JP4359416B2 - Measuring method of substance immobilized on microparticle solid phase - Google Patents

Measuring method of substance immobilized on microparticle solid phase Download PDF

Info

Publication number
JP4359416B2
JP4359416B2 JP2002174825A JP2002174825A JP4359416B2 JP 4359416 B2 JP4359416 B2 JP 4359416B2 JP 2002174825 A JP2002174825 A JP 2002174825A JP 2002174825 A JP2002174825 A JP 2002174825A JP 4359416 B2 JP4359416 B2 JP 4359416B2
Authority
JP
Japan
Prior art keywords
measurement
solid phase
enhancer
substance
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002174825A
Other languages
Japanese (ja)
Other versions
JP2004020344A (en
JP2004020344A5 (en
Inventor
榮治 石川
卓哉 小田原
久師 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2002174825A priority Critical patent/JP4359416B2/en
Publication of JP2004020344A publication Critical patent/JP2004020344A/en
Publication of JP2004020344A5 publication Critical patent/JP2004020344A5/ja
Application granted granted Critical
Publication of JP4359416B2 publication Critical patent/JP4359416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、ヒトの臨床検査、獣医検査、食品衛生検査など多くの分野で利用される技術に関する。詳しくは、測定用酵素標識物質を含む被検物質が固定された微小粒子固相と被検物質測定用試薬溶液とを混合して被検物質を測定する方法および該測定のために使用する試薬キットに関する。
【0002】
【従来の技術】
従来、ヒトの臨床検査をはじめとして獣医検査、食品検査など多くの分野で、抗原、抗体、DNA、生理作用物質、病原関連物質、腫瘍マーカーなど種々の物質の測定は、該物質とそれらに対する特異結合物質との複合体を固相上に形成、固定またはトラップさせ、固相上の複合体を測定することにより実施されてきた。固相上の複合体を測定するためには、抗原抗体結合、DNAハイブリッド結合、ビオチン−アビジン結合、イオン結合など様々な結合を介して複合体に固定された酵素、蛍光物質、発光物質、ラジオアイソトープなどの測定用標識物質が広く使われている。複合体を形成、固定またはトラップするための固相としてマイクロプレート、ポリチレン球、ガラス球、ポリスチレンチューブの内面の他、ラテックス粒子、磁性ビーズなどの微小粒子固相が使われている。固相上の複合体および測定用標識物質を含む被検物質の測定は、測定用試薬溶液と固相とを接触させた後、測定用標識物質の種類に対応したシグナルを測定することにより実施されている。例えば、測定用標識物質が酵素の場合には、酵素が固定された固相と酵素基質を含む測定用試薬溶液とを接触させた後、測定用試薬溶液の吸光度、発光強度、蛍光強度、磁気共鳴度などが測定される。この際、測定用酵素標識物質を含む被検物質が固定された固相と測定用試薬溶液との接触が瞬時に均一となることが正確で再現性のある高感度測定に必要である。殊に固相が微小粒子固相の場合には、測定用試薬溶液との均一な混合が微小粒子固相の凝集により妨げられることがあり、測定の正確度、再現性および/または感度を低下させることが問題である。
【0003】
【発明が解決しょうとする課題】
微小粒子状の固相上に固定された測定用酵素標識物質を含む被検物質の正確度、再現性および/または感度のより高い測定を可能にすることを課題とする。
【0004】
【課題を解決するための手段】
本発明は
1.測定用酵素標識物質を含む被検物質が固定化された微小粒子固相と酵素基質とを接触させることにより生じるシグナルを測定する測定法であって、測定用酵素標識物質を含む被検物質を微小粒子固相に固定化する工程、測定用酵素標識物質を含む被検物質が固定化された微小粒子固相を分散液中に分散させる工程、および、前記微小粒子固相が分散した分散液とエンハンサーを含むエンハンサー含有溶液とを混合する工程を含んでなり、分散液およびエンハンサー含有溶液の何れか一方が酵素基質を含有し、分散液がエンハンサーを含有しないか、または被検物質の固定化された微小粒子固相の均一な分散を妨害する濃度ではエンハンサーを含まないことを特徴とする測定法。
2.被検物質が、固相上に形成、固定またはトラップされた複合体と、この複合体を測定するための測定用酵素標識物質からなり、前記複合体は、抗原、抗体、DNA、生理作用物質、病原関連物質および腫瘍マーカーのいずれかの物質と、この物質に対する特異的結合物質とからなることを特徴とする前記1に記載の測定法。
3.微小粒子固相が直径0.1〜10μmの磁性ビーズである前記1または2に記載の測定法。
4.微小粒子固相が直径0.1〜10μmのラテックス粒子である前記1または2に記載の測定法。
5.測定用酵素標識物質の酵素がアルカリホスファターゼ、ペルオキシダーゼまたはβ−D−ガラクトシダーゼであることを特徴とする前記1〜4のいずれか1に記載の測定法。
6.測定用酵素標識物質の酵素がアルカリホスファターゼまたはβ−D−ガラクトシダーゼであることを特徴とする前記1〜4のいずれか1に記載の測定法。
7.測定用標識物質が酵素であり、前記エンハンサー含有溶液が酵素基質を含有することを特徴とする前記1〜6のいずれか1に記載の測定法。
8.測定用標識物質が酵素であり、前記分散液が酵素基質を含有することを特徴とする前記1〜6のいずれか1に記載の測定法。
9.酵素基質がジオキセタン誘導体であることを特徴とする請求項1〜8のいずれか1に記載の測定法。
10.エンハンサーが界面活性剤であることを特徴とする前記1〜9のいずれか1に記載の測定法。
11.分散液がエンハンサーを含有しないことを特徴とする前記1〜10のいずれか1に記載の測定法。
12.測定用酵素標識物質を含む被検物質が固定化された微小粒子固相を分散させるための分散液、およびエンハンサーを含み前記微小粒子固相が分散された分散液に混合されるエンハンサー含有溶液を含む試薬キットであって、分散液およびエンハンサー含有液の何れか一方が酵素基質を含有し、分散液がエンハンサーを含有しないか、または被検物質の固定化された微小粒子固相の均一な分散を妨害する濃度ではエンハンサーを含まないことを特徴とする被検物質測定用試薬キット。
からなる。
【0005】
【発明の実施の形態】
以下に本発明を詳しく説明する。
本発明は、測定用酵素標識物質を含む被検物質が固定された微小粒子状固相と測定用試薬溶液とを接触させた後シグナルを計測して被検物質を測定する方法に適用することができる。
