JP4556605B2 - Target substance measurement method and reagent - Google Patents

Target substance measurement method and reagent Download PDF

Info

Publication number
JP4556605B2
JP4556605B2 JP2004296377A JP2004296377A JP4556605B2 JP 4556605 B2 JP4556605 B2 JP 4556605B2 JP 2004296377 A JP2004296377 A JP 2004296377A JP 2004296377 A JP2004296377 A JP 2004296377A JP 4556605 B2 JP4556605 B2 JP 4556605B2
Authority
JP
Japan
Prior art keywords
substance
solution
concentration
detection
target substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004296377A
Other languages
Japanese (ja)
Other versions
JP2006105910A (en
Inventor
一善 伊藤
英行 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2004296377A priority Critical patent/JP4556605B2/en
Publication of JP2006105910A publication Critical patent/JP2006105910A/en
Application granted granted Critical
Publication of JP4556605B2 publication Critical patent/JP4556605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、被験試料に含まれる標的物質を、該標的物質に特異的に結合する検出用物質を用いて検出する測定方法および測定試薬に関する。   The present invention relates to a measurement method and a measurement reagent for detecting a target substance contained in a test sample using a detection substance that specifically binds to the target substance.

病院や検査センター等においては、自動分析装置の発達とともに、用手法で検査されていた免疫血清部門の臨床検査も急速に自動化が進んでいる。このような臨床検査に用いられる測定方法も多種類に渡り、例えばRIA(ラジオイムノアッセイ)、EIA(エンザイムイムノアッセイ)、TIA(免疫比濁法)、LIA(ラテックス免疫比濁法)等の測定方法が用いられている。これらの方法のうち、RIAやEIAは、放射性物質や酵素を利用するため、それぞれの測定法に合った専用機種を必要とする。これに対し、TIAやLIA等の凝集法では、抗原−抗体反応により生じる凝集に伴う反応液の濁度の変化を測定するため、非常に簡便に行うことができる。そのため、TIAやLIAは汎用自動分析装置への適用が可能であり、これらを用いた免疫血清検査を生化学検査と同一ラインで実施する方式が採用されている。   In hospitals and testing centers, with the development of automated analyzers, clinical tests in the immune serum department, which have been tested by the method of use, are rapidly being automated. There are many kinds of measurement methods used for such clinical examinations. For example, there are measurement methods such as RIA (radioimmunoassay), EIA (enzyme immunoassay), TIA (immunoturbidimetry), LIA (latex immunoturbidimetry) and the like. It is used. Among these methods, RIA and EIA require a dedicated model suitable for each measurement method because they use radioactive substances and enzymes. On the other hand, aggregation methods such as TIA and LIA can be carried out very simply because the change in turbidity of the reaction solution accompanying the aggregation caused by the antigen-antibody reaction is measured. Therefore, TIA and LIA can be applied to general-purpose automatic analyzers, and a system is employed in which an immune serum test using these is performed on the same line as a biochemical test.

これらの測定方法には、それぞれ、その測定方法に適した検出濃度があり、検体溶液(被験試料)中における抗原の存在量に応じて適用されている。例えばTIAは、比較的高濃度の抗原の測定に用いられており、例えば、血清中に比較的多量に存在する免疫グロブリンの測定には、通常、TIAが用いられている。また、LIAはTIAよりも高感度であるため、より低濃度の抗原に対して好適に用いられる。
しかし、これらの測定方法では、被験試料中の標的物質を、低濃度から高濃度にわたる広い測定範囲において精度よく検出することは困難である。
例えば、被験試料中の抗原濃度が低い場合、TIAでは感度が不十分な場合がある。
また、地帯現象の問題もある。すなわち、TIAやLIA等の凝集法においては、一般的には、吸光度の上昇値から検量線を作成して濃度の判定を行っているが、これは、通常、抗原の濃度に比例して吸光度が上昇するためである。しかし、被験試料中に抗原が過剰量存在する場合、逆に、抗原の濃度に比例して吸光度が減少する現象(地帯現象)が生じ、被験試料中の抗原濃度が誤って判定される可能性がある。例えば免疫グロブリンはヒト血清成分の中で、正常時でもアルブミンに次ぐ量が存在するが、ミエローマ血清等の検体では、数万mg/dlという、正常値の数十倍もの量が存在しており、抗原過剰による誤判定が生じる可能性がある。
Each of these measurement methods has a detection concentration suitable for the measurement method, and is applied according to the abundance of the antigen in the sample solution (test sample). For example, TIA is used for measuring a relatively high concentration of antigen. For example, TIA is usually used for measuring an immunoglobulin present in a relatively large amount in serum. Moreover, since LIA has higher sensitivity than TIA, it is preferably used for a lower concentration of antigen.
However, with these measurement methods, it is difficult to accurately detect a target substance in a test sample in a wide measurement range from a low concentration to a high concentration.
For example, when the antigen concentration in the test sample is low, TIA may have insufficient sensitivity.
There is also a problem of zone phenomenon. That is, in the aggregation methods such as TIA and LIA, generally, a calibration curve is prepared from the absorbance increase value, and the concentration is determined, but this is usually in proportion to the antigen concentration. This is because of the rise. However, if there is an excessive amount of antigen in the test sample, on the contrary, there is a possibility that the absorbance decreases in proportion to the antigen concentration (zone phenomenon), and the antigen concentration in the test sample may be erroneously determined. There is. For example, immunoglobulins are present in human serum components next to albumin even under normal conditions, but in samples such as myeloma serum, there are tens of thousands of mg / dl, several tens of times the normal value. There is a possibility that misjudgment due to antigen excess may occur.

このような問題に対し、例えば低濃度における高感度の検出を実現する目的で、抗体等の検出試薬または検体を多量に用いたり、増感剤等の添加物を加えたりする等の対策が行われている(例えば、特許文献1参照。)。
また、高濃度の抗原を含むと予想される検体を希釈して吸光度を測定する方法が用いられている。さらに、地帯現象を抑制する目的で、抗体等を担持した不溶性担体に加えて特定の高分子物質を含有する免疫測定試薬、測定値が所定の基準値以上である被験試料を判定したのち特定濃度の試薬で測定する方法、担体に固定された抗体等と別に抗体を存在させる方法等が提案されている(例えば、特許文献2〜4参照。)。
特開平9−304388号公報 特開平9−304389号公報 特開平10−239317号公報 特許第3005400号明細書
For example, in order to realize high-sensitivity detection at a low concentration, countermeasures such as using a large amount of a detection reagent such as an antibody or a specimen, or adding an additive such as a sensitizer, etc. are taken for such a problem. (For example, refer to Patent Document 1).
In addition, a method of diluting a specimen expected to contain a high concentration of antigen and measuring the absorbance is used. Furthermore, for the purpose of suppressing the zone phenomenon, an immunoassay reagent containing a specific polymer substance in addition to an insoluble carrier carrying an antibody or the like, a test sample whose measured value is equal to or higher than a predetermined reference value, and then a specific concentration There are proposed a method of measuring with the above reagent, a method of allowing an antibody to exist separately from an antibody fixed on a carrier, and the like (see, for example, Patent Documents 2 to 4).
JP-A-9-304388 JP-A-9-304389 Japanese Patent Laid-Open No. 10-239317 Patent No. 3005400

