JP4616516B2 - Immunological assay - Google Patents

Immunological assay Download PDF

Info

Publication number
JP4616516B2
JP4616516B2 JP2001181588A JP2001181588A JP4616516B2 JP 4616516 B2 JP4616516 B2 JP 4616516B2 JP 2001181588 A JP2001181588 A JP 2001181588A JP 2001181588 A JP2001181588 A JP 2001181588A JP 4616516 B2 JP4616516 B2 JP 4616516B2
Authority
JP
Japan
Prior art keywords
fraction
antibody
fdp
measured
insoluble carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001181588A
Other languages
Japanese (ja)
Other versions
JP2002372536A (en
Inventor
博俊 松下
弘和 矢後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Medical Co Ltd
Original Assignee
Sekisui Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Medical Co Ltd filed Critical Sekisui Medical Co Ltd
Priority to JP2001181588A priority Critical patent/JP4616516B2/en
Publication of JP2002372536A publication Critical patent/JP2002372536A/en
Application granted granted Critical
Publication of JP4616516B2 publication Critical patent/JP4616516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、認識部位の反応性の異なる多様性を有する被測定物質の簡便、迅速かつ正確な免疫学的測定法に関する。
【0002】
【従来の技術】
近年、臨床検査の分野において、被測定物質に対して特異的に結合し得る物質を不溶性担体に結合させ、これによって被測定物質を補足し、検体中に存在する被測定物質の有無の確認(定性)、又は定量する方法が一般的に使われている。なかでも、抗原・抗体による免疫反応を利用した方法は多くの検査薬に用いられており、その手法としては、RIA(ラジオイムノアッセイ)、CLEIA(化学発光酵素免疫測定法)、ELISA(酵素免疫測定法)、TIA(免疫比濁法)、LTIA(ラテックス免疫比濁法)などといった方法が挙げられる。
【0003】
この内、LTIAは被測定物質と特異的に結合する物質を担持させた不溶性担体と被測定物質とを混合することにより被測定物質を介した不溶性担体の架橋(凝集)が起こり、その結果生じる濁りを光学的に測定することで、被測定物質の有無の確認(定性)、又は定量する方法である。
【0004】
LTIAにおいて、抗原を被測定物質とする場合、抗原上にある複数のエピトープに対して、それぞれに結合する抗体の種類の多い方が、より抗原を介した抗体担持不溶性担体の架橋が形成され易く、凝集の起こりやすさという観点からは、同抗原に対し反応する複数の抗体の混合物であるポリクローナル抗体の方が好ましいと考えられる。しかしながら、ポリクローナル抗体は動物の個体差や採血の時期などにより品質が変動し易いといった問題を持っており、試薬の安定的製造といった面では不安定になり易い。
【0005】
これに対し、モノクローナル抗体は品質の一定した抗体を大量生産することができ、品質管理上取扱い易いといった特徴をもっている為、試薬の安定的製造を可能にする。そこで、特許第1902054号に開示されるように、同一抗原上に存在しつつも異なるエピトープをそれぞれに認識する複数のモノクローナル抗体を混合して担持させるか、又はそれぞれに不溶性担体に担持させることにより、該抗原と効率よく反応させる方法が提案されている。
【0006】
しかしながら、全てのモノクローナル抗体を同一平均粒径の不溶性担体に担持させる方法では、抗体の持つ、抗原に対する親和性の差異や抗体を担持する不溶性担体による立体障害に起因して、抗体と抗原(被測定物質)との間の反応(抗原抗体反応)が阻害され、正確に定量できない場合がある。
【0007】
この問題を解決すべく、平均粒径の異なる不溶性担体に抗体をそれぞれに結合した複数の抗体担持不溶性担体を、組み合わせて使用する方法(特許第2588174号、特開平10−123137号)が開示され、起こり得る立体障害や抗体の抗原に対する親和性の違いに起因すると考えられる抗原との反応性の差異を補正する方法が開示されている。しかしながら、抗体を不溶性担体に担持させた場合、不溶性担体に担持された抗体が担持される以前の親和性を保持しているとは限らず、これによって新たに反応性の差異を生じる可能性が考えられる。
【0008】
【発明が解決しようとする課題】
しかしながら、これら従来の方法では、フィブリノーゲン・フィブリン分解産物(FDP)、コラーゲン分解産物等の被測定物質自体に多様性が存在する場合には、正確な測定値が得られないという問題があった。
従って、本発明の目的は、多様性のある被測定物質を正確に測定できる免疫学的測定法を提供することにある。
【0009】
【課題を解決するための手段】
そこで本発明者らは、FDP、コラーゲン分解産物のような複数の分子種を含み多様性を示す抗原が正確に測定できない原因について検討したところ、抗原間における2以上の認識部位の反応性が、抗原のもつ多様性をもととした立体障害や抗原−抗体間の反応性の差異に起因して生じているためであることが判明した。そして、この反応性の差を補正するように各認識部位に特異的な抗体を担持したそれぞれの不溶性担体の使用量を調整すれば、抗原の多様性が補正され、当該抗原が正確に測定できることを見出し、本発明を完成した。
【0010】
すなわち、本発明は検体中の各被測定物質が少なくとも2以上の認識部位を有し、被測定物質間における当該2以上の認識部位の反応性が異なる性質を有する被測定物質の免疫学的測定法であって、当該2以上の認識部位に特異的に結合する物質を担持したそれぞれの不溶性担体の使用量を、当該2以上の認識部位の反応性の差を補正するように調整することを特徴とする免疫学的測定法を提供するものである。
また、本発明は検体中の各被測定物質が少なくとも2以上の認識部位を有し、被測定物質間における当該2以上の認識部位の反応性が異なる性質を有する被測定物質の免疫学的測定用試薬であって、当該2以上の認識部位に特異的に結合する物質を担持したそれぞれの不溶性担体の使用量が、当該2以上の認識部位の反応性の差を補正するように調整されているものであることを特徴とする免疫学的測定用試薬を提供するものである。
【0011】