本発明において使用する固相は、好ましくは直径0.1〜10μmの微小粒子状固相であって、それらの材質、形状、製造方法などにより限定されない。例えば、市販のラテックス粒子、好ましくは磁性ビーズなどであるが、これらに限定されない。
【0006】
本発明における測定用酵素標識物質は例示により限定されないが、アルカリホスファターゼ、ペルオキシダーゼ、β−D−ガラクトシダーゼなどまたはそれらの誘導体などがそれぞれ例示される。
【0007】
測定用酵素標識物質が微小粒子状固相上の複合体に固定化される方法、固定された状態に制限はないので、測定用酵素標識物質は種々の方法で種々の状態に固定される。例示により限定されないが、例えば測定用酵素標識物質は種々の物質、種々の結合を介して微小粒子状固相上の複合体に固定される。つまり、測定用酵素標識物質は、抗原、抗体、ホルモン、病原関連物質、腫瘍マーカー、アビジン、DNA、ストレプトアビジン、ビオチンこれらのフラグメント、これらの誘導体、抗原−抗体結合、イオン結合、DNAハイブリッド結合、ビオチン−アビジン結合、ビオチン−ストレプトアビジン結合、ハプテン−抗ハプテン抗体結合などを介して微小粒子状固相上の複合体に固定される。これらは、種々の物質の免疫測定、DNAの測定などにおいて使用される物質、結合である。
【0008】
上記のように種々の方法で微小粒子状固相に固定化された被検物質を正確に、しかも再現性よく測定するためには、微小粒子状固相が被検物質の測定用試薬溶液中に凝集することなく均一に分散されていることが必要である。しかし、被検物質の測定用試薬溶液の中には、被検物質測定のために種々の物質が含まれている。例えば、ジオキセタン誘導体を基質として測定するβ−D−ガラクトシダーゼ、アルカリホスファターゼの測定用試薬溶液の中には、界面活性剤または界面活性剤様作用物質がエンハンサーとして含まれる。これにより、いったん集積された微小粒子状固相の測定用試薬溶液中への均一な分散が妨げられ、正確度、再現性および/または感度の高い被検物質の測定が妨害される。
【0009】
本発明においては、分散液中に測定用酵素標識物質を含む被検物質が固定化された微小粒子状固相を均一に分散させた後、被検物質の測定用試薬溶液と混合することにより、測定用試薬溶液中に含まれる微小粒子状固相の均一な分散を妨げる物質の効果を減弱することにより、正確度、再現性および/または感度の高い被検物質の測定を実施する。
分散液には、該固相が凝集することなく均一に分散され、正確度、再現性または/および感度の高い被検物質の測定に支障がない限り、特に制約はない。種々の物質または物質群、例えば被検物質を測定するための酵素基質、各種のタンパク質、脂質、糖質、各種血清などを含むまたは含まない既知のまたは今後開発される液、溶液または緩衝液が例示されるが、例示に限定されるものではない。pH、イオン強度なども制限はなく、分散液は単なる水でも良い。ただし、被検物質を固定化した微小粒子固相の均一な分散を妨げ、正確度、再現性または/および感度の高い被検物質の測定を妨害するエンハンサーを、該分散または/および該測定を妨害する濃度では、分散液が含まないことが重要である。該分散液の使用方法にも、該固相が例えば凝集することなく分散され被検物質が正確に、しかも再現性よくまた高感度に測定しうる限り、特に制約ない。該固相を攪拌、振とうなど、どのようにして該分散液中に分散させてもよい。該分散液の体積は測定用試薬液の体積より小さいことが好ましいが、大きくてもよい。該分散時の温度も通常20〜40℃であるが、特に限定されない。
本発明における測定用試薬溶液は、正確度、再現性および/または感度の高い被検物質の測定のために、上記の分散液に分散させた微小粒子固相とシグナルを計測する前に混合、接触させる溶液であり、したがって、該測定を可能にする物質を、該測定を可能にする濃度で含有する。例示により限定されないが、測定用試薬溶液が、酵素基質およびエンハンサーを含む場合が例示される。しかし、分散液中にすでに酵素基質が添加されている場合には、測定用試薬溶液の中には酵素基質が必ずしも含まれる必要はない。つまり、酵素基質は、いずれの段階で1回または2回以上添加してもよい。エンハンサーの添加でも同様であり、酵素基質、エンハンサーの濃度に制限はなく、酵素基質または/およびエンハンサーを含む測定用試薬の数、添加回数にも制限はない。上記の分散液中に分散させた微小粒子固相とエンハンサーを含む測定用試薬溶液を混合し、さらに酵素基質を含む測定用試薬溶液と混合してもよいが、酵素反応をより早く始めるためには、酵素基質はエンハンサーと同時かまたはエンハンサーより前に添加することが好ましい。
測定用酵素標識物質を含む被検物質を固定化した微小粒子固相を分散液中に分散させ、測定用試薬溶液と混合した後のシグナルの測定は、公知の方法または今後開発される方法により実施することができる。該微小粒子固相の濃度が低く、シグナルの測定に支障がない場合には、そのままシグナルを測定することができるが、該微小粒子固相の濃度が高く、消光などによりシグナルの測定が困難な場合は、該微小粒子固相を集積した後に、シグナルを測定することもできる(特願2001−189419)。
【0010】
本発明は、上記に説明した測定方法の実施のための固相、試薬等におよび、また、該固相および緩衝液、ブロッキング液、洗浄液、基質液、抗体、ハプテン等に例示される本発明に使用する少なくとも1の固相および/または試薬を含む測定キットにもおよぶ。さらに、本発明は、上記に説明した測定方法の実施のための固相、試薬および自動化ソフトを含む測定システムにもおよぶ。以上は例示により説明したが、本発明はこれらの例示により限定されるものではない。
【0011】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明は以下の実施例により限定されるものではない。
【0012】
【実施例1】
この実施例では、ヒトB型肝炎ウイルス表面抗原(HBsAg)および抗HBsAg抗体を少なくとも含む複合体並びにアルカリホスファターゼ(ALP)を含む被検物質を固定した磁性ビーズについてALPの発光測定する方法おいて、該磁性ビーズを予めALP活性測定用試薬溶液以外の緩衝液により分散することの効果を示す。
【0013】
(材料と方法)
・磁性ビーズ
MG210(直径1.7μm、比重1.3)
JSR Corporation、Tokyo、Japan
・アルカリホスファターゼ(以下ALPと記載)
Oriental Yeat Co.,Ltd.,Tokyo,Japan
・モノクローナル抗体
抗ヒトB型肝炎ウイルス表面抗原(以下HBsAgと記載)IgG−649および85ならびに抗2,4−ジニトロフェニル基(以下DNPと記載)IgG−1753
International Reagents Corporation、Kobe、 Japan
・DNPビオチン−抗HBsAg Fab’とALP−抗HBsAg Fab’
DNP化ビオチン化ウシ血清アルブミン−抗HBsAg Fab’−649(DNP−ビオチン−抗HBsAg Fab’)とALP−抗HBsAg Fab’−85(ALP−抗HBsAg Fab’)をマレイミド基とチオール基の反応を使う公知の方法(E. Ishikawa, Ultrasensitive and Rapid Enzyme Immunoassay, Laboratory Techniques in Biochemistry and Molecular Biology Vol.27, S. Pillai, P.C. van der Vliet eds.,Elsevier, Amsterdam, pp.141−176, 1999)により調製した。
・ブロッキング液
