JPH0557330B2 - - Google Patents

Info

Publication number
JPH0557330B2
JPH0557330B2 JP15297987A JP15297987A JPH0557330B2 JP H0557330 B2 JPH0557330 B2 JP H0557330B2 JP 15297987 A JP15297987 A JP 15297987A JP 15297987 A JP15297987 A JP 15297987A JP H0557330 B2 JPH0557330 B2 JP H0557330B2
Authority
JP
Japan
Prior art keywords
steel
low carbon
ultra
spot
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15297987A
Other languages
Japanese (ja)
Other versions
JPS63317625A (en
Inventor
Takashi Obara
Susumu Okada
Makoto Imanaka
Kozo Sumyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62152979A priority Critical patent/JPS63317625A/en
Priority to US07/204,619 priority patent/US4889566A/en
Priority to AU17752/88A priority patent/AU591843B2/en
Priority to DE3851374T priority patent/DE3851374T2/en
Priority to CA000569634A priority patent/CA1339525C/en
Priority to EP88109682A priority patent/EP0295697B1/en
Priority to KR1019880007420A priority patent/KR960010819B1/en
Publication of JPS63317625A publication Critical patent/JPS63317625A/en
Priority to US07/410,414 priority patent/US5089068A/en
Publication of JPH0557330B2 publication Critical patent/JPH0557330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、自動車用冷延鋼板としての用途に
供して好適な極低炭素冷延鋼板の製造方法に関
し、優れた加工性を損うことなしにスポツト溶接
性とくに溶接部の疲労特性の有利な改善を図つた
ものである。 (従来の技術) 自動車用鋼板として使用される冷延鋼板には、
まず第一に、優れた深絞り加工性が要求される。
そしてそれに加えて表面の美麗さ、強度、耐デン
ト性、溶接性、塗装性および耐食性などの諸特性
も併せて要求される。とくに最近の自動車用鋼板
では、多種多用のデザインに対応する必要上、深
絞り性に対応するr値の改善ならびに形状凍結性
の観点から低降伏応力化および加工硬化率の上昇
がとりわけ重要視されてきた。 このような観点から開発された深絞り用鋼板の
製造技術はこれまでにも数多く開示されている。 (発明が解決しようとする問題点) しかしながら、自動車用鋼板に要求されるもう
一つの重要な特性として、加工後の組み立て作業
において避けることができないスポツト溶接時の
作業性ならびに溶接部の機械的性質の確保が挙げ
られるが、極低炭素鋼板においては、一般的にこ
のスポツト溶接性が低炭素鋼に比べ劣るところに
問題を残していた。しかしながらこれまでのとこ
ろ、かかるスポツト溶接性の改善に成功した技術
は報告されていない。 一般に加工性、特にプレス成形時の深絞り性や
形状凍結性の観点からは、伸び(E1)とランク
フオード値(r値)を改善し、併せてY.S.は低く
(低Y.R.)するのが良いとされ、そのための製造
技術が極低炭素化によつて実現された。しかし一
方で、この様な鋼板をスポツト溶接に供した場合
は、従来鋼よりも強度の点で劣り、しかも第10
図に示したように適正溶接条件範囲が従来鋼種よ
りも高溶接電流側にずれるため、スポツト溶接機
の消耗が早くなるという新たな問題が生じてい
た。 またさらに極低炭素鋼のスポツト溶接部は、高
サイクルの疲労特性は良好ではあるものの、低サ
イクル疲労特性に劣るところにも問題を残してい
た。 この発明は、上記の問題を有利に解決するもの
で、極低炭素鋼板をスポツト溶接に供した場合で
あつても、強度の劣化がなく、しかもスポツト溶
接性とくにスポツト溶接部の疲労特性に優れる極
低炭素冷延鋼板の有利な製造方法を提案する事を
目的とする。 (問題点を解決するための手段) まずこの発明の解決経緯について説明する。 加工性すなわちr値やElを改善するには、C量
の低減による軟質化、ならびにTi,Nb等の添加
による集合組織の改善が有効であることはよく知
られている。その結果一般にこの種の鋼は非常に
軟質であり、そのことが深絞り性向上のためには
もつとも大切であるとされてきた。 また一方で、極低炭素鋼は固溶元素が非常に少
なく降伏伸びが発生しないため、調質圧延は必ず
しも必要でないとされてきた。というのは極低炭
素鋼の調質圧延の目的は低炭素鋼のそれとは異な
つて形状矯正、表面調整程度であり、したがつて
極低炭素鋼の場合、調質圧延は全て必要でない
か、あるいは非常に軽い圧下で十分であると考え