【発明の実施の形態】
本発明の測定対象は、少なくとも2以上の認識部位を有し、被測定物質間における当該2以上の認識部位の反応性が異なる性質を有する被測定物質であるが、このような性質を有する抗原が好ましい。ここで認識部位とは、抗原認識部位をいう。このような抗原としては、例えばフィブリノーゲン・フィブリン分解産物(FDP)又は4型コラーゲン(IV−C)等のコラーゲン分解産物、カルシノエンブリオニックアンチジェン(CEA)、α−フェトプロテイン(AFP)、プロステートスペシフィックアンチジエン(PSA)などを挙げることができる。
このうち、FDP、コラーゲン分解産物がより好ましく、特にFDPが好ましい。
【0012】
FDPは凝固線溶の指標として用いられ、血液中にてフィブリノーゲン、又はフィブリンがプラスミン等によって消化され産生される分子の総称である。プラスミンによる消化の際、フィブリノーゲンからはD分画、E分画、Y分画、X分画などが、一方、フィブリンからはDD分画、DD/E分画、或いはこれらを含む複数の高分子分画が産出され、検体中にはこれらが混在する形で存在するため、FDPは多様性を示す。
FDPは上記したような複数の分子種の混在物であり、LTIAなどによる免疫学的測定を行う際、不溶性担体に担持されている抗体、特にそれがモノクローナル抗体である場合には、モノクローナル抗体のFDPの分子種毎に対する親和性が異なることに起因して、反応性に差異を生じることになり、分子種の混在比が変化すれば測定値に差異を生じてしまうことがあることが判明した。
例えば、FDPを構成する分子種のうち、プラスミン消化の最終産物であるD分画上のエピトープを認識するモノクローナル抗体を不溶性担体に担持した試薬を用いた場合、抗体が不溶性担体に担持されることで、この不溶性担体担持モノクローナル抗体のD分画に対する親和性自体が変化しなくても、D分画上のエピトープに対する反応性が、DD分画、DD/E分画、X分画、Y分画などといった、D分画を含むがD分画単独ではない分子中にあるD分画上のエピトープに対する反応性と大きく異なってしまうため、同じ分子数のD分画が存在していても、同一の濃度として測定できないといった現象が起こる。
【0013】
そこで、本発明測定法の1例としてFDPを測定する場合、少なくとも2種類以上の抗D分画−モノクローナル抗体担持不溶性担体を用い、使用するモノクローナル抗体担持不溶性担体の使用量を変えることによって、各分子種への反応性を調整し、これによりFDPの量を、より簡便、迅速、正確に定量することが可能となる。
【0014】
本発明で使用される被測定物質の2以上の認識部位に特異的に結合する物質としては、当該2以上の認識部位に特異的に結合する抗体が好ましい。かかる抗体のうち、ポリクローナル抗体は特定の抗原上に存在する複数のエピトープのうち特定のエピトープと特異的に結合する複数の抗体を含む2種類以上の異なるポリクローナル抗体である。ポリクローナル抗体は被測定物質を適当な動物、例えばマウス、ラット、ウサギ、ヤギ、ヒツジ、ウマ、ウシなどの動物に、それ自体公知の手法によって免疫し、得ることができる。一方、モノクローナル抗体は、特定の抗原に対して特異的に結合する2種類以上の異なるモノクローナル抗体である。モノクローナル抗体は、細胞融合技術分野において、それ自体公知の手法を適宜に選択し、またそれらを組み合わせてモノクローナル抗体産生融合細胞株を形成し、該細胞株を利用して取得することができる。モノクローナル抗体は市販品として入手することも可能であり、本発明方法に利用できる。
【0015】
本発明で使用する不溶性担体としては従来より免疫学的凝集反応及び免疫学的凝集阻止反応において一般的に用いられている微粒子の担体を使用することができる。このような不溶性担体としては、工業的に大量生産可能な有機系微粒子が好ましいが、これに限定されるものではない。工業的に大量生産可能な有機系微粒子としては、例えば、スチレン、塩化ビニル、アクリロニトリル、酢酸ビニル、アクリル酸エステル、メタクリル酸エステルなどビニル系モノマーの単独重合体及び/又は共重合体、スチレン−ブタジエン共重合体、メチルメタクリレート−ブタジエン共重合体などのブタジエン系共重合体などの微粒子、及び官能基としてカルボキシル基、第1級アミノ基、又はカルボキサミド基(-CONH2)、水酸基、アルデヒド基などを有し、かつ基体が前記有機系微粒子からなる反応性有機系微粒子などが挙げられる。抗体の吸着性に優れており、かつ生物学的活性を長期間安定に保持できるなどの理由から、特にポリスチレン系のラテックス粒子が好ましい。
【0016】
その他、動物の赤血球や細菌の細胞等の生物学的粒子、金属コロイド、ベントナイト、コロジオン、コレステロール結晶、シリカ、カオリン、炭素末など非生物学的粒子が挙げられる。
【0017】
本発明で使用する不溶性担体の平均粒径は、不溶性担体上の抗体と、測定対象となる抗原物質の抗原抗体反応より引き起こされる凝集反応の結果、生じた凝集塊が肉眼又は光学的に検出できるに充分な大きさを呈するものであればよい。特に平均粒径が0.05〜10.0μmの範囲にある不溶性担体(好ましくはラテックス粒子)の使用が好ましい。
【0018】
上記不溶性担体の表面にモノクローナル抗体を担持させる手法は種々知られており、本発明において適宜利用できる。例えば、このような感作方法として不溶性担体表面にモノクローナル抗体を物理的に吸着させる手法や、官能基を有する不溶性担体表面に、既知の方法である物理結合法や化学結合法により、モノクローナル抗体を効率的に感作する方法が挙げられる。
【0019】
本発明の特徴である複数の抗体担持不溶性担体の使用量比は、各認識部位間の反応性の差を補正できる比であればよく、測定対象である抗原、用いる抗体担持不溶性担体において異なる。当該使用量比は、抗体担持不溶性担体が特定された時点で、予め予備測定を行って決定するのが好ましい。より具体的な使用量比は、1:100〜100:1、特に1:20〜20:1が好ましい。
【0020】
抗体を担持させた抗体不溶性担体と、抗原との反応は、抗原抗体反応及びそれに伴う凝集反応であり、該反応が起こり得る条件であれば、その反応条件は特に限定されないが、反応温度は、特に25〜37℃の範囲の恒温であることが望ましい。反応時間についても特に限定はないが、10秒〜30分間が好ましい。
【0021】
反応液としては、抗原抗体反応が起こり得る溶液であればどのようなものでもよいが、リン酸緩衝液、グリシン緩衝液、トリス塩酸緩衝液、グッド緩衝液等が好ましい。反応液のpHは、好ましくは5.5〜8.5の範囲で用いるのがよい。
上記反応液に、安定剤としてウシ血清アルブミン、ショ糖、感度を高める効果が期待されるポリエチレングリコール、デキストランなどの水溶性多糖類、防腐剤としてアジ化ナトリウム、及び塩濃度調整の為に塩化ナトリウム等の添加剤を適宜溶解させてもよい。
【0022】
本発明の免疫学的測定法としてはLTIAに代表される免疫凝集法が挙げられる。ここで不溶性担体の凝集の程度を測定する方法は、特に限定されない。例えば、凝集を定性的ないし半定量的に測定する場合には、既知の試料の濁度の程度との比較から、上記結合物の凝集の程度を目視によって判定することも可能である。該凝集を定量的に測定する場合、簡便性及び精度の点からは、例えば光学的に測定することが望ましい。