0.15M NaCl、2.5mM EDTA、2.5g/Lウシ血清アルブミン、10g/Lシュークロース、1g/L NaN3 を含む10mM リン酸ナトリウム緩衝液、pH7.0
・抗DNPIgG不溶化磁性ビーズ
磁性ビーズにモノクローナル抗DNPIgG−1753をJSR Corporationの指示書に従って不溶化し、ブロッキング液で洗浄した後、4℃で同液中に保存した。
・DNP−ビオチン−抗HBsAg Fab’、ALP−抗HBsAg Fab’、HBsAg、抗DNPIgG不溶化磁性ビーズおよびストレプトアビジン不溶化磁性ビーズの希釈液
TEA緩衝液
・TEA緩衝液
1mM MgCl2 、0.1mM ZnCl2 、1g/L ウシ血清アルブミン、0.5g/L NaN3 を含む0.1Mトリエタノラミン・HCl緩衝液、pH7.6
・ALP用洗浄液
0.15M NaCl、0.1% Tween20、1g/L NaN3 を含む20mM Tris−HCl緩衝液、pH7.4
・インキュベーション温度
非競合的転移固相測定法の全工程におけるインキュベーション温度は37℃とした。
・DNP−ビオチン−抗HBsAg Fab’の抗DNPIgG不溶化磁性ビーズへの結合
100pmol/mLのDNP−ビオチン−抗HBsAg Fab’、25μLとTEA緩衝液で洗浄した抗DNPIgG不溶化磁性ビーズ、0.5mgを10分間インキュベートした後、磁性ビーズを10秒間の磁気分離により分離し、上清を吸引除去した後、ALP用洗浄液200μLで10秒間の磁気分離により1回洗浄し、TEA緩衝液80μLで懸濁した。
・HBsAgのDNP−ビオチン−抗HBsAg Fab’結合抗DNPIgG不溶化磁性ビーズへの結合
2.5IU/mLのHBsAg20μLと上記の洗浄したDNP−ビオチン−抗HBsAg Fab’結合抗DNPIgG不溶化磁性ビーズを2分間インキュベートした後、該磁性ビーズをALP用洗浄液200μLで10秒間の磁気分離により1回洗浄した。
・ALP−抗HBsAg Fab’のHBsAg結合DNP−ビオチン−抗HBsAg Fab’結合抗DNPIgG不溶化磁性ビーズへの結合
4.8pmol/mLのALP−抗HBsAg Fab’、100μLと上記の洗浄したHBsAg結合DNP−ビオチン−抗HBsAg Fab’結合抗DNPIgG不溶化磁性ビーズを1分間インキュベートした後、ALP用洗浄液200μLで10秒間の磁気分離により1回洗浄した。
・リン緩衝液
0.5g/L NaN3 を含む0.1M リン酸ナトリウム緩衝液、pH7.5
・ストレプトアビジン
TypeII、Wako Pure Chemical Industries,Ltd, Osaka,Japan
・DNP−Lys液
3mM εN−2.4−ジトロフェニル−L−リジンを含むTEA緩衝液
・ストレプトアビジン不溶化磁性ビーズ
ビオチン化ウシ血清アルブミンを、公知の方法(E. Ishikawa, Ultrasensitiveand Rapid Enzyme Immunoassay, Laboratory Techniques in Biochemistry andMolecular Biology Vol.27, S. Pillai, P.C van der Vliet eds.,Elsevier, Amsterdam, pp.141−176, 1999)により調製し、これをJSR Corporationの指示書にしたがって磁性ビーズに不溶化した後、30μg/mLのストレプトアビジンをリン酸緩衝液に溶解して反応させ、リン酸緩衝液で1回洗浄、ブロッキング液中に4℃で保存した。
・免疫複合体の抗DNPIgG不溶化磁性ビーズからの溶出
上記のDNP−ビオチン−抗HBsAg Fab’、HBsAg、ALP−抗HBsAg Fab’の3者からなる免疫複合体を結合させた抗DNPIgG不溶化磁性ビーズとDNP−Lys液100μLを0.5分間インキュベートした後、該磁性ビーズを磁石により15秒間集積した上清を溶出液とした。
・免疫複合体のストレプトアビジン不溶化磁性ビーズヘの結合
上記溶出液とストレプトアビジン不溶化磁性ビーズ0.5mgを1分間インキュベートした後、該磁性ビーズを磁石により10秒間集積し、上清を除去した後、ALP用洗浄液200μL中に該磁注ビーズを分散させ、再び10秒間磁石により集積して直ちに上清を除去することにより1回洗浄した。
・ALP発光基質液
CDP−star ready to use with Sapphire II、Tropix,Inc.,Bedford,MA
・ALP分散液
1M ジエタノラミン・HCl緩衝液、pH10.0
・発光測定装置
Lumicounter2500、Microtec Co.Ltd.、Chiba、Japan
・ALP結合磁性ビーズのALP活性の測定
測定1:上記の洗浄したALP結合磁性ビーズを、30μLの分散液中に分散し、基質液100μLと混合し、37℃、2.75分間インキュベートした後、該磁性ビーズを磁石で集積した上清の0.1秒間の発光量を同時に5例測定した。
測定2:上記の洗浄したALP結合磁性ビーズを、分散液30μLと基質液100μLの混合液130μL中に分散し、37℃、2.75分間インキュベートした後、該磁性ビーズを磁石で集積した上清の0.1秒間の発光量を同時に5例測定した。
【0014】
(結果)
実施例1の結果を表1に示す。
ALP結合磁性ビーズを基質とエンハンサーを含まない分散液中に予め分散させた後、基質とエンハンサーを含む基質液と混合してALP活性を測定したときの発光強度は92,892、再現性はCV2.8%(5例)であった。基質液と分散液の混合液中に直接分散させてALP活性を測定したときの発光強度は63,228、再現性CVは19.4%と非常に高かった。つまり、ALP結合磁性ビーズを、エンハンサーを含まない分散液で予め分散した後、基質とエンハンサーを含む測定用試薬溶液と混合して発光強度を測定することにより、シグナルとしての発光強度、したがって感度も再現性もともに、分散液を使用しないで該磁性ビーズを酵素基質とエンハンサーを含む測定用試薬溶液と直接混合した場合に比べて格段に改善された。
【0015】
【実施例2】
この実施例では、実施例1と同様の磁性ビーズについてALPの発光を測定する方法において、エンハンサーより前酵素基質添加することの効果を示す。
【0016】
(材料と方法)
以下に示す材料と方法の他は、実施例1のそれらと同じである。
・基質液
基質としてのCDP−starのみを含む溶液、トロピックス社。
・エンハンサー液
エンハンサーとしてのSapphireIIのみを含む溶液、トロピックス社。
・ALP結合磁性ビーズのALP活性の測定
測定1:洗浄したALP結合磁性ビーズを、分散液30μLと基質液90μLの混合液中に分散し、その15秒後に実施例1で添加したALP発光基質液(基質CDP−star とエンハンサーSapphireIIを含む)の代わりにエンハンサー液10μLを添加し、実施例1と同様にインキュベートし、発光強度を測定した。
測定2:エンハンサー液10μLを測定1における添加より2分15秒遅れで添加した以外は、測定1と同様にして測定した。
【0017】
(結果)
実施例2の結果を表2に示す。
エンハンサーを基質の添加より遅れて添加し、エンハンサーの添加から発光測定までの時間を短縮することにより、発光強度は、121,500から79,090に低下した。この結果は、エンハンサーを可及的早期に添加することにより高いシグナル、つまり高い感度が得られることを示すと同時に、エンハンサー非存在下でも酵素反応が進むことを示しているので、エンハンサーを添加することができない早い段階で、例えば分散液添加の段階で基質を添加することにより、それだけ高いシグナルを得ることができることをも示している。
【0018】
【表1】