られてきたわけである。 このような状況の下で発明者らは、極低炭素鋼
のスポツト溶接性を改善する技術の研究開発を進
めた。 その結果、軟質化しすぎた鋼板においては、ス
ポツト溶接時に電極からの加圧によつて鋼板が容
易に変形し、そのために電極−鋼板間あるいは鋼
板−鋼板間の接触抵抗が異常に低下することを突
き止めた(第11図参照)。 極低炭素鋼板のスポツト溶接時における適正溶
接条件範囲のずれは、この電気抵抗の低下が大き
な原因と考えられる。また一方で極低炭素鋼板
は、不純物が少なく、加熱時に粒成長が非常に大
きいことから、スポツト溶接部の結晶粒粗大化ひ
いては軟質化も、同様に溶接性の阻害要因と考え
られる。 そこで発明者らは、上記の問題を解決すべく鋭
意研究を重ねた結果、極低炭素鋼中にTi,Nbお
よびBの3者を同時に添加し、しかもこれら3元
素の共存状態を特定の範囲に規制することが、ス
ポツト溶接部の強度改善に極めて有効であること
の知見を得た。 またその効果を十分に発揮させるためには、製
造工程とくに調質圧延工程が重要な役割りを担つ
ていることも併せて突き止めた。 この点について今少し詳しく述べると、溶接部
の硬度上昇効果が得られるのは、Ti,Nb,B3つ
の元素が共存する場合のみであり、この添加元素
のいずれかを一つ欠けても溶接性改善効果は認め
られなかつた。従来の深絞り用鋼板においても
Ti,Nb添加あるいはTi−B系、Nb−B系など
の成分系は数多く提案されてはいるが、それらは
いずれも各元素単味の材質向上効果(たとえば
El,r値などの向上)のみを狙つたものであり、
その限りにおいてはTi,Nb,B各元素の添加効
果は相互に独立でありかつ加算的にすぎなかつ
た。またそれらの効果は従来の再結晶集合組織形
成理論で良く説明できるものであつた。 しかしながらこの発明で所期した効果を達成す
るためには、Ti,NbおよびB3元素の適正量の添
加すなわち3元素の微妙なバランスの下での共存
が必須であり、この点が従来のTi,Nbあるいは
B含有深絞り用鋼板の場合と大きく異なる。すな
わち従来からTi,NbあるいはB添加深絞り用鋼
板が数多く提案されていたにもかかわらず、それ
らはすべて深絞り性改善のみに注目するあまり、
Ti,Nb,B等を過剰に添加した鋼か、あるいは
3成分間のバランスがスポツト溶接性の点では不
適切な鋼のみであり、それ故従来鋼ではこの発明
で目指した良好なスポツト溶接性は得られなかつ
たものと考えられる。 加えてこの発明では、調質圧延における圧下率
を通常よりも高目に設定することにより、他の特
性をほとんど犠牲にすることなしにスポツト溶接
部の疲労特性、とくに低サイクル時の疲労特性を
有利に改善することに成功したものである。 さてこの発明の要旨構成は次のとおりである。 (1) C:0.004wt%(以下単に%で示す)以下、
Si:0.1%以下、Mn:0.5%以下、P:0.025%
以下、S:0.025%以下、N:0.004%以下、
Al:0.01〜0.10%、Ti:0.01〜0.04%、Nb:
0.001〜0.010%およびB:0.0001〜0.0010%を
含み、かつ次式(1)〜(4) (11/93)Nb−0.0004≦B ≦(11/93)Nb+0.0004 ……(1) Ti>(48/12)C+(48/14)N ……(2) Nb<1/5・(93/48)Ti ……(3) C+(12/14)N+(12/11)B>0.0038
……(4) を満足する範囲において含有し、残部は実質的
にFeの組成になる鋼スラブを、仕上げ温度700
〜900℃、巻取り温度:300〜600℃の条件下に
熱間圧延し、ついで圧下率:60〜85%で冷間圧
延したのち、再結晶温度以上、780℃以下の温
度範囲で連続焼鈍を施し、しかるのち〔板厚
(mm)+0.1〕%以上、3.0%以下の圧下率で調質
圧延を施すことからなる、スポツト溶接性に優
れた極低炭素冷延鋼板の製造方法。 以下この発明を具体的に説明する。 まずこの発明の基礎となつた実験結果について
説明する。 第1図に、この発明においてとくに重要な成分
であるTi,Nb,Bの添加がスポツト溶接性に及
ぼす影響について調べた結果を示す。 上記の実験において供試鋼としては、一般的な
深絞り用鋼板であるC:0.04%、Si:0.01%、
Mn:0.20%、P:0.01%、N:0.0040%、Al:
0.036%を含む低炭素鋼板と、C:0.002%、Si:
0.1%、Mn:0.1%、P:0.01%、S:0.01%、
Al:0.02%、N:0.002〜0.003%をベースとし、
さらにTi:0.06%を添加した従来のTi添加極低
炭素鋼板およびTi:0.03%、Nb:0.005%、B:
0.0007%をそれぞれ添加したこの発明に従うTi−
Nb−B添加極低炭素鋼板を用いた。 またスポツト溶接は、RWMA(Resistance
Welder Manufacturers′,Association)推奨値
を参考にして、試料サイズを0.8×30×30mmとし、
4.5mmφのCFタイプ電極を用いて加圧力:190Kg
fで行つた。 なお適正溶接電流の下限は、溶接によつて形成
されるナゲツトの系が3√mm(ただしtは試片
の板厚)以上となる点を基準とし、一方上限は散
りの発生点で規定した。 同図より明らかなように、従来のTi添加極低
炭素鋼は低炭素鋼よりも適正溶接電流が著しく高
電流側に移行しており、溶接設備の大きな負担と
なるのに対し、この発明に従うTi−Nb−B添加
極低炭素鋼は、適正溶接電流の下限は低炭素鋼板
にほぼ等しいだけでなく、散り発生により規制さ
れる適正溶接電流の上限は低炭素鋼よりも高電流
側にあり、適正溶接電流範囲は低炭素鋼よりも一
層拡大されている。 このような効果は、鋼板の軟質度の最適化に起
因するものと考えられる。第2図に、鋼板のY.S.
と溶接電流範囲との関係について調べた結果を示
