレルギー診断に適用で
きる。
The laser magnetic immunoassay method of the present invention is not limited to the AFP antigen detection described in the examples,
Of course, it can also be applied to antibody tests that are currently widely practiced. When applied to an antibody test, it can be applied to an allergy diagnosis because, for example, IgE antibody having a low antibody amount in blood can be detected in a short time by utilizing the feature of high detection sensitivity.

【0027】更に、本発明の方法は対象とする検体が変
わっても、同一の磁性微粒子標識材料が使用できるから
汎用性がある。即ち、従来のデキストラン被覆マグネタ
イトに直接抗体を結合する方法の場合、ウイルス毎に磁
性微粒子標識材料を用意する必要があった。本発明の場
合、ビオチン化抗体をウイルス毎に用意するだけでよ
い。この相違点は、診断薬キットとして実用化する際
に、極めて効果が著しいものである。
Further, the method of the present invention is versatile because the same magnetic fine particle labeling material can be used even if the target sample is changed. That is, in the case of the conventional method of directly binding an antibody to dextran-coated magnetite, it was necessary to prepare a magnetic fine particle labeling material for each virus. In the case of the present invention, it is only necessary to prepare a biotinylated antibody for each virus. This difference is extremely remarkable when it is put to practical use as a diagnostic kit.

【0028】また、本発明に従えば、抗原抗体反応のみ
に止まらず、従来RIA法が適用されていたペプチドホ
ルモン等の種々のホルモンあるいは種々の酵素、ビタミ
ン、薬剤などの測定にも応用することが可能である。従
って、従来は限定された施設でRIA法によらなければ
実施できなかった精密な測定を、一般的な環境で広く、
迅速に実施することが可能となる。即ち、集団検診等の
ような一般的な状況で、各種のウイルス、癌等のスクリ
ーニング検査等の精密な測定が広く実施できれば、癌あ
るいはウイルス性疾患等の早期診断が可能となり、有効
な早期治療を的確に実施することが可能となる。このよ
うに、本発明が医学・医療の分野で果す効果は計り知れ
ない。
Further, according to the present invention, not only the antigen-antibody reaction but also the measurement of various hormones such as peptide hormones to which the RIA method has been conventionally applied or various enzymes, vitamins, drugs and the like can be applied. Is possible. Therefore, it is possible to perform accurate measurement in a general environment, which was previously impossible without the RIA method in a limited facility.
It becomes possible to carry out quickly. That is, in a general situation such as mass screening, if accurate measurement such as screening tests for various viruses and cancers can be widely carried out, early diagnosis of cancer or viral diseases becomes possible and effective early treatment. Can be carried out accurately. As described above, the effect of the present invention in the fields of medicine and medical treatment is immeasurable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に基づくAFP抗原検出の実
験結果を示すグラフであり、(a)は本発明の検体調製
方法を実施した場合、(b)は比較対照例である。
FIG. 1 is a graph showing an experimental result of AFP antigen detection based on Example 1 of the present invention, where (a) is a case where the sample preparation method of the present invention is carried out, and (b) is a comparative control example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 修一 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 水谷 弘子 東京都渋谷区宇田川町6番11号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuichi Shibata 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Hiroko Mizutani 6-11, Udagawacho, Shibuya-ku, Tokyo

Claims (1)