しかし、増感剤は、吸光度の上昇を非特異的に促進させるものであり、また検体に含まれるイムノコンプレックス等をも凝集させうることから、誤判定の要因となりやすい。
また、検体溶液を希釈する場合、特に検体が多数であると多大な時間と労力が希釈操作に費やされ、また希釈に伴う濃度測定結果の誤差の可能性が発生する。さらに、地帯現象を抑制する工夫を行っても、地帯現象は測定原理に由来するものであって完全に回避することはできず、誤判定の可能性が残る。
さらに、検査に際して、低頻度とはいえ遭遇する可能性のある高濃度な検体に対応するために、検査において取り扱う検体に対して一律に、抗体を多量に用いたり、添加物を加えたりすることは、経済的でなく、また不必要に非特異的な反応を増長して検査精度を低下させる。逆に、高濃度の抗原を含む検体にのみ、上記のような処理を行うことは、特に自動分析機器への適用を妨げる。
このように、被験試料に含まれる抗原等の標的物質を、低濃度から高濃度に渡って簡便かつ精度よく定量することは困難であった。
However, a sensitizer non-specifically promotes an increase in absorbance and can also cause aggregation of immunocomplexes and the like contained in a sample, which is likely to be a factor of erroneous determination.
Further, when diluting the sample solution, especially when there are a large number of samples, a great amount of time and labor is spent on the dilution operation, and there is a possibility of an error in the concentration measurement result accompanying the dilution. Furthermore, even if a measure for suppressing the zone phenomenon is performed, the zone phenomenon is derived from the measurement principle and cannot be completely avoided, and the possibility of erroneous determination remains.
In addition, in order to deal with high-concentration samples that may be encountered at low frequency during testing, uniformly use a large amount of antibodies or add additives to the samples handled in the testing. Is not economical and unnecessarily increases non-specific reactions, reducing test accuracy. On the other hand, performing the above-described treatment only on a specimen containing a high concentration of antigen particularly hinders application to an automatic analyzer.
As described above, it has been difficult to easily and accurately quantify the target substance such as an antigen contained in the test sample from a low concentration to a high concentration.

このような問題に対し、本発明者らは、被験試料中の標的物質を、低濃度から高濃度にわたる広い測定範囲において簡便な操作で精度よく定量できる測定方法として、標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を、検出用物質を含有する検出溶液に添加した際に、吸光度が最大となる基準濃度を求め、該基準濃度以上の濃度領域、すなわち吸光度減少域(プロゾーン)において検量線を作成して被験試料中の標的物質濃度の測定を行う方法を提案している(特願2003−282674)。
この発明は、優れたものであるが、より一層高い再現性を発現することが求められている。
本発明は、前記課題を解決するためになされたもので、被験試料中の標的物質を、低濃度から高濃度にわたる広い測定範囲において、簡便な操作で精度よく、かつ再現性よく定量できる測定方法、および該測定方法に好適に用いられる測定試薬を提供することを目的とする。
In response to such a problem, the present inventors are the same as the target substance or the target substance as a measurement method capable of accurately quantifying the target substance in the test sample with a simple operation in a wide measurement range from a low concentration to a high concentration. When a specific substance consisting of a substance having specificity is added to a detection solution containing a detection substance, a reference concentration at which the absorbance is maximized is obtained, and a concentration region above the reference concentration, that is, a decrease in absorbance (probe) A method for measuring a target substance concentration in a test sample by creating a calibration curve in (Zone) has been proposed (Japanese Patent Application No. 2003-282675).
Although the present invention is excellent, it is required to express even higher reproducibility.
The present invention has been made in order to solve the above-described problem, and can measure a target substance in a test sample with high accuracy and reproducibility with a simple operation in a wide measurement range from a low concentration to a high concentration. And a measuring reagent suitably used for the measuring method.

本発明者は、さらに検討を重ねた結果、上記測定方法で用いられる検出溶液に多価アルコールを配合することにより、上記課題が解決されることを見出した。
すなわち、本発明の標的物質の測定方法は、被験試料中の標的物質濃度を、該標的物質と特異的に結合する検出用物質を用いて測定する方法において、
標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液を、検出用物質を含有する検出溶液に添加して得られる混合液の吸光度が最大となる際の前記特異的物質溶液中の特異的物質濃度を求めて基準濃度とする第一過程と、
前記検出溶液と同一種の第二の検出溶液に、前記基準濃度以上の特異的物質溶液と、濃度既知の標的物質を含む標準溶液とを添加して、その吸光度を測定する第二過程と、
前記検出溶液と同一種の第三の検出溶液に、前記第二過程と同一濃度の特異的物質溶液と、被験試料とを添加して、その吸光度を測定する第三過程とを有し、
前記検出溶液が、グリセリンを含有することを特徴とする。
また、本発明の標的物質の測定試薬は、被験試料中の標的物質の測定試薬であって、
標的物質に特異的に結合する検出用物質とグリセリンとを含有する検出溶液と、標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液とを備え、前記特異的物質溶液中の特異的物質濃度が、該特異的物質溶液を前記検出溶液に添加して得られる混合液の吸光度が最大となる基準濃度以上であることを特徴とする。
As a result of further studies, the present inventor has found that the above problem can be solved by blending a polyhydric alcohol into the detection solution used in the above measurement method.
That is, the method for measuring a target substance of the present invention is a method for measuring a target substance concentration in a test sample using a detection substance that specifically binds to the target substance.
When the absorbance of the mixture obtained by adding a specific substance solution containing a specific substance consisting of a target substance or a substance having the same specificity as the target substance to the detection solution containing the detection substance is maximized A first step of determining a specific substance concentration in the specific substance solution to be a reference concentration;
A second step of adding a specific substance solution of the reference concentration or higher and a standard solution containing a target substance having a known concentration to a second detection solution of the same type as the detection solution, and measuring the absorbance thereof;
Adding a specific substance solution having the same concentration as the second step to a third detection solution of the same type as the detection solution, and a test sample, and measuring the absorbance thereof,
The detection solution contains glycerin .
The target substance measurement reagent of the present invention is a target substance measurement reagent in a test sample,
A detection solution containing a detection substance that specifically binds to a target substance and glycerin, and a specific substance solution containing a specific substance consisting of the target substance or a substance having the same specificity as the target substance, The specific substance concentration in the specific substance solution is not less than a reference concentration at which the absorbance of the mixture obtained by adding the specific substance solution to the detection solution is maximum.

本発明の測定方法によれば、被験試料中の標的物質を、低濃度から高濃度にわたる広い測定範囲において、簡便な操作で精度よく、かつ再現性よく定量できる。また、本発明の測定試薬は、本発明の測定方法に好適に用いられる。   According to the measurement method of the present invention, the target substance in the test sample can be quantified with a simple operation with high accuracy and reproducibility in a wide measurement range from a low concentration to a high concentration. Moreover, the measuring reagent of this invention is used suitably for the measuring method of this invention.

まず、本発明の標的物質の測定方法について説明する。
本発明の標的物質の測定方法は、被験試料中の標的物質濃度を該標的物質と特異的に結合する検出用物質を用いて測定するものである。
First, the method for measuring a target substance of the present invention will be described.
The target substance measurement method of the present invention measures a target substance concentration in a test sample using a detection substance that specifically binds to the target substance.

被験試料としては、性状が液体であればよく、例えば、血液、血清、体液、尿や、固体の検体を分散した液の上清等が挙げられる。
標的物質としては、特に制限はなく、たとえば各種疾病やアレルギー等の原因物質、病原菌、生理活性物質、それらの抗体等が挙げられる。具体的には、免疫グロブリン(例えば、ヒト及び動物免疫グロブリン、変性免疫グロブリン)、各種ウイルス抗原(例えば、肝炎ウイルス関連抗原、風疹HA抗原等)、種々の細菌、真菌、毒素等の微生物抗原(例えば、トキソプラズマ、梅毒トレポネーマ等)、各種血漿タンパク成分(例えば、α−フェトプロテイン、C反応性タンパク(CRP)、アルブミン、補体成分等)、各種ホルモン(例えば、エストロゲン、ヒト絨毛性ゴナドトロピン、(HCG)等)、抗体(例えば、抗CEA(carcinoembryonic antigen)抗体、抗反応性タンパク抗体、抗フィブリノーゲン抗体、抗γ−グロブリン抗体等)、ホルモン受容体(例えば、甲状腺刺激ホルモンリセプター、HCGリセプター等)、酵素(例えば、アルカリフォスファターゼ、コリンエステラーゼ等)、基質(例えば、コレステロール、尿酸等)、ヘモグロビン誘導体、糖誘導体(例えば糖化合物、糖タンパク質等)が挙げられる。
The test sample only needs to be liquid, and examples thereof include blood, serum, body fluid, urine, and a supernatant of a liquid in which a solid specimen is dispersed.
The target substance is not particularly limited, and examples thereof include causative substances such as various diseases and allergies, pathogenic bacteria, physiologically active substances, and antibodies thereof. Specifically, immunoglobulins (eg, human and animal immunoglobulins, modified immunoglobulins), various viral antigens (eg, hepatitis virus-related antigens, rubella HA antigens, etc.), microbial antigens such as various bacteria, fungi, toxins ( For example, toxoplasma, syphilis treponema, etc.), various plasma protein components (eg, α-fetoprotein, C-reactive protein (CRP), albumin, complement component, etc.), various hormones (eg, estrogen, human chorionic gonadotropin, (HCG) ), Etc.), antibodies (eg, anti-CEA (carcinoembryonic antigen) antibodies, anti-reactive protein antibodies, anti-fibrinogen antibodies, anti-γ-globulin antibodies, etc.), hormone receptors (eg, thyroid stimulating hormone receptor, HCG receptor, etc.), An enzyme (eg Phosphatase, cholinesterase, etc.), a substrate (e.g., cholesterol, etc. uric acid), hemoglobin derivatives, sugar derivatives (such as sugar compound, glycoproteins, etc.).