Figure 0004359416
【0019】
【表2】
Figure 0004359416
[0001]
[Technical field to which the invention belongs]
The present invention relates to techniques used in many fields such as human clinical examinations, veterinary examinations, and food hygiene examinations. More specifically, a method for measuring a test substance by mixing a microparticle solid phase on which a test substance containing an enzyme labeling substance for measurement is fixed and a reagent solution for measuring the test substance, and a reagent used for the measurement About the kit.
[0002]
[Prior art]
Conventionally, in many fields such as human clinical examinations, veterinary examinations, food examinations, measurement of various substances such as antigens, antibodies, DNA, physiologically active substances, pathogen-related substances, tumor markers, etc. A complex with a binding substance has been formed, immobilized or trapped on a solid phase, and the complex on the solid phase has been measured. In order to measure the complex on the solid phase, an enzyme, fluorescent substance, luminescent substance, radio, etc. immobilized on the complex through various bonds such as antigen-antibody bond, DNA hybrid bond, biotin-avidin bond, ionic bond, etc. Labeling substances for measurement such as isotopes are widely used. As a solid phase for forming, fixing, or trapping a complex, a microparticle solid phase such as a latex plate or a magnetic bead is used in addition to the inner surface of a microplate, a polyethylene sphere, a glass sphere, or a polystyrene tube. Measurement of the test substance containing the complex on the solid phase and the labeling substance for measurement is performed by contacting the reagent solution for measurement with the solid phase and then measuring the signal corresponding to the type of the labeling substance for measurement. Has been. For example, when the measurement labeling substance is an enzyme, the absorbance, luminescence intensity, fluorescence intensity, magnetic properties of the measurement reagent solution are brought into contact with the measurement reagent solution containing the enzyme substrate and the solid phase on which the enzyme is immobilized. such as resonance degree of Ru is measured. During this, it is necessary for high sensitivity measurements contact that is uniform instantaneously accurate and reproducible with the solid phase analyte is fixed to the measuring reagent solution containing a measuring enzyme-labeled substance. In particular, when the solid phase is a microparticle solid phase, uniform mixing with the measurement reagent solution may be hindered by aggregation of the microparticle solid phase, reducing the accuracy, reproducibility and / or sensitivity of the measurement. Is the problem.
[0003]
[Problems to be solved by the invention]
It is an object to enable measurement with higher accuracy, reproducibility, and / or sensitivity of a test substance containing a measurement enzyme labeling substance immobilized on a fine particle solid phase.
[0004]
[Means for Solving the Problems]
The present invention relates to 1. A measurement method for measuring a signal generated by bringing a solid particle solid phase on which a test substance containing a measurement enzyme labeling substance is immobilized into contact with an enzyme substrate, and comprising a test substance containing the measurement enzyme labeling substance A step of immobilizing on a microparticle solid phase, a step of dispersing a microparticle solid phase in which a test substance containing an enzyme labeling substance for measurement is immobilized, in a dispersion, and a dispersion in which the microparticle solid phase is dispersed And an enhancer-containing solution containing an enhancer, wherein either the dispersion liquid or the enhancer-containing solution contains an enzyme substrate, and the dispersion liquid does not contain an enhancer, or immobilization of a test substance A measurement method characterized in that it does not contain an enhancer at a concentration that interferes with the uniform dispersion of the solid phase of the fine particles .
2. A test substance consists of a complex formed, fixed or trapped on a solid phase, and an enzyme labeling substance for measurement for measuring this complex. The complex consists of an antigen, an antibody, DNA, and a physiologically active substance. 2. The method according to 1 above, comprising any one of a pathogen-related substance and a tumor marker, and a specific binding substance for the substance.
3. 3. The measuring method according to 1 or 2 above, wherein the fine particle solid phase is a magnetic bead having a diameter of 0.1 to 10 μm.
4). 3. The measuring method according to 1 or 2 above, wherein the fine particle solid phase is latex particles having a diameter of 0.1 to 10 μm.
5. 5. The measuring method according to any one of 1 to 4, wherein the enzyme of the enzyme labeling substance for measurement is alkaline phosphatase, peroxidase or β-D-galactosidase.
6). 5. The method according to any one of 1 to 4, wherein the enzyme of the enzyme labeling substance for measurement is alkaline phosphatase or β-D-galactosidase.
7). 7. The measuring method according to any one of 1 to 6, wherein the labeling substance for measurement is an enzyme, and the enhancer-containing solution contains an enzyme substrate.
8). 7. The measuring method according to any one of 1 to 6, wherein the labeling substance for measurement is an enzyme, and the dispersion liquid contains an enzyme substrate.
9. The method according to claim 1, wherein the enzyme substrate is a dioxetane derivative.
10. 10. The measuring method according to any one of 1 to 9, wherein the enhancer is a surfactant.
11. Measurement method according to any one of the 1 to 10 dispersion and wherein the go, such contain enhancer.
12 A dispersion for dispersing a microparticle solid phase on which a test substance containing an enzyme labeling substance for measurement is immobilized, and an enhancer-containing solution that includes an enhancer and is mixed with the dispersion in which the microparticle solid phase is dispersed A reagent kit containing either a dispersion liquid or an enhancer-containing liquid containing an enzyme substrate, and the dispersion liquid does not contain an enhancer, or uniform dispersion of a microparticle solid phase on which a test substance is immobilized A reagent kit for measuring a test substance, which does not contain an enhancer at a concentration that interferes with
Consists of.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present invention is applied to a method for measuring a test substance by measuring a signal after contacting a microparticulate solid phase to which a test substance containing an enzyme labeling substance for measurement is fixed and a reagent solution for measurement. Can do.
The solid phase used in the present invention is preferably a fine particulate solid phase having a diameter of 0.1 to 10 μm, and is not limited by the material, shape, manufacturing method, and the like. Examples thereof include commercially available latex particles, preferably magnetic beads, but are not limited thereto.
[0006]
Enzyme-labeled substance for measurement in the present invention is not limited by examples, A alkaline phosphatase, peroxidase, beta-D-galactosidase of earthen others are exemplified their derivatives etc., respectively.
[0007]