凝集の光学的測定法としては、公知の方法が利用可能である。より具体的には、例えば、いわゆる比濁法(凝集塊の形成を濁度の増加としてとらえる)、粒度分布による測定法(凝集塊の形成を粒度分布ないしは平均粒径の変化としてとらえる)、積分球濁度法(凝集塊の形成による前方散乱光の変化を積分球を用いて測定し、透過光強度との比を比較する)などの種々の方式が利用可能である。
【0023】
これらのそれぞれの測定法について、速度試験(レートアッセイ:異なる時点で少なくとも2つの測定値を得て、これらの時点間における該測定値の増加分(すなわち増加速度)に基づき凝集の程度を求める)や終点試験(エンドポイントアッセイ:ある時点(通常は、反応の終点と考えられる時点)で1つの測定値を得て、この測定値に基づき凝集の程度を求める)などが利用可能である。
【0024】
【実施例】
次に実施例を挙げて本発明を詳細に説明するが、本発明は何らこれに限定されるものではない。
【0025】
実施例及び比較例で用いた試薬及び材料は以下の通りである。
<試薬及び材料>
・抗FDPモノクローナル抗体:抗FDPモノクローナル抗体(Clone No.03202, 03204、第一化学薬品社製:特公平4-61639号)を用いた。
・ラテックス:平均粒径0.2μmのポリスチレン粒子を含むラテックス(いずれも固形分10%(W/V)、積水化学社製)
・抗体担持ラテックス調製用緩衝液:20mM Tris-HCl pH8.0を用いた。
・ブロッキング用緩衝液:2%BSA in 20mM Tris-HCl pH8.0を用いた。
・検体希釈用緩衝液(R1液):0.15%BSA、0.15M NaCl in 30mM Tris-HCl pH8.5を用いた。
・FDP:10mg/mLとなるように調製した精製フィブリノーゲン溶液(in 20mM Tris-HCl pH8.0)に1M CaCl2溶液、10U/mL凝固第XIII因子、250U/mLトロンビンを順次添加し、37℃で60分間インキュベートしてフィブリン塊を形成し、ここに1.6IU/mLプラスミンを添加して得られる消化産物をもととし、FDPの蛋白質濃度が50μg/mLとなるように、検体希釈用緩衝液で希釈したものをFDPとした。尚、FDPの蛋白質濃度は「既存試薬キット:Bio−RAD DC protein assay kit」を用いて求めた。
・D分画:フィブリノーゲンのプラスミン消化産物より、精製したものをもととし、D分画の蛋白質濃度が38μg/mLとなるように、検体希釈用緩衝液で希釈したものを用いた。尚、D分画の蛋白質濃度は「既存試薬キット:Bio−RAD DC protein assay kit」を用いて求めた。
【0026】
実施例1
1)FDP測定用試薬の調製
ポリスチレンラテックス1容に抗体担持ラテックス調製用緩衝液1容を添加・混合した。一方、抗体:Clone No.03202(又は03204)を濃度1mg/mLとなるよう抗体担持ラテックス調製用緩衝液にて希釈調製した。
上記希釈ポリスチレンラテックス1容を攪拌しながら上記抗体1容を添加・混合し、更に攪拌した。その後、ブロッキング用緩衝液2容を追加添加し、攪拌を続けた。その後、これを回収し、03202抗体担持ラテックス原料(又は03204抗体担持ラテックス原料)とした。
【0027】
2)FDP、並びにD分画の測定
FDP、並びにD分画は、それぞれ検体希釈用緩衝液で1/2、1/4、1/8倍希釈し、これらを生化学分析装置日立7170形(日立製作所社製)を用いて測定した。上記1)で得られた03202抗体担持ラテックス原料(03202-Lx)と03204抗体担持ラテックス原料(03204-Lx)を1:12の比率で混合し、それを更に抗体担持ラテックス調製用緩衝液にて1/5希釈したものを試薬2(R2液)として測定に用いた。濃度換算はFDPをキャリブレーターとして用い、換算した。
【0028】
測定条件は以下の通りである。
検体容量:6μl
検体希釈用緩衝液(R1液):100μl
試薬2(R2液):100μl
測定波長:570/800nm
測光ポイント:19−34
【0029】
比較例1(ラテックス原料を1:1の比率で混合した試薬を用いたFDPの測定)
実施例1でR2液を調製する際、03202抗体担持ラテックス原料と03204抗体担持ラテックス原料を1:1の比率で混合し、それを更にラテックス希釈用緩衝液にて希釈したものを試薬2(R2液)とし、他の点はFDP測定用試薬の調製を含め、実施例1と同様の操作を行い、FDP、並びにD分画を測定した。
【0030】
比較例2(ラテックス原料を1:2の比率で混合した試薬を用いたFDPの測定)
実施例1でR2液を調製する際、03202抗体担持ラテックス原料と03204抗体担持ラテックス原料を1:2の比率で混合し、それを更にラテックス希釈用緩衝液にて希釈したものを試薬2(R2液)とし、他の点はFDP測定用試薬の調製を含め、実施例1と同様の操作を行い、FDP、並びにD分画を測定した。
【0031】
比較例3(ラテックス原料を1:4の比率で混合した試薬を用いたFDPの測定)
実施例1でR2液を調製する際、03202抗体担持ラテックス原料と03204抗体担持ラテックス原料を1:4の比率で混合し、それを更にラテックス希釈用緩衝液にて希釈したものを試薬2(R2液)とし、他の点はFDP測定用試薬の調製を含め、実施例1と同様の操作を行い、FDP、並びにD分画を測定した。
【0032】
比較例4(ラテックス原料を1:8の比率で混合した試薬を用いたFDPの測定)
実施例1でR2液を調製する際、03202抗体担持ラテックス原料と03204抗体担持ラテックス原料を1:8の比率で混合し、それを更にラテックス希釈用緩衝液にて希釈したものを試薬2(R2液)とし、他の点はFDP測定用試薬の調製を含め、実施例1と同様の操作を行い、FDP、並びにD分画を測定した。
【0033】
試験結果
実施例1、及び比較例1、2、3、4で測定した値(反応曲線)を図5、1、2、3、4に示した。
図1は比較例1の結果を示す。比較例1はFDP及びD分画の希釈サンプルを03202-Lx:03204-Lx=1:1で調製した試薬(R2液)を用いて測定しており、図1に示したごとく、両者の反応曲線は乖離した。
【0034】
図5は実施例1の結果を示す。実施例1はFDP及びD分画の希釈サンプルを03202-Lx:03204-Lx=1:12で調製した試薬(R2液)を用いて測定しており、図5に示したごとく、両者の反応曲線は一致し、同一の測定値を得ることができた。
【0035】
図2、3、4は比較例2、3、4の結果を示す。比較例2、3、4はFDP及びD分画の希釈サンプルを03202-Lx:03204-Lx=1:2、1:4、1:8で調製した試薬(R2液)を用いて測定しており、図2、3、4に示したごとく、両者の反応曲線は依然乖離しているものの、03202-Lxと03204-Lxの混合比が1:12に近づくにつれて(03204-Lxの使用量比が高くなるにつれて)測定値が一致してくることがわかる。
【0036】
以上の結果から、LTIAにてFDPを測定する際、本発明によって、構成分子であるD分画の反応性の差異を補正することができ、理論上測定されるべき濃度としての値を得ることができた。
【0037】
【発明の効果】