検出用物質は、標的物質と特異的に結合するもの、すなわち標的物質と結合する部位を有するものであればよく、測定しようとする標的物質に応じて適宜設定することができる。たとえば、検出用物質として抗免疫グロブリン抗体を用いれば、標的物質として免疫グロブリンを検出することができる。
検出用物質としては、例えば、抗原−抗体反応、酵素−基質反応、又はリガンド−受容体反応等によって標的物質と結合する物質が挙げられる。抗原−抗体反応により標的物質と特異的に結合する検出用物質としては、たとえば標的物質が抗原である場合は抗体を用いることができ、標的物質が抗体である場合は抗原を用いることができる。
これらの中でも、検出用物質が抗原−抗体反応により標的物質と特異的に結合するものであると、標的物質である抗原または抗体と結合する抗体または抗原が多種にわたって入手可能であるため、多種の標的物質を測定できることから好ましい。
The detection substance only needs to be a substance that specifically binds to the target substance, that is, a substance having a site that binds to the target substance, and can be appropriately set according to the target substance to be measured. For example, when an anti-immunoglobulin antibody is used as the detection substance, immunoglobulin can be detected as the target substance.
Examples of the substance for detection include a substance that binds to a target substance by an antigen-antibody reaction, an enzyme-substrate reaction, a ligand-receptor reaction, or the like. As the detection substance that specifically binds to the target substance by the antigen-antibody reaction, for example, an antibody can be used when the target substance is an antigen, and an antigen can be used when the target substance is an antibody.
Among these, when the detection substance specifically binds to the target substance by the antigen-antibody reaction, a wide variety of antibodies or antigens that bind to the target substance antigen or antibody are available. This is preferable because the target substance can be measured.

検出用物質として抗体を用いる場合、その抗体の由来は限定されず、例えば、ウサギ抗体、ラット抗体、マウス抗体、ヤギ抗体などいかなる動物種の血清由来のものも使用できる。コストの面で、ヤギ血清から精製した抗体が好ましい。
また抗体は、モノクローナル抗体でもポリクローナル抗体でもよい。
また、抗体は、抗体そのものであってもよく、抗体を断片化して得られる、F(ab’)等の抗体フラグメント(標的物質と結合する部位を有する)であってもよい。
抗体の精製方法および純度は特に制限されず、例えば、硫安塩析等によって精製された抗体を用いることができる。
When an antibody is used as the detection substance, the origin of the antibody is not limited. For example, those derived from serum of any animal species such as rabbit antibody, rat antibody, mouse antibody, goat antibody can be used. In terms of cost, antibodies purified from goat serum are preferred.
The antibody may be a monoclonal antibody or a polyclonal antibody.
The antibody may be the antibody itself or an antibody fragment (having a site that binds to the target substance) such as F (ab ′) 2 obtained by fragmenting the antibody.
The purification method and purity of the antibody are not particularly limited, and for example, an antibody purified by ammonium sulfate salting out can be used.

本発明の測定方法においては、まず、標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液を、検出用物質を含有する検出溶液に添加して得られる混合液の吸光度が最大となる際の前記特異的物質溶液中の特異的物質濃度を求めて基準濃度とする第一過程を行う。   In the measurement method of the present invention, first, a specific substance solution containing a specific substance consisting of a target substance or a substance having the same specificity as the target substance is added to a detection solution containing a detection substance. A first process is performed in which the specific substance concentration in the specific substance solution at the time when the absorbance of the mixed solution is maximized is obtained as a reference concentration.

基準濃度を求める際に用いられる特異的物質としては、標的物質であってもよく、標的物質と同じ特異性をもつ物質であってもよいが、特に、標的物質であることが好ましい。
特異的物質溶液の分散媒としては、特に限定されず、公知のものが使用できる。かかる分散媒としては、たとえばリン酸緩衝液、グリシン緩衝液、トリス緩衝液、グッドの緩衝液等が挙げられる。媒体のpHは好ましくは5.5〜8.5である。
また、特異的物質溶液には、安定剤としてウシ血清アルブミン、ショ糖等;測定感度向上剤としてポリエチレングリコール、デキストラン等の水溶性多糖類;防腐剤としてアジ化ナトリウム;塩濃度調整剤として塩化ナトリウム等の添加剤を適宜添加することができる。
また、特異的物質溶液は、後述する検出溶液と同様に、多価アルコールを含有していてもよい。
The specific substance used for obtaining the reference concentration may be a target substance or a substance having the same specificity as the target substance, but the target substance is particularly preferable.
The dispersion medium for the specific substance solution is not particularly limited, and known ones can be used. Examples of such a dispersion medium include phosphate buffer, glycine buffer, Tris buffer, Good's buffer, and the like. The pH of the medium is preferably 5.5 to 8.5.
Specific substance solutions include bovine serum albumin and sucrose as stabilizers; water-soluble polysaccharides such as polyethylene glycol and dextran as measurement sensitivity improvers; sodium azide as preservatives; sodium chloride as a salt concentration regulator. Such additives can be added as appropriate.
Further, the specific substance solution may contain a polyhydric alcohol as in the detection solution described later.

検出溶液は、検出用物質と多価アルコールとを必須成分として含有する。これにより、本発明の測定方法によって測定される結果の再現性が優れたものとなる。
多価アルコールは、同一分子内に複数の水酸基を持つ比較的低分子量のアルコールであって、たとえばグリセリン、エチレングリコール、トリメチロールプロパン、ペンタエリスリトール、1,2,6−ヘキサントリオール、ソルビトール、1,1,4,4−テトラキスヒドロキシメチルシロキサン、トリス(2−ヒドロキシエチル)イソシアヌレート、ジペンタエリスリトールなど、工業的に製造される通常のアルコールを用いられる。これらは免疫診断薬として大量に使用されるため、グレードとしては高純度のもの、すなわち試薬1級もしくは試薬特級レベルのものが望ましい。
検出溶液中の多価アルコール濃度は、検出溶液の総容積に対し、1〜50容積%が好ましく、1〜30容積%がより好ましい。
The detection solution contains a detection substance and a polyhydric alcohol as essential components. Thereby, the reproducibility of the result measured by the measuring method of the present invention is excellent.
The polyhydric alcohol is a relatively low molecular weight alcohol having a plurality of hydroxyl groups in the same molecule, such as glycerin, ethylene glycol, trimethylolpropane, pentaerythritol, 1,2,6-hexanetriol, sorbitol, 1, Conventional industrially produced alcohols such as 1,4,4-tetrakishydroxymethylsiloxane, tris (2-hydroxyethyl) isocyanurate and dipentaerythritol are used. Since these are used in large quantities as immunodiagnostic agents, the grade is preferably of a high purity, that is, reagent grade 1 or reagent grade level.
The polyhydric alcohol concentration in the detection solution is preferably 1 to 50% by volume and more preferably 1 to 30% by volume with respect to the total volume of the detection solution.