How measuring the enzyme-labeled substance is immobilized to the complex of the above fine particulate solid phase, since the fixed state is no limit, measuring the enzyme-labeled substance is fixed to the various conditions in various ways. Although not limited by exemplification, for example, the enzyme labeling substance for measurement is immobilized on a complex on a microparticulate solid phase via various substances and various bonds. That is, the enzyme labeling substance for measurement is antigen, antibody, hormone, pathogen-related substance, tumor marker, avidin, DNA, streptavidin, biotin fragments thereof, derivatives thereof, antigen-antibody bond, ion bond, DNA hybrid bond, It is immobilized on a complex on a microparticulate solid phase via a biotin-avidin bond, a biotin-streptavidin bond, a hapten-anti-hapten antibody bond, or the like. These are substances and bonds used in immunoassays of various substances, DNA measurements and the like.
[0008]
As described above, in order to accurately and reproducibly measure the test substance immobilized on the microparticulate solid phase by various methods, the microparticulate solid phase is contained in the reagent solution for measuring the test substance. It is necessary to be uniformly dispersed without agglomeration. However, the reagent solution for measuring the test substance contains various substances for the test substance measurement. For example, a β-D-galactosidase or alkaline phosphatase measurement reagent solution that uses a dioxetane derivative as a substrate contains a surfactant or a surfactant-like substance as an enhancer. This prevents uniform dispersion of the microparticulate solid phase once accumulated in the measuring reagent solution, thereby hindering measurement of a test substance with high accuracy, reproducibility and / or sensitivity.
[0009]
In the present invention, a fine particulate solid phase in which a test substance containing a measurement enzyme labeling substance is immobilized in a dispersion is uniformly dispersed, and then mixed with a measurement reagent solution for the test substance. The measurement of the test substance with high accuracy, reproducibility and / or sensitivity is performed by attenuating the effect of the substance that prevents the uniform dispersion of the microparticulate solid phase contained in the measurement reagent solution.
The dispersion is not particularly limited as long as the solid phase is uniformly dispersed without agglomeration and there is no hindrance to measurement of a test substance with high accuracy, reproducibility, and / or sensitivity. Known or later-developed solutions, solutions or buffers containing or not containing various substances or substance groups, such as enzyme substrates for measuring test substances, various proteins, lipids, carbohydrates, various sera, etc. Although illustrated, it is not limited to an illustration. There are no restrictions on pH, ionic strength, etc., and the dispersion may be simple water. However, an enhancer that prevents uniform dispersion of the microparticle solid phase to which the test substance is immobilized and interferes with measurement of a test substance with high accuracy, reproducibility, and / or sensitivity, At concentrations that interfere, it is important that no dispersion be present. The method of using the dispersion is not particularly limited as long as the solid phase is dispersed without aggregation, for example, and the test substance can be measured accurately, with good reproducibility and with high sensitivity. The solid phase may be dispersed in the dispersion by any method such as stirring and shaking. The volume of the dispersion is preferably smaller than the volume of the reagent solution for measurement, but may be larger. The temperature at the time of dispersion is usually 20 to 40 ° C., but is not particularly limited.
The measurement reagent solution in the present invention is mixed with the microparticle solid phase dispersed in the above dispersion liquid and measuring the signal for measurement of a test substance with high accuracy, reproducibility and / or sensitivity, The solution to be contacted and thus contains the substance that allows the measurement in a concentration that allows the measurement. Although not limited by illustration, the case where the reagent solution for measurement contains an enzyme substrate and an enhancer is illustrated. However, when an enzyme substrate is already added to the dispersion, the enzyme substrate does not necessarily need to be contained in the measurement reagent solution. That is, the enzyme substrate may be added once or twice or more at any stage. The same applies to the addition of an enhancer, and the concentration of the enzyme substrate and enhancer is not limited, and the number of the reagent for measurement containing the enzyme substrate or / and enhancer and the number of additions are not limited. The fine particle solid phase dispersed in the above dispersion and the measurement reagent solution containing the enhancer may be mixed and further mixed with the measurement reagent solution containing the enzyme substrate. Preferably, the enzyme substrate is added at the same time as the enhancer or before the enhancer.
Signal measurement after dispersing a microparticle solid phase in which a test substance containing an enzyme labeling substance for measurement is immobilized in a dispersion and mixing it with a reagent solution for measurement is performed by a known method or a method developed in the future. Can be implemented. If the concentration of the microparticle solid phase is low and there is no hindrance in the signal measurement, the signal can be measured as it is, but the concentration of the microparticle solid phase is high and it is difficult to measure the signal due to quenching or the like. In this case, the signal can also be measured after accumulating the microparticle solid phase (Japanese Patent Application No. 2001-189419).
[0010]
The present invention includes solid phases, reagents, and the like for carrying out the measurement methods described above, and also exemplified by the solid phases and buffers, blocking solutions, washing solutions, substrate solutions, antibodies, haptens, etc. It also extends to a measurement kit comprising at least one solid phase and / or reagent used in the above. Furthermore, the present invention extends to a measurement system including a solid phase, a reagent, and automation software for carrying out the measurement method described above. Although the above was demonstrated by the illustration, this invention is not limited by these illustrations.
[0011]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[0012]
[Example 1]
In this example, a method for measuring ALP luminescence on a magnetic bead on which a test substance containing at least a complex containing human hepatitis B virus surface antigen (HBsAg) and an anti-HBsAg antibody and alkaline phosphatase (ALP) is immobilized . There are, it shows the effect of dispersing the said magnetic beads previously ALP activity measuring reagent solution other than the buffer.
[0013]
(Materials and methods)
・ Magnetic beads MG210 (diameter 1.7μm, specific gravity 1.3)
JSR Corporation, Tokyo, Japan
・ Alkaline phosphatase (hereinafter referred to as ALP)
Oriental Yeat Co. , Ltd., Ltd. , Tokyo, Japan
Monoclonal antibodies Anti-human hepatitis B virus surface antigen (hereinafter referred to as HBsAg) IgG-649 and 85 and anti-2,4-dinitrophenyl group (hereinafter referred to as DNP) IgG-1753
International Reagents Corporation, Kobe, Japan
DNP biotin-anti-HBsAg Fab ′ and ALP-anti-HBsAg Fab ′
DNP biotinylated bovine serum albumin-anti-HBsAg Fab′-649 (DNP-biotin-anti-HBsAg Fab ′) and ALP-anti-HBsAg Fab′-85 (ALP-anti-HBsAg Fab ′) were reacted with maleimide group and thiol group. Known methods to be used (E. Ishikawa, Ultrasensitive and Rapid Enzyme Immunoassay, Laboratory Techniques in Biochemistry, P., p. I., P., et al., Bio. 1999).