本発明では、多様性を有する被測定物質、例えば抗原の免疫学的測定法において、抗原間と抗体との反応性を、抗体担持不溶性担体の使用量比の変動により調整することによって、多様性を示す抗原を測定する際に見られる分子種間の反応性の差異を補正し、抗原をより正確に定量できる。
【図面の簡単な説明】
【図1】抗体担持不溶性担体の混合比が1:1の場合の反応曲線を示す図である。
【図2】抗体担持不溶性担体の混合比が1:2の場合の反応曲線を示す図である。
【図3】抗体担持不溶性担体の混合比が1:4の場合の反応曲線を示す図である。
【図4】抗体担持不溶性担体の混合比が1:8の場合の反応曲線を示す図である。
【図5】抗体担持不溶性担体の混合比が1:12の場合の反応曲線を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a simple, rapid and accurate immunoassay method for a substance to be measured having various differences in the reactivity of recognition sites.
[0002]
[Prior art]
In recent years, in the field of clinical testing, a substance that can specifically bind to a substance to be measured is bound to an insoluble carrier, thereby supplementing the substance to be measured and confirming the presence or absence of the substance to be measured present in the specimen ( Qualitative) or quantitative methods are commonly used. Among them, methods using an immune reaction by an antigen / antibody are used in many test drugs, and RIA (radioimmunoassay), CLEIA (chemiluminescence enzyme immunoassay), ELISA (enzyme immunoassay) are used. Method), TIA (immunoturbidimetry), LTIA (latex immunoturbidimetry) and the like.
[0003]
Among these, LTIA mixes an insoluble carrier carrying a substance that specifically binds to the substance to be measured with the substance to be measured, thereby causing crosslinking (aggregation) of the insoluble carrier via the substance to be measured. It is a method for confirming (qualitating) or quantifying the presence or absence of a substance to be measured by optically measuring turbidity.
[0004]
In LTIA, when an antigen is a substance to be measured, cross-linking of an antibody-carrying insoluble carrier via an antigen is more likely to occur when there are more types of antibodies that bind to a plurality of epitopes on the antigen. From the viewpoint of the likelihood of aggregation, a polyclonal antibody that is a mixture of a plurality of antibodies that react with the same antigen is considered preferable. However, the polyclonal antibody has a problem that the quality is likely to fluctuate due to individual differences of animals, the timing of blood collection, and the like, and is easily unstable in terms of stable production of reagents.
[0005]
On the other hand, the monoclonal antibody has a feature that it can mass-produce antibodies with a constant quality and is easy to handle in terms of quality control, thus enabling stable production of reagents. Therefore, as disclosed in Japanese Patent No. 1902054, a plurality of monoclonal antibodies that recognize different epitopes while existing on the same antigen are mixed and supported, or each is supported on an insoluble carrier. A method of efficiently reacting with the antigen has been proposed.
[0006]
However, in the method in which all monoclonal antibodies are supported on an insoluble carrier having the same average particle diameter, the antibody and antigen (covered) are caused by the difference in affinity of the antibody for the antigen and steric hindrance by the insoluble carrier carrying the antibody. The reaction (antigen-antibody reaction) with the (measurement substance) may be inhibited and accurate quantification may not be possible.