検出溶液中、検出用物質は、検出溶液中にそのまま分散させて用いてもよいし、不溶性担体に担持させて用いてもよいが、不溶性担体に担持させて用いることが好ましい。これにより、標的物質濃度の変化量に対する吸光度の変化率がより高くなるため、感度の高い検出を行うことができる。
検出用物質を不溶性担体に担持させて用いる場合、検出用物質としては、不溶性担体の凝集を妨げないものを用いることが好ましい。
In the detection solution, the detection substance may be used as it is dispersed in the detection solution, or may be used by being supported on an insoluble carrier, but it is preferably used by being supported on an insoluble carrier. Thereby, since the change rate of the light absorbency with respect to the amount of change in the target substance concentration becomes higher, highly sensitive detection can be performed.
When a detection substance is supported on an insoluble carrier, it is preferable to use a substance that does not prevent aggregation of the insoluble carrier.

不溶性担体としては、有機高分子粒子、無機物質粒子、ラテックス粒子、細胞膜片、血球、微生物等が挙げられる。これらの中でも、工業的に一定の品質性能のものを大量生産できることから、ラテックス粒子が好ましい。
ラテックス粒子の材料としては、粒径を比較的一定に、また、工業的に一定の品質、性能のものを大量生産することができるものであれば、特に制限はなく、例えばスチレン、塩化ビニル、アクリロニトリル、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等のビニル系モノマーの単一重合体や共重合体;スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体等のブタジエン系共重合体等が挙げられる。これらのうち、抗体等の物質の吸着性に優れており、かつ、生物学的活性を長期間保持できる等の観点から、ポリスチレン系のポリマー粒子がさらに好ましい。
ラテックス粒子の粒径は、0.01〜10μmが好ましく、0.03〜1μmが特に好ましい。
また、特異的物質溶液と検出溶液との混合液中での不溶性担体の濃度は、標的物質の性質、予想される存在量、得られる散乱光強度等を考慮して適宜決定することができ、一般的には、0.01〜10質量%が好ましく、0.1〜1質量%が特に好ましい。
Examples of the insoluble carrier include organic polymer particles, inorganic substance particles, latex particles, cell membrane pieces, blood cells, microorganisms and the like. Among these, latex particles are preferred because they can be mass-produced with industrially constant quality performance.
The material of the latex particles is not particularly limited as long as the particle size is relatively constant and industrially constant quality and performance can be mass-produced. For example, styrene, vinyl chloride, Single polymers and copolymers of vinyl monomers such as acrylonitrile, vinyl acetate, acrylic acid esters, and methacrylic acid esters; butadiene copolymers such as styrene-butadiene copolymers and methyl methacrylate-butadiene copolymers It is done. Of these, polystyrene-based polymer particles are more preferable from the viewpoints of being excellent in the adsorptivity of substances such as antibodies and being able to retain biological activity for a long period of time.
The particle size of the latex particles is preferably from 0.01 to 10 μm, particularly preferably from 0.03 to 1 μm.
In addition, the concentration of the insoluble carrier in the mixed solution of the specific substance solution and the detection solution can be appropriately determined in consideration of the nature of the target substance, the expected abundance, the obtained scattered light intensity, etc. Generally, 0.01 to 10% by mass is preferable, and 0.1 to 1% by mass is particularly preferable.

不溶性担体に検出用物質を担持させる場合、その方法としては、物理的に吸着させる方法、化学的に結合させる方法等を用いることができる。物理的に吸着させる場合には、不溶性担体と検出用物質を単に混合すればよい。また、化学的に結合させる場合には、不溶性担体もしくは検出用物質の表面に存在する官能基を利用して、または適当な官能基を有するスペーサを介して結合させることができる。前記スペーサとしては、カルボジイミド、N−ヒドロキシスクシンイミドエステル等が挙げられる。   When a detection substance is supported on an insoluble carrier, a physical adsorption method, a chemical bonding method, or the like can be used. In the case of physical adsorption, an insoluble carrier and a detection substance are simply mixed. In the case of chemical bonding, the bonding can be performed using a functional group present on the surface of the insoluble carrier or the detection substance, or via a spacer having an appropriate functional group. Examples of the spacer include carbodiimide and N-hydroxysuccinimide ester.

検出溶液の分散媒としては、特に限定されず、公知のものが使用できる。かかる分散媒としては、上記特異的物質溶液の分散媒として例示したものと同様のものが挙げられる。
また、検出溶液には、特異的物質溶液と同様、任意に添加剤を添加することができる。
The dispersion medium for the detection solution is not particularly limited, and known ones can be used. Examples of such a dispersion medium include those exemplified as the dispersion medium for the specific substance solution.
In addition, an additive can be optionally added to the detection solution as in the case of the specific substance solution.

本発明において、基準濃度は、例えば以下のようにして求めることができる。
まず、特異的物質を含有する特異的物質溶液を、特異的物質濃度を変化させて検出溶液に添加し、得られる混合液について、添加してから一定時間経過後に、その吸光度を測定し、横軸に特異的物質溶液中の特異的物質濃度、縦軸に測定された吸光度をとってグラフを作成する。該グラフにおいては、吸光度は、ある特定濃度に達するまでは濃度に比例して上昇し、該特定濃度を超えると濃度に比例して減少する。そして、該グラフから、吸光度が最大となったときの特異的物質溶液の特異的物質濃度を求め、該濃度を基準濃度とする。
吸光度の測定に使用する機器は、経時的に混合液の吸光度を測定しうるものであれば特に限定されないが、汎用の生化学自動分析装置が好ましい。
なお、前記基準濃度は、検出用物質と標的物質との親和性、検出用物質の濃度等から、前もって計算により推定しておくこともできる。
In the present invention, the reference concentration can be determined as follows, for example.
First, a specific substance solution containing a specific substance is added to a detection solution while changing the concentration of the specific substance. A graph is prepared with the specific substance concentration in the specific substance solution on the axis and the measured absorbance on the vertical axis. In the graph, the absorbance increases in proportion to the concentration until reaching a specific concentration, and decreases in proportion to the concentration when the specific concentration is exceeded. Then, from the graph, the specific substance concentration of the specific substance solution when the absorbance reaches the maximum is obtained, and the concentration is set as the reference concentration.
The instrument used for measuring the absorbance is not particularly limited as long as it can measure the absorbance of the mixed solution over time, but a general-purpose biochemical automatic analyzer is preferable.
The reference concentration can be estimated in advance from the affinity between the detection substance and the target substance, the concentration of the detection substance, and the like.

ついで、前記検出溶液と同一種の第二の検出溶液に、前記基準濃度以上の特異的物質溶液と、濃度既知の標的物質を含む標準溶液とを添加して、その吸光度を測定する第二過程を行う。
ここで、「前記検出溶液と同一種」とは、第一過程において用いた検出溶液と、組成、濃度、温度、pH等の条件が全て同一であることを示す。また、「基準濃度以上の特異的物質溶液」とは、特異的物質を、基準濃度以上の濃度で含む特異的物質溶液を意味する。
第二の検出溶液への特異的物質溶液および標準溶液の添加の順番は特に限定されず、たとえば特異的物質溶液を添加した後に標準溶液を添加してもよいし、特異的物質溶液と標準溶液とを同時に添加してもよい。
Next, a second process in which a specific substance solution having a reference concentration or higher and a standard solution containing a target substance with a known concentration are added to a second detection solution of the same type as the detection solution, and the absorbance is measured. I do.
Here, the “same species as the detection solution” indicates that the detection solution used in the first process has the same conditions such as composition, concentration, temperature, and pH. Further, the “specific substance solution having a reference concentration or higher” means a specific substance solution containing a specific substance at a concentration higher than the reference concentration.
The order of adding the specific substance solution and the standard solution to the second detection solution is not particularly limited. For example, the standard solution may be added after adding the specific substance solution, or the specific substance solution and the standard solution may be added. And may be added simultaneously.