Blocking solution 10 mM sodium phosphate buffer, pH 7.0 containing 0.15 M NaCl, 2.5 mM EDTA, 2.5 g / L bovine serum albumin, 10 g / L sucrose, 1 g / L NaN3
Anti-DNPIgG Insolubilized Magnetic Beads Monoclonal anti-DNPIgG-1753 was insolubilized in magnetic beads according to the instructions of JSR Corporation, washed with a blocking solution, and stored in the same solution at 4 ° C.
DNP-biotin-anti-HBsAg Fab ′, ALP-anti-HBsAg Fab ′, HBsAg, anti-DNPIgG insolubilized magnetic beads and streptavidin insolubilized magnetic beads dilution TEA buffer TEA buffer 1 mM MgCl2, 0.1 mM ZnCl2, 1 g / L Bovine serum albumin, 0.1 M triethanolamine / HCl buffer solution containing 0.5 g / L NaN3, pH 7.6
Washing solution for ALP 20 mM Tris-HCl buffer solution containing 0.15 M NaCl, 0.1% Tween 20, 1 g / L NaN3, pH 7.4
Incubation temperature The incubation temperature in all steps of the non-competitive transfer solid phase measurement method was 37 ° C.
Binding of DNP-biotin-anti-HBsAg Fab ′ to anti-DNPIgG insolubilized magnetic beads 100 μmol / mL DNP-biotin-anti-HBsAg Fab ′, 25 μL and 10 mg of anti-DNPIgG insoluble magnetic beads washed with TEA buffer After incubating for a minute, the magnetic beads were separated by magnetic separation for 10 seconds, and the supernatant was removed by aspiration, then washed once by 200 μL of ALP washing solution for 10 seconds and suspended in 80 μL of TEA buffer.
Binding of HBsAg to DNP-biotin-anti-HBsAg Fab′-conjugated anti-DNPIgG insolubilized magnetic beads Incubate 20 μL of 2.5 IU / mL HBsAg and the washed DNP-biotin-anti-HBsAg Fab′-conjugated anti-DNPIgG insoluble magnetic beads for 2 minutes. After that, the magnetic beads were washed once with 200 μL of ALP washing solution by magnetic separation for 10 seconds.
Binding of ALP-anti-HBsAg Fab ′ to HBsAg-bound DNP-biotin-anti-HBsAg Fab′-bound anti-DNP IgG insolubilized magnetic beads 4.8 pmol / mL ALP-anti-HBsAg Fab ′, 100 μL and washed HBsAg-bound DNP- The biotin-anti-HBsAg Fab′-conjugated anti-DNPIgG insolubilized magnetic beads were incubated for 1 minute and then washed once with 200 μL of ALP washing solution for 10 seconds.
Phosphorus buffer solution 0.1 M sodium phosphate buffer solution containing 0.5 g / L NaN3, pH 7.5
Streptavidin Type II, Wako Pure Chemical Industries, Ltd, Osaka, Japan
-TEA buffer solution containing 3 mM εN-2.4-ditrophenyl-L-lysine-DNP-Lys solution-Streptavidin-insolubilized magnetic beads Biotinylated bovine serum albumin was prepared by a known method (E. Ishikawa, Ultrasensitive N Rapid Immunoassay, Immuno Immunoassay). in Biochemistry and Molecular Biology Vol. 27, S. Pillai, P. C van der Vliet eds., Elsevier, Amsterdam, pp. 141-176, 1999), which is insolubilized by JSR Corporation beads. And 30 μg / mL streptavidin in phosphate buffer The reaction was dissolved in the solution, washed once with a phosphate buffer, and stored at 4 ° C. in a blocking solution.
-Elution of immunocomplex from anti-DNPIgG-insolubilized magnetic beads Anti-DNPIgG-insolubilized magnetic beads to which the above-mentioned immune complex consisting of DNP-biotin-anti-HBsAg Fab ′, HBsAg, ALP-anti-HBsAg Fab ′ is bound After incubating 100 μL of the DNP-Lys solution for 0.5 minutes, the supernatant obtained by accumulating the magnetic beads with a magnet for 15 seconds was used as an eluate.
Binding of immune complex to streptavidin-insolubilized magnetic beads 0.5 mg of the above eluate and streptavidin-insolubilized magnetic beads were incubated for 1 minute, and then the magnetic beads were accumulated with a magnet for 10 seconds. After removing the supernatant, ALP The magnetically-poured beads were dispersed in 200 μL of the cleaning solution for washing, and once again collected by accumulating with a magnet for 10 seconds and immediately removing the supernatant.
ALP luminescent substrate solution CDP-star ready to use With Sapphire II, Tropix, Inc. , Bedford, MA
ALP dispersion 1M Dietanolamine / HCl buffer, pH 10.0
-Luminescence measuring device Lumicounter 2500, Microtec Co. Ltd .. , Chiba, Japan
Measurement of ALP activity of ALP-bound magnetic beads Measurement 1: The washed ALP-bound magnetic beads were dispersed in 30 μL of dispersion, mixed with 100 μL of substrate solution, incubated at 37 ° C. for 2.75 minutes, Five cases of the amount of luminescence per 0.1 second of the supernatant obtained by collecting the magnetic beads with a magnet were measured simultaneously.
Measurement 2: The washed ALP-coupled magnetic beads were dispersed in 130 μL of a mixed solution of 30 μL of dispersion and 100 μL of substrate solution, incubated at 37 ° C. for 2.75 minutes, and then the magnetic beads were collected with a magnet. The amount of light emission for 0.1 seconds was measured simultaneously for 5 cases.
[0014]
(result)
The results of Example 1 are shown in Table 1.
The luminescence intensity is 92,892 and the reproducibility is CV2 when ALP-bound magnetic beads are dispersed in a dispersion liquid not containing a substrate and an enhancer and then mixed with a substrate solution containing a substrate and an enhancer to measure ALP activity. 8% (5 cases). When the ALP activity was measured by directly dispersing in a mixed solution of the substrate solution and the dispersion, the luminescence intensity was 63,228 and the reproducibility CV was very high at 19.4%. In other words, the ALP-bound magnetic beads are dispersed in advance in a dispersion containing no enhancer, and then mixed with a measuring reagent solution containing a substrate and an enhancer to measure the luminescence intensity. Both reproducibility was significantly improved as compared with the case where the magnetic beads were directly mixed with a measuring reagent solution containing an enzyme substrate and an enhancer without using a dispersion.
[0015]
[Example 2]
In this embodiment, a method for measuring the emission of ALP for similar magnetic beads as in Example 1, shows the effect of adding an enzyme substrate before the enhancer.
[0016]
(Materials and methods)
The materials and methods described below are the same as those in Example 1.
-Substrate solution A solution containing only CDP-star as a substrate, Tropics.
Enhancer solution A solution containing only Sapphire II as an enhancer, Tropics.
Measurement of ALP activity of ALP-bound magnetic beads Measurement 1: Washed ALP-bound magnetic beads were dispersed in a mixture of 30 μL of dispersion and 90 μL of substrate solution, and 15 seconds later, the ALP luminescent substrate solution added in Example 1 Instead of the substrate CDP-star and the enhancer Sapphire II, 10 μL of an enhancer solution was added, incubated in the same manner as in Example 1, and the luminescence intensity was measured.
Measurement 2: Measured in the same manner as Measurement 1 except that 10 μL of enhancer solution was added with a delay of 2 minutes and 15 seconds from the addition in Measurement 1.
[0017]
(result)
The results of Example 2 are shown in Table 2.
The luminescence intensity was reduced from 121,500 to 79,090 by adding the enhancer later than the addition of the substrate and shortening the time from the addition of the enhancer to the luminescence measurement. This result shows that adding an enhancer as early as possible gives a high signal, that is, high sensitivity, and at the same time indicates that the enzymatic reaction proceeds even in the absence of an enhancer. It has also been shown that a higher signal can be obtained by adding the substrate at an early stage where it is not possible, for example, at the stage of dispersion addition.
[0018]
[Table 1]
Figure 0004359416
[0019]
[Table 2]
Figure 0004359416