[0007]
In order to solve this problem, a method (Patent No. 2588174, JP-A-10-123137) is disclosed in which a plurality of antibody-supported insoluble carriers each having an antibody bound to an insoluble carrier having a different average particle size are used. A method for correcting a difference in reactivity with an antigen, which is considered to be caused by a possible steric hindrance or a difference in affinity of an antibody for an antigen, is disclosed. However, when an antibody is carried on an insoluble carrier, the antibody carried on the insoluble carrier does not always retain the affinity before being carried, and this may cause a difference in reactivity. Conceivable.
[0008]
[Problems to be solved by the invention]
However, these conventional methods have a problem that accurate measurement values cannot be obtained when there are diversity in the substances to be measured such as fibrinogen fibrin degradation products (FDP) and collagen degradation products.
Accordingly, an object of the present invention is to provide an immunological assay that can accurately measure a variety of analytes.
[0009]
[Means for Solving the Problems]
Therefore, the present inventors examined the cause of the inability to accurately measure antigens that include a plurality of molecular species such as FDP and collagen degradation products, and showed that the reactivity of two or more recognition sites between antigens is It was found that this was caused by steric hindrance based on the diversity of antigens and the difference in reactivity between antigens and antibodies. And, by adjusting the amount of each insoluble carrier carrying an antibody specific to each recognition site so as to correct this difference in reactivity, the diversity of the antigen can be corrected and the antigen can be measured accurately. The present invention has been completed.
[0010]
That is, according to the present invention, each substance to be measured in a sample has at least two or more recognition sites, and the immunological measurement of the substance to be measured has a property that the reactivity of the two or more recognition sites between the substances to be measured is different. The amount of each insoluble carrier carrying a substance that specifically binds to the two or more recognition sites is adjusted so as to correct the difference in reactivity between the two or more recognition sites. A characteristic immunological assay is provided.
Further, the present invention provides an immunological measurement of a substance to be measured having a property in which each substance to be measured in a sample has at least two or more recognition sites and the reactivity of the two or more recognition sites between the substances to be measured is different. The amount of each insoluble carrier that carries a substance that specifically binds to the two or more recognition sites is adjusted so as to correct the difference in reactivity between the two or more recognition sites. The present invention provides a reagent for immunological measurement characterized by the above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The measurement object of the present invention is a substance to be measured that has at least two or more recognition sites and has a property that the reactivity of the two or more recognition sites between the substances to be measured is different. An antigen having such properties Is preferred. Here, the recognition site refers to an antigen recognition site. Such antigens include, for example, collagen degradation products such as fibrinogen fibrin degradation product (FDP) or type 4 collagen (IV-C), carcinoembryonic antigen (CEA), α-fetoprotein (AFP), prostate Specific anti-diene (PSA) can be used.
Among these, FDP and collagen degradation products are more preferable, and FDP is particularly preferable.
[0012]
FDP is used as an indicator of coagulation and fibrinolysis, and is a general term for molecules produced by digesting fibrinogen or fibrin with plasmin or the like in blood. During digestion with plasmin, fibrinogen has D fraction, E fraction, Y fraction, X fraction, etc., while fibrin has DD fraction, DD / E fraction, or multiple polymers containing these. FDP shows diversity because fractions are produced and exist in the sample in a mixed form.
FDP is a mixture of a plurality of molecular species as described above. When immunoassay is performed using LTIA or the like, an antibody supported on an insoluble carrier, particularly when it is a monoclonal antibody, It was found that the reactivity of FDP differs depending on the molecular species, resulting in a difference in reactivity. If the mixing ratio of molecular species changes, the measured value may vary. .
For example, when using a reagent in which a monoclonal antibody that recognizes an epitope on the D fraction, which is the final product of plasmin digestion, is used as an insoluble carrier among the molecular species constituting FDP, the antibody is supported on the insoluble carrier. Even if the affinity of the insoluble carrier-carrying monoclonal antibody to the D fraction itself does not change, the reactivity with respect to the epitope on the D fraction is determined by the DD fraction, DD / E fraction, X fraction, Y fraction. Since the reactivity to the epitope on the D fraction in the molecule that contains the D fraction but not the D fraction alone, such as the fraction, etc., is significantly different from the D fraction of the same number of molecules, A phenomenon occurs in which it cannot be measured at the same concentration.
[0013]
Therefore, when FDP is measured as an example of the measurement method of the present invention, at least two kinds of anti-D fraction-monoclonal antibody-supporting insoluble carriers are used, and the amount of the monoclonal antibody-supporting insoluble carrier used is changed. By adjusting the reactivity to the molecular species, the amount of FDP can be quantified more easily, quickly and accurately.
[0014]
The substance that specifically binds to two or more recognition sites of the substance to be measured used in the present invention is preferably an antibody that specifically binds to the two or more recognition sites. Among such antibodies, polyclonal antibodies are two or more different polyclonal antibodies including a plurality of antibodies that specifically bind to a specific epitope among a plurality of epitopes present on a specific antigen. Polyclonal antibodies can be obtained by immunizing a substance to be measured to an appropriate animal, for example, an animal such as mouse, rat, rabbit, goat, sheep, horse, cow, etc., by a technique known per se. On the other hand, monoclonal antibodies are two or more different monoclonal antibodies that specifically bind to a specific antigen. Monoclonal antibodies can be obtained by appropriately selecting methods known per se in the field of cell fusion technology, combining them to form a monoclonal antibody-producing fusion cell line, and using the cell line. Monoclonal antibodies can also be obtained as commercial products and can be used in the method of the present invention.
[0015]
As the insoluble carrier used in the present invention, a particulate carrier that has been conventionally used in immunological aggregation reactions and immunological aggregation inhibition reactions can be used. Such an insoluble carrier is preferably organic fine particles that can be industrially mass-produced, but is not limited thereto. Examples of organic fine particles that can be industrially mass-produced include homopolymers and / or copolymers of vinyl monomers such as styrene, vinyl chloride, acrylonitrile, vinyl acetate, acrylic acid esters, and methacrylic acid esters, and styrene-butadiene. Fine particles such as copolymer, butadiene copolymer such as methyl methacrylate-butadiene copolymer, and carboxyl group, primary amino group, or carboxamide group (-CONH 2 ), hydroxyl group, aldehyde group, etc. as functional groups And reactive organic fine particles having the substrate and the organic fine particles. Polystyrene latex particles are particularly preferred because they have excellent antibody adsorption properties and can retain biological activity stably for a long period of time.