第二過程における吸光度の測定は、たとえば特異的物質溶液を添加した後に標準溶液を添加する場合は、標準溶液を添加してから一定時間後に測定する。また、特異的物質溶液と標準溶液とを同時に添加する場合は、これらを添加してから一定時間経過後に測定する。
吸光度の測定条件は前記第一過程と同様とする。
このようにして測定される吸光度を、標準溶液における標準物質の濃度に対してプロットすることにより、検量線を作成することができる。ここでは、標準溶液における標的物質濃度に比例して吸光度が低下する検量線が得られる。
In the second process, for example, when adding a standard solution after adding a specific substance solution, the absorbance is measured after a certain time from the addition of the standard solution. Moreover, when adding a specific substance solution and a standard solution simultaneously, it measures after progress for a fixed time after adding these.
Absorbance measurement conditions are the same as in the first step.
A calibration curve can be created by plotting the absorbance measured in this way against the concentration of the standard substance in the standard solution. Here, a calibration curve is obtained in which the absorbance decreases in proportion to the target substance concentration in the standard solution.

なお、検出溶液に添加する特異的物質溶液の特異的物質濃度を、前記基準濃度以上の領域のうちいずれの濃度に設定するかを選択することで、微少濃度から高濃度に渡る濃度範囲の標的物質を、より正確に定量することができる。例えば、微少濃度の標的物質を測定する場合は、特異的物質濃度を基準濃度よりも大きくすることにより、標的物質の濃度の微小な違いに対してより吸光度の差が大きい検量線を得ることができる。
また、高濃度の標的物質を測定する場合は、特異的物質濃度を基準濃度以上かつ基準濃度付近とすることが好ましい。これにより、用いる検出用物質が少なくてすみ、さらに経済的である。
In addition, by selecting which concentration of the specific substance solution of the specific substance solution to be added to the detection solution should be set in the region above the reference concentration, a target in a concentration range from a minute concentration to a high concentration can be selected. Substances can be more accurately quantified. For example, when measuring a target substance at a very low concentration, it is possible to obtain a calibration curve with a greater difference in absorbance with respect to a minute difference in the concentration of the target substance by making the specific substance concentration larger than the reference concentration. it can.
Moreover, when measuring a high concentration target substance, it is preferable that the specific substance concentration is not less than the reference concentration and near the reference concentration. This requires less detection material and is more economical.

ついで、前記検出溶液と同一種の第三の検出溶液に、前記第二過程と同一濃度の特異的物質溶液と、被験試料とを添加して、その吸光度を測定する第三過程を行う。
すなわち、まず、前記第一過程、第二過程において用いた検出溶液と同一種の検出溶液を別に調製し、この検出溶液に、第二過程で第二の検出溶液に添加した特異的物質溶液と同一濃度の特異的物質溶液と、被験試料とを添加する。このとき、第三の検出溶液と特異的物質溶液と被験試料との比率(容積比)は、前記第二過程における第二の検出溶液と特異的物質溶液と標準試料との比率と同様とする。また、第三の検出溶液への特異的物質溶液および被験試料の添加の順番は、第二過程における第二の検出溶液への特異的物質溶液および標準溶液の添加の順番と同様とする。
特異的物質溶液および被験試料の添加後、前記第二過程における吸光度の測定と同一の時間経過後に、吸光度を測定する。なお、吸光度の測定条件は、前記第一過程および第二過程と同様とする。
引き続いて、第二過程で作成した検量線上で、第三過程で得た吸光度と同一の値を示す点に対応する標的物質の濃度を参照することにより、被験試料に含まれる標的物質の濃度を求めることができる。
Next, a specific substance solution having the same concentration as the second process and a test sample are added to a third detection solution of the same type as the detection solution, and a third process of measuring the absorbance is performed.
That is, first, a detection solution of the same type as the detection solution used in the first process and the second process is prepared separately, and the specific substance solution added to the second detection solution in the second process is added to the detection solution. A specific substance solution having the same concentration and a test sample are added. At this time, the ratio (volume ratio) of the third detection solution, the specific substance solution, and the test sample is the same as the ratio of the second detection solution, the specific substance solution, and the standard sample in the second process. . The order of addition of the specific substance solution and the test sample to the third detection solution is the same as the order of addition of the specific substance solution and the standard solution to the second detection solution in the second process.
After the addition of the specific substance solution and the test sample, the absorbance is measured after the same time has elapsed as the measurement of the absorbance in the second step. The absorbance measurement conditions are the same as those in the first process and the second process.
Subsequently, the concentration of the target substance contained in the test sample is determined by referring to the concentration of the target substance corresponding to the point showing the same value as the absorbance obtained in the third process on the calibration curve created in the second process. Can be sought.

本発明の測定方法では、微少量から多量に渡る標的物質を、簡便かつ正確に定量することができる。そのため、高濃度の標的物質に対しても希釈操作を必要としないので、多数の試料を一括して取り扱いやすい。例えば生体由来の被験試料の個体差、正常・異常、標的物質の種類によらず、簡便な機構で自動分析を行えるので、コストダウン、分析に要する時間の短縮を実現できる。また、本発明の測定方法は、再現性にも優れており、信頼性の高い測定を行うことができる。
さらに、前記検出溶液において、検出用物質を不溶性担体に担持させて用いると、さらに感度よく標的物質を検出することができ、検出用物質の使用量を低減できる。
また、検出用物質として抗免疫グロブリン抗体を用いると、標的物質として免疫グロブリン(イムノグロブリン)を検出することができ、特に、従来は希釈せずに定量することが困難であったイムノグロブリンG(IgG)、イムノグロブリンA(IgA)、イムノグロブリンM(IgM)等の、正常検体に多量に存在する免疫グロブリンについても、希釈することなく正確に定量を行うことができる。
また、本発明の測定方法では、免疫グロブリン以外の、例えばC3、C4等を含む補体成分などの、正常検体に多量に存在する標的物質についても、被験試料を希釈することなく正確に定量を行うことができる。
本発明の測定方法は、病院や検査センター等において、汎用自動分析装置を用いた自動分析に好適に用いることができる。
In the measurement method of the present invention, a target substance ranging from a very small amount to a large amount can be easily and accurately quantified. Therefore, since dilution operation is not required even for a high concentration target substance, it is easy to handle a large number of samples at once. For example, automatic analysis can be performed with a simple mechanism regardless of individual differences, normality / abnormality, and type of target substance of a test sample derived from a living body, so that cost reduction and time required for analysis can be realized. In addition, the measurement method of the present invention is excellent in reproducibility and can perform highly reliable measurement.
Furthermore, when the detection substance is supported on an insoluble carrier in the detection solution, the target substance can be detected with higher sensitivity, and the amount of the detection substance used can be reduced.
In addition, when an anti-immunoglobulin antibody is used as a detection substance, an immunoglobulin (immunoglobulin) can be detected as a target substance, and in particular, immunoglobulin G ( IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), and other immunoglobulins present in large amounts in normal specimens can be accurately quantified without dilution.
Further, in the measurement method of the present invention, target substances that are present in large amounts in normal specimens such as complement components other than immunoglobulins, such as C3 and C4, can be accurately quantified without diluting the test sample. It can be carried out.
The measurement method of the present invention can be suitably used for automatic analysis using a general-purpose automatic analyzer in hospitals, examination centers, and the like.