Claims (12)

測定用酵素標識物質を含む被検物質が固定化された微小粒子固相と酵素基質とを接触させることにより生じるシグナルを測定する測定法であって、測定用酵素標識物質を含む被検物質を微小粒子固相に固定化する工程、測定用酵素標識物質を含む被検物質が固定化された微小粒子固相を分散液中に分散させる工程、および、前記微小粒子固相が分散した分散液とエンハンサーを含むエンハンサー含有溶液とを混合する工程を含んでなり、分散液およびエンハンサー含有溶液の何れか一方が酵素基質を含有し、分散液がエンハンサーを含有しないか、または被検物質の固定化された微小粒子固相の均一な分散を妨害する濃度ではエンハンサーを含まないことを特徴とする測定法。A measurement method for measuring a signal generated by bringing a solid particle solid phase on which a test substance containing a measurement enzyme labeling substance is immobilized into contact with an enzyme substrate, and comprising a test substance containing the measurement enzyme labeling substance A step of immobilizing on a microparticle solid phase, a step of dispersing a microparticle solid phase in which a test substance containing an enzyme labeling substance for measurement is immobilized, in a dispersion, and a dispersion in which the microparticle solid phase is dispersed And an enhancer-containing solution containing an enhancer, wherein either the dispersion liquid or the enhancer-containing solution contains an enzyme substrate, and the dispersion liquid does not contain an enhancer, or immobilization of a test substance A measurement method characterized in that it does not contain an enhancer at a concentration that interferes with the uniform dispersion of the solid phase of the fine particles . 被検物質が、固相上に形成、固定またはトラップされた複合体と、この複合体を測定するための測定用酵素標識物質からなり、前記複合体は、抗原、抗体、DNA、生理作用物質、病原関連物質および腫瘍マーカーのいずれかの物質と、この物質に対する特異的結合物質とからなることを特徴とする請求項1に記載の測定法。  A test substance consists of a complex formed, fixed or trapped on a solid phase, and an enzyme labeling substance for measurement for measuring this complex. The complex consists of antigen, antibody, DNA, physiologically active substance. The method according to claim 1, comprising any one of a pathogen-related substance and a tumor marker, and a specific binding substance for the substance. 微小粒子固相が直径0.1〜10μmの磁性ビーズである請求項1または2に記載の測定法。  The measuring method according to claim 1 or 2, wherein the fine particle solid phase is a magnetic bead having a diameter of 0.1 to 10 µm. 微小粒子固相が直径0.1〜10μmのラテックス粒子である請求項1または2に記載の測定法。  The measuring method according to claim 1 or 2, wherein the fine particle solid phase is latex particles having a diameter of 0.1 to 10 µm. 測定用酵素標識物質の酵素がアルカリホスファターゼ、ペルオキシダーゼまたはβ−D−ガラクトシダーゼであることを特徴とする請求項1〜4のいずれか1に記載の測定法。  The method according to any one of claims 1 to 4, wherein the enzyme of the enzyme labeling substance for measurement is alkaline phosphatase, peroxidase or β-D-galactosidase. 測定用酵素標識物質の酵素がアルカリホスファターゼまたはβ−D−ガラクトシダーゼであることを特徴とする請求項1〜4のいずれか1に記載の測定法。  The measurement method according to any one of claims 1 to 4, wherein the enzyme of the enzyme labeling substance for measurement is alkaline phosphatase or β-D-galactosidase. 前記エンハンサー含有溶液が酵素基質を含有することを特徴とする請求項1〜6のいずれか1に記載の測定法。  The measurement method according to claim 1, wherein the enhancer-containing solution contains an enzyme substrate. 前記分散液が酵素基質を含有することを特徴とする請求項1〜6のいずれか1に記載の測定法。  The measurement method according to claim 1, wherein the dispersion contains an enzyme substrate. 酵素基質がジオキセタン誘導体であることを特徴とする請求項1〜8のいずれか1に記載の測定法。  The method according to claim 1, wherein the enzyme substrate is a dioxetane derivative. エンハンサーが界面活性剤であることを特徴とする請求項1〜9のいずれか1に記載の測定法。  The measuring method according to any one of claims 1 to 9, wherein the enhancer is a surfactant. 分散液がエンハンサーを含有しないことを特徴とする請求項1〜10のいずれか1に記載の測定法。Measurement method according to any one of claims 1 to 10 dispersion and wherein the go, such contain enhancer. 測定用酵素標識物質を含む被検物質が固定化された微小粒子固相を分散させるための分散液、およびエンハンサーを含み前記微小粒子固相が分散された分散液に混合されるエンハンサー含有溶液を含む試薬キットであって、分散液およびエンハンサー含有液の何れか一方が酵素基質を含有し、分散液がエンハンサーを含有しないか、または被検物質の固定化された微小粒子固相の均一な分散を妨害する濃度ではエンハンサーを含まないことを特徴とする被検物質測定用試薬キット。A dispersion for dispersing a microparticle solid phase on which a test substance containing an enzyme labeling substance for measurement is immobilized, and an enhancer-containing solution that includes an enhancer and is mixed with the dispersion in which the microparticle solid phase is dispersed A reagent kit containing either a dispersion liquid or an enhancer-containing liquid containing an enzyme substrate, and the dispersion liquid does not contain an enhancer, or uniform dispersion of a microparticle solid phase on which a test substance is immobilized A reagent kit for measuring a test substance, which does not contain an enhancer at a concentration that interferes with
JP2002174825A 2002-06-14 2002-06-14 Measuring method of substance immobilized on microparticle solid phase Expired - Lifetime JP4359416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174825A JP4359416B2 (en) 2002-06-14 2002-06-14 Measuring method of substance immobilized on microparticle solid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174825A JP4359416B2 (en) 2002-06-14 2002-06-14 Measuring method of substance immobilized on microparticle solid phase