[0016]
Other examples include biological particles such as animal erythrocytes and bacterial cells, non-biological particles such as metal colloids, bentonite, collodion, cholesterol crystals, silica, kaolin, and carbon powder.
[0017]
The average particle size of the insoluble carrier used in the present invention is such that the aggregate formed as a result of the aggregation reaction caused by the antigen-antibody reaction between the antibody on the insoluble carrier and the antigenic substance to be measured can be detected visually or optically. As long as it exhibits a sufficient size. In particular, the use of an insoluble carrier (preferably latex particles) having an average particle diameter in the range of 0.05 to 10.0 μm is preferable.
[0018]
Various techniques for carrying a monoclonal antibody on the surface of the insoluble carrier are known and can be appropriately used in the present invention. For example, as a sensitization method, a monoclonal antibody is immobilized on a surface of an insoluble carrier having a functional group by a method of physically adsorbing the monoclonal antibody, or by a known method such as a physical bonding method or a chemical bonding method. An effective method is sensitization.
[0019]
The use amount ratio of the plurality of antibody-carrying insoluble carriers, which is a feature of the present invention, may be any ratio that can correct the difference in reactivity between the recognition sites, and is different depending on the antigen to be measured and the antibody-carrying insoluble carrier to be used. The use ratio is preferably determined by performing preliminary measurement in advance when the antibody-supporting insoluble carrier is specified. A more specific usage ratio is preferably 1: 100 to 100: 1, particularly preferably 1:20 to 20: 1.
[0020]
The reaction between the antibody-insoluble carrier carrying the antibody and the antigen is an antigen-antibody reaction and an accompanying aggregation reaction, and the reaction conditions are not particularly limited as long as the reaction can occur. In particular, a constant temperature in the range of 25 to 37 ° C is desirable. The reaction time is not particularly limited, but is preferably 10 seconds to 30 minutes.
[0021]
The reaction solution may be any solution that can cause an antigen-antibody reaction, but a phosphate buffer, glycine buffer, Tris-HCl buffer, Good's buffer, and the like are preferable. The pH of the reaction solution is preferably in the range of 5.5 to 8.5.
In the above reaction mixture, bovine serum albumin, sucrose as a stabilizer, water-soluble polysaccharides such as polyethylene glycol and dextran, which are expected to increase sensitivity, sodium azide as a preservative, and sodium chloride for adjusting the salt concentration Additives such as these may be appropriately dissolved.
[0022]
Examples of the immunological measurement method of the present invention include immunoagglutination methods typified by LTIA. Here, the method for measuring the degree of aggregation of the insoluble carrier is not particularly limited. For example, when the aggregation is measured qualitatively or semi-quantitatively, it is possible to visually determine the degree of aggregation of the above-mentioned combined substance from the comparison with the known degree of turbidity of the sample. When quantitatively measuring the aggregation, it is desirable to measure, for example, optically from the viewpoint of simplicity and accuracy.
As an optical measurement method of aggregation, a known method can be used. More specifically, for example, a so-called turbidimetric method (where the formation of agglomerates is considered as an increase in turbidity), a measurement method based on particle size distribution (where the formation of agglomerates is considered as a change in particle size distribution or average particle size), integration Various methods such as a sphere turbidity method (a change in forward scattered light due to the formation of agglomerates is measured using an integrating sphere and a ratio with transmitted light intensity is compared) can be used.
[0023]
For each of these measures, rate test (rate assay: obtain at least two readings at different time points and determine the degree of aggregation based on the increment of the readings between these time points (ie the rate of increase)) Or an end point test (end point assay: one measurement value is obtained at a certain time point (usually considered as an end point of the reaction), and the degree of aggregation is obtained based on this measurement value).
[0024]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to this at all.
[0025]
The reagents and materials used in Examples and Comparative Examples are as follows.
<Reagents and materials>
Anti-FDP monoclonal antibody: An anti-FDP monoclonal antibody (Clone No. 03202, 03204, manufactured by Daiichi Chemicals Co., Ltd .: Japanese Patent Publication No. 4-61639) was used.
Latex: Latex containing polystyrene particles having an average particle size of 0.2 μm (all 10% solids (W / V), manufactured by Sekisui Chemical Co., Ltd.)
-Antibody-supporting latex preparation buffer: 20 mM Tris-HCl pH 8.0 was used.
Blocking buffer: 2% BSA in 20 mM Tris-HCl pH 8.0 was used.
Sample dilution buffer (R1 solution): 0.15% BSA, 0.15 M NaCl in 30 mM Tris-HCl pH 8.5 was used.
FDP: 1M CaCl 2 solution, 10 U / mL coagulation factor XIII, 250 U / mL thrombin were sequentially added to a purified fibrinogen solution (in 20 mM Tris-HCl pH 8.0) prepared to 10 mg / mL, and 37 ° C. Incubate for 60 minutes to form a fibrin clot, and add 1.6 IU / mL plasmin to the digestion product, so that the protein concentration of FDP is 50 μg / mL. The one diluted with the liquid was designated as FDP. The protein concentration of FDP was determined using an “existing reagent kit: Bio-RAD DC protein assay kit”.
D fraction: Based on a product purified from a plasmin digestion product of fibrinogen, a product diluted with a sample dilution buffer was used so that the protein concentration of the D fraction was 38 μg / mL. The protein concentration of the D fraction was determined using an “existing reagent kit: Bio-RAD DC protein assay kit”.
[0026]
Example 1
1) Preparation of reagent for FDP measurement One volume of buffer for preparing antibody-supported latex was added to and mixed with one volume of polystyrene latex. On the other hand, the antibody: Clone No. 03202 (or 03204) was diluted and prepared in an antibody-carrying latex preparation buffer solution to a concentration of 1 mg / mL.
While stirring 1 volume of the diluted polystyrene latex, 1 volume of the antibody was added and mixed, and further stirred. Thereafter, 2 volumes of blocking buffer were additionally added and stirring was continued. Thereafter, this was recovered and used as 03202 antibody-supported latex material (or 03204 antibody-supported latex material).