次に、本発明の標的物質の測定試薬について説明する。
本発明の標的物質の測定試薬は、標的物質に特異的に結合する検出用物質および多価アルコールとを含有する検出溶液と、標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液とを備え、前記特異的物質溶液中の特異的物質濃度が、該特異的物質溶液を前記検出溶液に添加して得られる混合液の吸光度が最大となる基準濃度以上であることを特徴とする。
本発明の標的物質の測定試薬は、上記本発明の測定方法において好適に用いられる。すなわち、このような測定試薬に、濃度既知の標的物質を含む標準溶液を添加して一定時間経過後の吸光度を測定することにより検量線を作成し、別に、同一種の測定試薬に被験試料を添加して同一の時間経過後の吸光度を測定する。そして、その測定結果から、上記で作成した検量線を用いて、被験試料における標的物質濃度を求めることができる。
Next, the reagent for measuring a target substance of the present invention will be described.
The reagent for measuring a target substance of the present invention is a specific substance comprising a detection solution containing a detection substance and a polyhydric alcohol that specifically binds to the target substance, and the target substance or a substance having the same specificity as the target substance. The specific substance concentration in the specific substance solution is equal to or higher than a reference concentration that maximizes the absorbance of the mixture obtained by adding the specific substance solution to the detection solution. It is characterized by being.
The target substance measurement reagent of the present invention is suitably used in the above-described measurement method of the present invention. That is, a calibration curve is created by adding a standard solution containing a target substance with a known concentration to such a measurement reagent, and measuring the absorbance after a lapse of a certain time. Separately, a test sample is placed on the same type of measurement reagent. The absorbance after the same time has elapsed after the addition. And the target substance concentration in a test sample can be calculated | required from the measurement result using the calibration curve created above.

[実施例1]
(1)検出溶液および特異的物質溶液の調製
検出溶液として、抗ヒトIgGヤギポリクローナル抗体からなる検出用物質を、物理吸着でラテックス粒子からなる不溶性担体に担持させたラテックス試液(抗IgG抗体担持ラテックス試液)を下記の手順で調製した。
すなわち、抗ヒトIgGヤギポリクローナル抗体(International Immunology Corp.製:以下、「抗IgG抗体」という)からなる検出用物質を2.0mg/mlの濃度で、50mMのリン酸緩衝液(pH7.2:以下、「PBS」という)に溶解した液10.0mlに、平均粒径が110nmのポリスチレン粒子(藤倉化成(株)製:固形分1質量%)10.0mlを添加し、4℃で60分間撹拌した。次いで、この液にウシ血清アルブミン(以下、「BSA」という)を1質量%含有する50mMのPBS(pH7.2)を添加し、4℃で60分間撹拌した後、20000×gで60分間遠心分離して洗浄した。洗浄操作は3回行った。得られた沈殿物に、BSAを0.1質量%含有する50mMのPBS9.5mlと、グリセリン0.5mlとを添加し、ポリスチレン粒子を懸濁した後、超音波破砕機にて分散処理を行い、固形分1%(W/V)の抗IgG抗体担持ラテックス試液(グリセリン濃度5%(V/V))を得た。
[Example 1]
(1) Preparation of Detection Solution and Specific Substance Solution As a detection solution, a latex sample solution (anti-IgG antibody-supported latex) in which a detection substance composed of an anti-human IgG goat polyclonal antibody is supported on an insoluble carrier composed of latex particles by physical adsorption. Sample solution) was prepared by the following procedure.
That is, a detection substance consisting of an anti-human IgG goat polyclonal antibody (International Immunology Corp .: hereinafter referred to as “anti-IgG antibody”) at a concentration of 2.0 mg / ml and a 50 mM phosphate buffer (pH 7.2: Hereinafter, 10.0 ml of polystyrene particles having an average particle diameter of 110 nm (manufactured by Fujikura Kasei Co., Ltd .: solid content 1 mass%) are added to 10.0 ml of a solution dissolved in “PBS”, and the mixture is added at 4 ° C. for 60 minutes. Stir. Next, 50 mM PBS (pH 7.2) containing 1% by mass of bovine serum albumin (hereinafter referred to as “BSA”) was added to this solution, stirred at 4 ° C. for 60 minutes, and then centrifuged at 20000 × g for 60 minutes. Separated and washed. The washing operation was performed 3 times. To the obtained precipitate, 9.5 ml of 50 mM PBS containing 0.1% by mass of BSA and 0.5 ml of glycerin were added, and the polystyrene particles were suspended, followed by dispersion treatment with an ultrasonic crusher. An anti-IgG antibody-supported latex test solution (glycerin concentration 5% (V / V)) having a solid content of 1% (W / V) was obtained.

また、特異的物質としてヒトIgG(International Immunology Corp.製:以下、「IgG」という)を用い、下記の手順で、特異的物質の溶液(特異的物質溶液)を調製した。
すなわち、グリシン50mM、食塩70mMを純水に溶解し、pH7.2に調整して、この溶液に、IgG濃度10mg/dl、15mg/dl、20mg/dl、25mg/dl、50mg/dl、75mg/dl、200mg/dl、500mg/dlとなるようにヒトIgGを混合し、特異的物質溶液を得た。
Further, human IgG (International Immunology Corp .: hereinafter referred to as “IgG”) was used as a specific substance, and a specific substance solution (specific substance solution) was prepared by the following procedure.
Specifically, glycine 50 mM and sodium chloride 70 mM were dissolved in pure water, adjusted to pH 7.2, and IgG concentrations 10 mg / dl, 15 mg / dl, 20 mg / dl, 25 mg / dl, 50 mg / dl, 75 mg / 75 were added to this solution. Human IgG was mixed so that it might become dl, 200 mg / dl, and 500 mg / dl, and the specific substance solution was obtained.

(2)基準濃度の決定
まず、上記(1)で調製した各IgG濃度の特異的物質溶液を、上記(1)と同様の方法で調製したそれぞれ別の検出溶液(グリセリン濃度5%(V/V))に添加し、添加時から5分後の吸光度を測定した。以下、吸光度の測定は、自動汎用測定機日立7020形(日立製作所(株)製)を使用して、測定波長800nm、測定温度37℃で行った。
その結果、IgG濃度が25mg/dlの場合に、他の濃度の場合と比べて吸光度が最大となった。すなわち、IgGについての基準濃度は25mg/dlであった。
(2) Determination of Reference Concentration First, the specific substance solution of each IgG concentration prepared in (1) above was prepared as a separate detection solution (glycerin concentration 5% (V / V)), and the absorbance after 5 minutes from the time of addition was measured. Hereinafter, the absorbance was measured using an automatic general-purpose measuring instrument Hitachi 7020 (manufactured by Hitachi, Ltd.) at a measurement wavelength of 800 nm and a measurement temperature of 37 ° C.
As a result, when the IgG concentration was 25 mg / dl, the absorbance was maximized as compared with other concentrations. That is, the reference concentration for IgG was 25 mg / dl.

(3)検量線の作成
ついで、上記(1)と同様の方法で調製したIgG濃度25mg/dlの特異的物質溶液300μlと、標準溶液として、標的物質として濃度既知のIgGを含む血清3μlとを混合した。
なお、標準溶液は、IgG濃度既知の血清を希釈することにより、IgG濃度0mg/dl、400mg/dl、1600mg/dl、3200mg/dl、4800mg/dl、8000mg/dlとなるように調製した。
この混合液に、上記(1)の方法で別に調製した検出溶液100μlを添加し、添加時から5分後の吸光度を測定した。標準溶液のIgG濃度に対して吸光度をプロットし、IgG測定用の検量線を作成した。結果を図1に示す。図1の横軸は標準溶液のIgG濃度であり、縦軸は吸光度である。
(3) Preparation of calibration curve Next, 300 μl of a specific substance solution having an IgG concentration of 25 mg / dl prepared by the same method as in (1) above, and 3 μl of serum containing IgG of known concentration as a target substance as a standard solution Mixed.
The standard solution was prepared by diluting serum with known IgG concentration so that the IgG concentrations were 0 mg / dl, 400 mg / dl, 1600 mg / dl, 3200 mg / dl, 4800 mg / dl, and 8000 mg / dl.
To this mixed solution, 100 μl of a detection solution separately prepared by the method of (1) above was added, and the absorbance was measured 5 minutes after the addition. The absorbance was plotted against the IgG concentration of the standard solution, and a calibration curve for IgG measurement was prepared. The results are shown in FIG. The horizontal axis in FIG. 1 is the IgG concentration of the standard solution, and the vertical axis is the absorbance.