Publications (3)

Publication Number Publication Date
JP2004020344A JP2004020344A (en) 2004-01-22
JP2004020344A5 JP2004020344A5 (en) 2005-10-13
JP4359416B2 true JP4359416B2 (en) 2009-11-04

Family

ID=31173699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174825A Expired - Lifetime JP4359416B2 (en) 2002-06-14 2002-06-14 Measuring method of substance immobilized on microparticle solid phase

Country Status (1)

Country Link
JP (1) JP4359416B2 (en)

Also Published As

Publication number Publication date
JP2004020344A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
CN107817232B (en) Automated immunoassay system for performing diagnostic assays for allergies and autoimmune diseases
US4241176A (en) Magnetic gel suitable to immunoenzymatic determinations
JP4668768B2 (en) Immunoassay method and non-specific reaction suppression method
JPH03502244A (en) Test method and reagent kit
JP2003506684A (en) A method for simultaneous detection of both members of a binding pair
US6143510A (en) Measuring method using whole blood sample
JP2021533384A (en) How to detect biomarkers
JP3623657B2 (en) Nonspecific reaction inhibitor, immunoassay reagent and immunoassay method
CN107589249B (en) Antibody reagent for detecting test substance by immunocomplex transfer method, method for producing same, and use of antibody reagent
US6489131B1 (en) Interference reduction by rheumatoid factors
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
JP2004510161A (en) Method and kit for reducing interference of serum or plasma containing assay samples in a specific binding assay by using a high molecular weight polycation
CN117054645A (en) Thyroglobulin measurement method and measurement reagent
EP1079231A1 (en) Immunoassay reagents and immunoassay method
JP4359416B2 (en) Measuring method of substance immobilized on microparticle solid phase
JP3216452B2 (en) Immunoassay method and device
Sun et al. Establishment of multiplexed, microsphere-based flow cytometric assay for multiple human tumor markers
JPH03170058A (en) Reagent complex for immunoassay
JPH03225277A (en) Immunochemical measuring method for multiple items
JPH08220095A (en) Heterogeneous immunoassay using solid phase that can undergosedimentation
JP4556605B2 (en) Target substance measurement method and reagent
JP2005512074A (en) Method for reducing non-specific assembly of latex microparticles in the presence of serum or plasma
JP2004037394A (en) Quick supersensitive solid phase measuring method by extremely-low nonspecific signal solid phase
JP2002196000A (en) New method for assaying suppressed nonspecific reaction caused by analog
JP2003232793A (en) Method for rapidly solid-phase measuring high concentration magnetic beads

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term