[0027]
2) Measurement of FDP and D fractions FDP and D fractions were diluted 1/2, 1/4, and 1/8 times with a sample dilution buffer, respectively, and these were diluted with biochemical analyzer Hitachi 7170 type ( (Manufactured by Hitachi, Ltd.). The 03202 antibody-carrying latex raw material (03202-Lx) obtained in 1) above and the 03204 antibody-carrying latex raw material (03204-Lx) are mixed at a ratio of 1:12, and this is further mixed with an antibody-carrying latex preparation buffer. A 1/5 diluted solution was used as a reagent 2 (R2 solution) for measurement. The concentration was converted using FDP as a calibrator.
[0028]
The measurement conditions are as follows.
Sample volume: 6 μl
Sample dilution buffer (R1 solution): 100 μl
Reagent 2 (R2 solution): 100 μl
Measurement wavelength: 570/800 nm
Metering point: 19-34
[0029]
Comparative Example 1 (Measurement of FDP using a reagent in which latex raw materials were mixed at a ratio of 1: 1)
In preparing the R2 solution in Example 1, the 03202 antibody-supported latex material and the 03204 antibody-supported latex material were mixed at a ratio of 1: 1, and further diluted with a latex dilution buffer solution to obtain a reagent 2 (R2 The other operations including the preparation of the reagent for FDP measurement were the same as in Example 1, and FDP and D fraction were measured.
[0030]
Comparative Example 2 (FDP measurement using a reagent in which latex raw materials were mixed at a ratio of 1: 2)
In preparing the R2 solution in Example 1, the 03202 antibody-supported latex material and the 03204 antibody-supported latex material were mixed at a ratio of 1: 2, and further diluted with a latex dilution buffer, reagent 2 (R2 The other operations including the preparation of the reagent for FDP measurement were the same as in Example 1, and FDP and D fraction were measured.
[0031]
Comparative Example 3 (Measurement of FDP using a reagent in which latex raw materials were mixed at a ratio of 1: 4)
In preparing the R2 solution in Example 1, the 03202 antibody-supported latex material and the 03204 antibody-supported latex material were mixed at a ratio of 1: 4, and further diluted with a latex dilution buffer, reagent 2 (R2 The other operations including the preparation of the reagent for FDP measurement were the same as in Example 1, and FDP and D fraction were measured.
[0032]
Comparative Example 4 (FDP measurement using a reagent in which latex raw materials were mixed at a ratio of 1: 8)
When preparing R2 solution in Example 1, 03202 antibody-supported latex material and 03204 antibody-supported latex material were mixed at a ratio of 1: 8, and further diluted with a latex dilution buffer, reagent 2 (R2 The other operations including the preparation of the reagent for FDP measurement were the same as in Example 1, and FDP and D fraction were measured.
[0033]
Test results Values (reaction curves) measured in Example 1 and Comparative Examples 1, 2, 3, and 4 are shown in FIGS.
FIG. 1 shows the results of Comparative Example 1. In Comparative Example 1, a diluted sample of the FDP and D fractions was measured using a reagent (R2 solution) prepared at 03202-Lx: 03204-Lx = 1: 1. As shown in FIG. The curves were off.
[0034]
FIG. 5 shows the results of Example 1. In Example 1, a diluted sample of FDP and D fractions was measured using a reagent (R2 solution) prepared with 03202-Lx: 03204-Lx = 1: 12. As shown in FIG. The curves matched and the same measurements could be obtained.
[0035]
2, 3 and 4 show the results of Comparative Examples 2, 3 and 4. In Comparative Examples 2, 3, and 4, the diluted samples of the FDP and D fractions were measured using the reagents (R2 solution) prepared in 03202-Lx: 03204-Lx = 1: 2, 1: 4, 1: 8. As shown in FIGS. 2, 3 and 4, although the reaction curves of both are still separated, the mixing ratio of 03202-Lx and 03204-Lx approaches 1:12 (the usage ratio of 03204-Lx). It can be seen that the measured values match as the value increases.
[0036]
From the above results, when FDP is measured by LTIA, the present invention can correct the difference in reactivity of the D fraction, which is a constituent molecule, and obtain a value as a concentration that should be measured theoretically. I was able to.
[0037]
【The invention's effect】
In the present invention, in the immunological measurement method of substances to be measured having diversity, for example, antigens, the reactivity between antigens and antibodies is adjusted by changing the ratio of the amount of the antibody-supporting insoluble carrier. It is possible to correct the antigenicity more accurately by correcting for the difference in reactivity between the molecular species observed when measuring the antigens indicating the antigens.
[Brief description of the drawings]
FIG. 1 is a diagram showing a reaction curve when the mixing ratio of an antibody-supporting insoluble carrier is 1: 1.
FIG. 2 is a diagram showing a reaction curve when the mixing ratio of the antibody-supporting insoluble carrier is 1: 2.
FIG. 3 is a diagram showing a reaction curve when the mixing ratio of the antibody-supporting insoluble carrier is 1: 4.
FIG. 4 is a view showing a reaction curve when the mixing ratio of the antibody-supporting insoluble carrier is 1: 8.
FIG. 5 is a view showing a reaction curve when the mixing ratio of the antibody-supporting insoluble carrier is 1:12.