(4)被験試料の測定
その後、上記(1)と同様の方法で調製したIgG濃度25mg/dlの特異的物質溶液300μlと、被験試料として、IgG濃度が1000mg/dlであるヒト血清3μlとを混合した。
この混合液に、上記(1)の方法で別に調製した検出溶液(グリセリン濃度5%)100μlを添加し、添加時から5分後の吸光度を測定した。得られた吸光度と上記(3)で作成した検量線を用いて、被験試料中のIgG濃度を求めた。その結果、検量線から求めた被験試料中のIgG濃度の値は1143mg/dlとなり、用いた被験試料のIgG濃度の値1142mg/dlとほぼ一致した。
同様の測定を、さらに9回行い、これらの結果の平均値と標準偏差を求めたところ、被験試料中のIgG濃度の平均値は1143mg/dlであり、標準偏差は17.86であった。
(4) Measurement of test sample Subsequently, 300 μl of a specific substance solution with an IgG concentration of 25 mg / dl prepared by the same method as in (1) above, and 3 μl of human serum with an IgG concentration of 1000 mg / dl as a test sample Mixed.
To this mixed solution, 100 μl of a detection solution (glycerin concentration 5%) separately prepared by the method (1) was added, and the absorbance after 5 minutes from the addition was measured. Using the obtained absorbance and the calibration curve prepared in (3) above, the IgG concentration in the test sample was determined. As a result, the value of the IgG concentration in the test sample obtained from the calibration curve was 1143 mg / dl, which almost coincided with the value of 1142 mg / dl of the IgG concentration of the test sample used.
The same measurement was further performed nine times, and the average value and standard deviation of these results were determined. The average value of the IgG concentration in the test sample was 1143 mg / dl, and the standard deviation was 17.86.

[実施例2]
実施例1における(1)検出溶液および特異的物質溶液の調製で、検出溶液のグリセリン濃度を10%(V/V)とした以外は、実施例1と同様に検量線を作成した。その結果を図1に示す。
また、作成した検量線を用いて、上記と同様、被験試料中のIgG濃度の平均値と標準偏差(10回測定)を求めたところ、被験試料中のIgG濃度の平均値は1144mg/dlであり、標準偏差は15.40であった。
[Example 2]
A calibration curve was prepared in the same manner as in Example 1 except that (1) the detection solution and the specific substance solution in Example 1 were prepared and the glycerol concentration of the detection solution was changed to 10% (V / V). The result is shown in FIG.
Moreover, when the average value of IgG concentration in a test sample and a standard deviation (10 times measurement) were calculated | required similarly to the above using the created calibration curve, the average value of IgG concentration in a test sample was 1144 mg / dl. Yes, the standard deviation was 15.40.

[実施例3]
実施例1における(1)検出溶液および特異的物質溶液の調製で、検出溶液のグリセリン濃度を20%(V/V)とした以外は、実施例1と同様に検量線を作成した。その結果を図1に示す。
また、作成した検量線を用いて、上記と同様、被験試料中のIgG濃度の平均値と標準偏差(10回測定)を求めたところ、被験試料中のIgG濃度の平均値は1140mg/dlであり、標準偏差は11.66であった。
[Example 3]
A calibration curve was prepared in the same manner as in Example 1 except that (1) the detection solution and the specific substance solution in Example 1 were prepared with a glycerol concentration of 20% (V / V). The result is shown in FIG.
Moreover, when the average value of IgG concentration in a test sample and a standard deviation (10 times measurement) were calculated | required similarly to the above using the created calibration curve, the average value of IgG concentration in a test sample was 1140 mg / dl. Yes, the standard deviation was 11.66.

[実施例4]
実施例1における(1)検出溶液および特異的物質溶液の調製で、検出溶液のグリセリン濃度を30%(V/V)とした以外は、実施例1と同様に検量線を作成した。その結果を図1に示す。
また、作成した検量線を用いて、上記と同様、被験試料中のIgG濃度の平均値と標準偏差(10回測定)を求めたところ、被験試料中のIgG濃度の平均値は1148mg/dlであり、標準偏差は11.65であった。
[Example 4]
A calibration curve was prepared in the same manner as in Example 1 except that in the preparation of the detection solution and the specific substance solution in Example 1, the glycerol concentration of the detection solution was changed to 30% (V / V). The result is shown in FIG.
Moreover, when the average value and standard deviation (10 times measurement) of IgG concentration in a test sample were calculated | required similarly to the above using the created calibration curve, the average value of IgG concentration in a test sample was 1148 mg / dl. Yes, the standard deviation was 11.65.

[比較例1]
実施例1における(1)検出溶液および特異的物質溶液の調製で、検出溶液にグリセリンを添加しなかったこと以外は、実施例1と同様に検量線を作成した。その結果を図1に示す。
また、作成した検量線を用いて、上記と同様、被験試料中のIgG濃度の平均値と標準偏差(10回測定)を求めたところ、被験試料中のIgG濃度の平均値は1151mg/dlであり、標準偏差は33.94であった。
[Comparative Example 1]
A calibration curve was prepared in the same manner as in Example 1 except that glycerin was not added to the detection solution in the preparation of (1) the detection solution and the specific substance solution in Example 1. The result is shown in FIG.
Moreover, when the average value of IgG concentration in a test sample and a standard deviation (10 times measurement) were calculated | required similarly to the above using the created calibration curve, the average value of IgG concentration in a test sample was 1151 mg / dl. Yes, the standard deviation was 33.94.

上記結果から明らかなように、検出溶液にグリセリンを添加した実施例1〜4では、標準溶液のIgG濃度が低濃度から高濃度にいたるまで、IgG濃度と吸光度が一義的に対応する検量線を得ることができた。また、得られた検量線を用いて測定される結果は、精度にも再現性にも優れていた。   As is clear from the above results, in Examples 1 to 4 in which glycerin was added to the detection solution, a calibration curve in which the IgG concentration and the absorbance uniquely corresponded until the IgG concentration of the standard solution changed from a low concentration to a high concentration. I was able to get it. Moreover, the results measured using the obtained calibration curve were excellent in accuracy and reproducibility.

実施例1における、標準溶液のIgG濃度に対する吸光度を示す図である。It is a figure which shows the light absorbency with respect to IgG density | concentration of a standard solution in Example 1. FIG.

Claims (12)