【特許請求の範囲】 【請求項1】 検出すべき抗原に対する第一の特異抗体
が予め結合されたマイクロビーズ浮遊液と検体とを反応
させ、該マイクロビーズ表面に検体を捕捉する第一工程
と、捕捉された該検体と、予めビオチンを結合した該検
体に対する第二の特異抗体とを更に反応させ、該検体を
第一と第二の特異抗体とでサンドイッチする第二工程
と、前記第二工程後に、磁性微粒子標識材料の分散浮遊
液を加え、前記第二の特異抗体中のビオチンと、該磁性
微粒子標識材料中のアビジンとを反応させ、該マイクロ
ビーズに捕捉された該検体のみを磁気標識する第三工程
と、前記第三工程において反応しなかった該磁性微粒子
標識材料を分離・除去する第四工程とを少なくとも含む
検体調製方法において、前記第一工程時に、前記第二工
程で使用する第二の特異抗体の一部を共存させることを
特徴とするレーザ磁気免疫測定用検体調製方法。 【請求項2】 検出すべき抗原に対する第一の特異抗体
が予め結合されたマイクロビーズ浮遊液と検体とを反応
させ、該マイクロビーズ表面に検体を捕捉する第一工程
と、捕捉された該検体と、該検体に対する第二の特異抗
体とを更に反応させ、該検体を第一と第二の特異抗体と
でサンドイッチする第二工程と、前記第二工程後に、該
第二の特異抗体に対する抗抗体に予めビオチンを結合さ
せた第三の特異抗体を加え、第二の特異抗体と、第三の
特異抗体とを反応させる第三工程と、前記第三工程後に
磁性微粒子標識材料の分散浮遊液を加え、前記第三抗体
中のビオチンと、該磁性微粒子標識材料中のアビジンと
を反応させ、該マイクロビーズに捕捉された該検体のみ
を磁気標識する第四工程と、前記第四工程において反応
しなかった該磁性微粒子標識材料を分離・除去する第五
工程とを少なくとも含む検体調製方法において、前記第
一工程時に、前記第二工程で使用する第二の特異抗体の
一部を共存させることを特徴とするレーザ磁気免疫測定
用検体調製方法。
Claim: What is claimed is: 1. A first step of reacting a microbead suspension in which a first specific antibody against an antigen to be detected is bound in advance with a sample, and capturing the sample on the surface of the microbead. A second step of further reacting the captured sample with a second specific antibody against the sample bound with biotin in advance, and sandwiching the sample with the first and second specific antibodies; After the step, a dispersion suspension of the magnetic fine particle labeling material is added, and biotin in the second specific antibody is reacted with avidin in the magnetic fine particle labeling material, and only the sample captured by the microbeads is magnetized. In a sample preparation method comprising at least a third step of labeling and a fourth step of separating / removing the magnetic fine particle labeling material which has not reacted in the third step, the second step is carried out at the time of the first step. In laser magnetic immunoassay for sample preparation method characterized by the coexistence of a portion of the second specific antibody used. 2. A first step of reacting a microbead suspension preliminarily bound with a first specific antibody against an antigen to be detected with a sample to capture the sample on the surface of the microbead, and the captured sample And a second step of further reacting the second specific antibody against the sample, sandwiching the sample with the first and second specific antibodies, and after the second step, an anti-antibody against the second specific antibody. A third specific antibody in which biotin is bound to the antibody in advance, and a third step of reacting the second specific antibody with the third specific antibody; and a dispersion suspension of the magnetic fine particle labeling material after the third step. And reacting biotin in the third antibody with avidin in the magnetic fine particle labeling material to magnetically label only the sample captured by the microbeads, and the reaction in the fourth step. Did not do the magnetic fine In a sample preparation method comprising at least a fifth step of separating / removing a particle labeling material, at the time of the first step, a part of the second specific antibody used in the second step is made to coexist. Sample preparation method for magnetic immunoassay.
JP15910991A 1991-06-28 1991-06-28 Preparing method of specimen for laser magnetic immunoassay Pending JPH055739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15910991A JPH055739A (en) 1991-06-28 1991-06-28 Preparing method of specimen for laser magnetic immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15910991A JPH055739A (en) 1991-06-28 1991-06-28 Preparing method of specimen for laser magnetic immunoassay

Publications (1)

Publication Number Publication Date
JPH055739A true JPH055739A (en) 1993-01-14

Family

ID=15686443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15910991A Pending JPH055739A (en) 1991-06-28 1991-06-28 Preparing method of specimen for laser magnetic immunoassay

Country Status (1)

Country Link
JP (1) JPH055739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1343009A1 (en) * 2000-12-11 2003-09-10 Iatron Laboratories, Inc. Immunological assay reagents and assay method
WO2006030985A1 (en) * 2004-09-16 2006-03-23 Japan Science And Technology Agency Method of assaying lipid peroxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1343009A1 (en) * 2000-12-11 2003-09-10 Iatron Laboratories, Inc. Immunological assay reagents and assay method
EP1343009A4 (en) * 2000-12-11 2004-05-19 Iatron Lab Immunological assay reagents and assay method
WO2006030985A1 (en) * 2004-09-16 2006-03-23 Japan Science And Technology Agency Method of assaying lipid peroxide

Similar Documents

Publication Publication Date Title
CN107817232B (en) Automated immunoassay system for performing diagnostic assays for allergies and autoimmune diseases
JP2701949B2 (en) Test method and reagent kit therefor
US4184849A (en) Mixed agglutination
McHugh Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes
JP3958797B2 (en) Antigen-specific IgM detection
US6143510A (en) Measuring method using whole blood sample
KR920000057B1 (en) Process and reagent for the determination of a specifically bindable substance
JPWO2009084369A1 (en) Reagent for detection of HIV-1 antigen and detection method
JPH055739A (en) Preparing method of specimen for laser magnetic immunoassay
US20170227532A1 (en) Method for producing a capture phase for the detection of a biological target, and associated detection methods and kits
JP2745705B2 (en) Antigen / antibody assay
JP2596959B2 (en) Ligand assays
JP2716227B2 (en) Immunological measurement method using magnetic marker particles
JPH03216553A (en) Method and apparatus for immunoassay due to particles
JPH07117541B2 (en) Immunological measurement method using magnetic particles
JP2684425B2 (en) Latex reagent
EP0260079A1 (en) Method of assay
JPH055740A (en) Preparing methof of specimen for laser magnetic immunoassay
JP4359416B2 (en) Measuring method of substance immobilized on microparticle solid phase
JP2009069070A (en) Detecting method of target material, and kit for detection
JP3375739B2 (en) Highly sensitive immunoassay method
JPH06281652A (en) Detecting method of antibody and antigen
JPH10206427A (en) Immunoassay
JP2004117068A (en) Immunoassay reagent and immunoassay method
CA2172840C (en) Measuring method using whole blood sample