Claims (3)

検体中のフィブリノーゲン・フィブリン分解産物(FDP)の免疫学的測定法であって、FDPのD分画、DD分画、又はD分画もしくはDD分画を保持する分画とは反応するが、フィブリノーゲン及びFDPのE分画とは反応しない、少なくとも2種類のモノクローナル抗体を担持したそれぞれの不溶性担体の使用量を、該少なくとも2種類のモノクローナル抗体による該D分画、該DD分画、又は該D分画もしくはDD分画を保持する分画に対する反応性の差を補正するように調整することを特徴とする免疫学的測定法。An immunological assay for fibrinogen fibrin degradation product (FDP) in a sample, which reacts with the D fraction of FDP, the DD fraction, or the fraction that holds the D fraction or the DD fraction, The usage ratio of each insoluble carrier carrying at least two types of monoclonal antibodies that does not react with the E fraction of fibrinogen and FDP is determined by using the D fraction, the DD fraction, or the An immunoassay characterized by adjusting so as to correct a difference in reactivity to the D fraction or a fraction holding the DD fraction . 2種類のモノクローナル抗体をそれぞれ担持した不溶性担体が使用され、該担体の使用量比が1:20〜20:1である請求項1に記載の方法。The method according to claim 1, wherein an insoluble carrier carrying each of two types of monoclonal antibodies is used, and the usage ratio of the carrier is 1:20 to 20: 1. 免疫学的測定法が、免疫凝集法である請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the immunological assay is an immunoagglutination method.
JP2001181588A 2001-06-15 2001-06-15 Immunological assay Expired - Lifetime JP4616516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181588A JP4616516B2 (en) 2001-06-15 2001-06-15 Immunological assay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181588A JP4616516B2 (en) 2001-06-15 2001-06-15 Immunological assay

Publications (2)

Publication Number Publication Date
JP2002372536A JP2002372536A (en) 2002-12-26
JP4616516B2 true JP4616516B2 (en) 2011-01-19

Family

ID=19021830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181588A Expired - Lifetime JP4616516B2 (en) 2001-06-15 2001-06-15 Immunological assay

Country Status (1)

Country Link
JP (1) JP4616516B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903381B2 (en) * 2010-07-30 2016-04-13 シスメックス株式会社 Anti-FDP monoclonal antibody, reagent and reagent kit for FDP measurement using the same, and FDP measurement method
JP5984670B2 (en) * 2010-07-30 2016-09-06 シスメックス株式会社 Reagent for FDP measurement, reagent kit, and measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379900A (en) * 1986-09-22 1988-04-09 Yatoron:Kk Monoclonal antibody and detection thereof
JPH04122859A (en) * 1990-09-14 1992-04-23 Nitsusui Seiyaku Kk Reagent for immunoassay
JPH0658933A (en) * 1992-08-08 1994-03-04 Denka Seiken Co Ltd Method for measuring decomposition product of fibrin and decomposition product of fibrinogen
JPH06205692A (en) * 1993-01-08 1994-07-26 Asahi Chem Ind Co Ltd Novel human thrombomodulin-resistant monoclonal antibody and method for highly sensitively measuring human thrombomodulin with the antibody
JPH0829417A (en) * 1994-07-15 1996-02-02 Tokuyama Corp Fibrin-decomposed product and/or fibrinogen-decomposed product measuring reagent and its quantitatively determining method
JPH09301999A (en) * 1996-05-15 1997-11-25 Iatron Lab Inc New monoclonal antibody and immunoassay of e-d dimer and e-dd/e complex
JPH11349600A (en) * 1998-06-02 1999-12-21 Teikoku Hormone Mfg Co Ltd Monoclonal antibody and measurement of fdp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379900A (en) * 1986-09-22 1988-04-09 Yatoron:Kk Monoclonal antibody and detection thereof
JPH04122859A (en) * 1990-09-14 1992-04-23 Nitsusui Seiyaku Kk Reagent for immunoassay
JPH0658933A (en) * 1992-08-08 1994-03-04 Denka Seiken Co Ltd Method for measuring decomposition product of fibrin and decomposition product of fibrinogen
JPH06205692A (en) * 1993-01-08 1994-07-26 Asahi Chem Ind Co Ltd Novel human thrombomodulin-resistant monoclonal antibody and method for highly sensitively measuring human thrombomodulin with the antibody
JPH0829417A (en) * 1994-07-15 1996-02-02 Tokuyama Corp Fibrin-decomposed product and/or fibrinogen-decomposed product measuring reagent and its quantitatively determining method
JPH09301999A (en) * 1996-05-15 1997-11-25 Iatron Lab Inc New monoclonal antibody and immunoassay of e-d dimer and e-dd/e complex
JPH11349600A (en) * 1998-06-02 1999-12-21 Teikoku Hormone Mfg Co Ltd Monoclonal antibody and measurement of fdp

Also Published As

Publication number Publication date
JP2002372536A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
KR101433974B1 (en) Method of measuring anticoagulation and reagent for measuring anticoagulation
KR920000056B1 (en) Process for the determination of a specifically bindable substance
CN108152512A (en) Heparin-binding protein detection kit and preparation method thereof
KR920000057B1 (en) Process and reagent for the determination of a specifically bindable substance
JPS6255103B2 (en)
IE914536A1 (en) &#34;Test method and reagent kit therefor&#34;
JP3623657B2 (en) Nonspecific reaction inhibitor, immunoassay reagent and immunoassay method
JP3899029B2 (en) Immunological analysis method
JP3652029B2 (en) Highly sensitive immunoassay
US6210975B1 (en) Process for determining a bindable analyte via immune precipitation and reagent therefor
JP4616516B2 (en) Immunological assay
CN110736839A (en) Latex-enhanced immunoturbidimetric assay kit for cytokeratin 19 fragments
JPH01301165A (en) Immunoassay
US6927071B2 (en) Method for reducing non-specific aggregation of latex microparticles in the presence of serum or plasma
JP2004191332A (en) Immunological analysis reagent and immunological analysis method
US20020127741A1 (en) Free Analyte detection system
JP3328053B2 (en) Determination of antibody or antigen concentration by immunoagglutination
JP2001108681A (en) Reagent for determining immunoagglutination and measuring method
JP2006105910A (en) Measurement method and measurement reagent of target substance
JP2001330611A (en) Immunoassay reagent
JPH10307140A (en) Reagent for latex agglutination reaction
JP2000258415A (en) QUANTITATIVE METHOD OF HUMAN alpha2-PLASMIN INHIBITOR AND MEASURING KIT
JPH0833396B2 (en) Immunoassay reagent and immunoassay method using the same
JPH0552845A (en) Reagent for immunoassay
JP2001330613A (en) Immunoassay reagent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R150 Certificate of patent or registration of utility model

Ref document number: 4616516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term