被験試料中の標的物質濃度を、該標的物質と特異的に結合する検出用物質を用いて測定する方法において、
標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液を、検出用物質を含有する検出溶液に添加して得られる混合液の吸光度が最大となる際の前記特異的物質溶液中の特異的物質濃度を求めて基準濃度とする第一過程と、
前記検出溶液と同一種の第二の検出溶液に、前記基準濃度以上の特異的物質溶液と、濃度既知の標的物質を含む標準溶液とを添加して、その吸光度を測定する第二過程と、
前記検出溶液と同一種の第三の検出溶液に、前記第二過程と同一濃度の特異的物質溶液と、被験試料とを添加して、その吸光度を測定する第三過程とを有し、
前記検出溶液が、グリセリンを含有することを特徴とする標的物質の測定方法。
In a method of measuring a target substance concentration in a test sample using a detection substance that specifically binds to the target substance,
When the absorbance of the mixture obtained by adding a specific substance solution containing a specific substance consisting of a target substance or a substance having the same specificity as the target substance to the detection solution containing the detection substance is maximized A first step of determining a specific substance concentration in the specific substance solution to be a reference concentration;
A second step of adding a specific substance solution of the reference concentration or higher and a standard solution containing a target substance having a known concentration to a second detection solution of the same type as the detection solution, and measuring the absorbance thereof;
Adding a specific substance solution having the same concentration as the second step to a third detection solution of the same type as the detection solution, and a test sample, and measuring the absorbance thereof,
The method for measuring a target substance, wherein the detection solution contains glycerin .
前記検出溶液中のグリセリン濃度が1〜50容積%の範囲内である請求項1記載の標的物質の測定方法。 The method for measuring a target substance according to claim 1, wherein the concentration of glycerin in the detection solution is in the range of 1 to 50% by volume. 前記検出用物質が、抗原−抗体反応により標的物質と特異的に結合するものである請求項1または2に記載の標的物質の測定方法。 The method for measuring a target substance according to claim 1 or 2 , wherein the detection substance specifically binds to the target substance by an antigen-antibody reaction. 前記検出用物質が、検出溶液中で不溶性担体に担持されている請求項1ないしのいずれかに記載の標的物質の測定方法。 The detection material, method of measuring a target substance according to any one of claims 1 is carried on the insoluble carrier in the detection solution 3. 前記不溶性担体がラテックス粒子である請求項に記載の標的物質の測定方法。 The method for measuring a target substance according to claim 4 , wherein the insoluble carrier is latex particles. 前記検出用物質が抗免疫グロブリン抗体であり、前記標的物質が免疫グロブリンである請求項1ないしのいずれかに記載の標的物質の測定方法。 The detection material is an anti-immunoglobulin antibody, method for measuring a target substance according to any one of the target substance claims 1 immunoglobulin 5. 被験試料中の標的物質の測定試薬であって、
標的物質に特異的に結合する検出用物質とグリセリンとを含有する検出溶液と、標的物質または標的物質と同じ特異性をもつ物質からなる特異的物質を含有する特異的物質溶液とを備え、前記特異的物質溶液中の特異的物質濃度が、該特異的物質溶液を前記検出溶液に添加して得られる混合液の吸光度が最大となる基準濃度以上であることを特徴とする標的物質の測定試薬。
A reagent for measuring a target substance in a test sample,
A detection solution containing a detection substance that specifically binds to a target substance and glycerin, and a specific substance solution containing a specific substance consisting of the target substance or a substance having the same specificity as the target substance, The target substance measurement reagent, wherein the specific substance concentration in the specific substance solution is equal to or higher than a reference concentration at which the absorbance of the mixture obtained by adding the specific substance solution to the detection solution is maximum. .
前記検出溶液中のグリセリン濃度が1〜50容積%の範囲内である請求項記載の標的物質の測定試薬。 The reagent for measuring a target substance according to claim 7, wherein the concentration of glycerin in the detection solution is in the range of 1 to 50% by volume. 前記検出用物質が、抗原−抗体反応により標的物質と特異的に結合するものである請求項7または8に記載の標的物質の測定試薬。 The reagent for measuring a target substance according to claim 7 or 8 , wherein the detection substance specifically binds to the target substance by an antigen-antibody reaction. 前記検出用物質が、検出溶液中で不溶性担体に担持されている請求項ないしのいずれかに記載の標的物質の測定試薬。 Reagent for measuring a target substance according to any one of the detection substance, the preceding claims 7 carried on the insoluble carrier detection solution 9. 前記不溶性担体がラテックス粒子である請求項10に記載の標的物質の測定試薬。 The reagent for measuring a target substance according to claim 10 , wherein the insoluble carrier is latex particles. 前記検出用物質が抗免疫グロブリン抗体であり、前記標的物質が免疫グロブリンである請求項ないし11のいずれかに記載の標的物質の測定試薬。 The reagent for measuring a target substance according to any one of claims 7 to 11 , wherein the detection substance is an anti-immunoglobulin antibody, and the target substance is an immunoglobulin.
JP2004296377A 2004-10-08 2004-10-08 Target substance measurement method and reagent Active JP4556605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296377A JP4556605B2 (en) 2004-10-08 2004-10-08 Target substance measurement method and reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296377A JP4556605B2 (en) 2004-10-08 2004-10-08 Target substance measurement method and reagent

Publications (2)

Publication Number Publication Date
JP2006105910A JP2006105910A (en) 2006-04-20
JP4556605B2 true JP4556605B2 (en) 2010-10-06

Family

ID=36375816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296377A Active JP4556605B2 (en) 2004-10-08 2004-10-08 Target substance measurement method and reagent

Country Status (1)

Country Link
JP (1) JP4556605B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081501B2 (en) * 2007-06-06 2012-11-28 デンカ生研株式会社 New immunoagglutination assay
JP5088471B2 (en) 2007-07-25 2012-12-05 Jsr株式会社 Target substance detection method and reagent for latex agglutination reaction
JP6576843B2 (en) * 2016-01-22 2019-09-18 株式会社日立ハイテクノロジーズ Automatic analyzer and its standard solution for evaluation of scattered light measurement optical system
CN108700580B (en) 2016-02-12 2021-12-14 Jsr株式会社 Additive, surface treatment agent, surface-modified latex particle, method for producing surface-modified latex particle, reagent for latex coagulation reaction, kit, and method for detecting target substance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118083A (en) * 1992-03-10 1994-04-28 Godo Shiyusei Kk Immunological measuring method using gold colloid
JPH09304388A (en) * 1996-05-20 1997-11-28 Sekisui Chem Co Ltd Quantitative method for human immunoglobulin e and measuring kit
JPH1090268A (en) * 1996-09-18 1998-04-10 Eiken Chem Co Ltd Immiunological particle agglutination method
JPH11258240A (en) * 1998-03-13 1999-09-24 Dai Ichi Pure Chem Co Ltd Method for measuring lysine-affinitive substance
JP2003149244A (en) * 2001-11-07 2003-05-21 Azwell Inc Method of suppressing prozone phenomenon in immunoreaction and reagent for immunoreaction measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118083A (en) * 1992-03-10 1994-04-28 Godo Shiyusei Kk Immunological measuring method using gold colloid
JPH09304388A (en) * 1996-05-20 1997-11-28 Sekisui Chem Co Ltd Quantitative method for human immunoglobulin e and measuring kit
JPH1090268A (en) * 1996-09-18 1998-04-10 Eiken Chem Co Ltd Immiunological particle agglutination method
JPH11258240A (en) * 1998-03-13 1999-09-24 Dai Ichi Pure Chem Co Ltd Method for measuring lysine-affinitive substance
JP2003149244A (en) * 2001-11-07 2003-05-21 Azwell Inc Method of suppressing prozone phenomenon in immunoreaction and reagent for immunoreaction measurement

Also Published As

Publication number Publication date
JP2006105910A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US8956823B2 (en) Anti-antibody reagent
US20100240150A1 (en) Measuring reagent and turbidimetric immunoassay and sample analysis tool using the same
US20020106708A1 (en) Assays reagents and kits for detecting or determining the concentration of analytes
JPH0587816A (en) Immunometric assay method and reagent kit for said method
CN102507918B (en) Kit for determining anti-cyclic citrullinated peptide (Anti-CCP) antibody
JPH03502246A (en) Coagulation methods for the analysis of substances
EP1801590B1 (en) Method of assaying antigen and reagent therefor
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
EP0201211A1 (en) Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles
CN101446586A (en) Immunological assay reagents and assay method
JP4556605B2 (en) Target substance measurement method and reagent
JPH11133023A (en) Compound for reducing influence of urea on chromatographic immunoassay using urine sample
JP4095888B2 (en) Immunological analysis reagent and immunological analysis method
JPH0421819B2 (en)
JP3220546B2 (en) Method for measuring antigen or antibody in the presence of immune complex
US6927071B2 (en) Method for reducing non-specific aggregation of latex microparticles in the presence of serum or plasma
JP2005049264A (en) Measuring method and measuring reagent of target material
JP3328053B2 (en) Determination of antibody or antigen concentration by immunoagglutination
JPH09304386A (en) Manufacture of immunity diagnostic drug and immunity diagnostic drug obtained
JP4616516B2 (en) Immunological assay
JP2004117068A (en) Immunoassay reagent and immunoassay method
JP2002310873A (en) Measurement reagent and measurement method using quartz resonator
CN111868526A (en) Reducing interference in immunoassays
JPH07174761A (en) Measuring method of analyte by agglutination
JP2001330611A (en) Immunoassay reagent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250