す。 供試材は、C含有量を0.002%から0.4%までに
わたつて種々に変化させた鋼スラブ(ただしSi:
0.01%、Mn:0.1〜0.3%、P:0.01〜0.02%、
S:0.01〜0.02%、N:0.002〜0.005%、Al:0.01
〜0.04%、Ti:0.03%、Nb:0.005%、B:
0.0007%)を、1100〜1250℃に加熱し、ついで仕
上げ温度:700〜1000℃、巻取り温度:450〜700
℃で熱間圧延したのち、圧下率:60〜85%で冷間
圧延し、しかるのち700〜880℃の温度範囲で連続
焼鈍を施して製造し、種々のY.S.を得たものであ
る。 スポツト溶接は、試料厚さを0.7mmとし、溶接
時間を7サイクル、加圧力を175Kgfとした以外
は第1図の場合と同じ条件で行つた。 同図より明らかなように、適正溶接電流範囲は
鋼板のY.S.に強く影響され、Y.S.が19Kgf/mm2
りも低くなると適正溶接電流範囲は著しく高電流
側へ移行する。 深絞り性を良好に保つたまま鋼板を硬質化する
ためには、極低炭素鋼にTi,Nb,Bを複合添加
することが有効である。 表1に、種々の成分組成になる低炭素鋼および
極低炭素鋼の機械的性質について調べた結果を示
す。 供試鋼の成分および製造条件は第3図および第
4図の場合と同一である。ただしTi,Nb,B量
については、Ti:0.02〜0.04%、Nb:0.005〜
0.008%、B:0.0005〜0.0008%の各範囲で適宜添
加した。
(Industrial Application Field) The present invention relates to a method for manufacturing an ultra-low carbon cold rolled steel sheet suitable for use as a cold rolled steel sheet for automobiles. This is intended to advantageously improve the fatigue properties of the parts. (Conventional technology) Cold-rolled steel sheets used as steel sheets for automobiles include:
First of all, excellent deep drawing workability is required.
In addition, various properties such as surface beauty, strength, dent resistance, weldability, paintability, and corrosion resistance are also required. In particular, recent automotive steel sheets need to be compatible with a wide variety of designs, and are placing particular emphasis on improving the r value for deep drawability, as well as lowering yield stress and increasing work hardening rates from the perspective of shape fixability. It's here. Many manufacturing techniques for deep drawing steel sheets developed from this point of view have been disclosed so far. (Problem to be solved by the invention) However, another important characteristic required of automotive steel sheets is workability during spot welding, which cannot be avoided during assembly work after processing, and mechanical properties of the welded part. However, in ultra-low carbon steel sheets, there remains a problem in that spot weldability is generally inferior to that of low carbon steel. However, no technique has been reported so far that has succeeded in improving spot weldability. In general, from the viewpoint of workability, especially deep drawability and shape fixability during press forming, it is better to improve elongation (E1) and rankford value (r value), and to lower YS (low YR). The manufacturing technology for this purpose has been realized through ultra-low carbonization. However, on the other hand, when such steel plates are subjected to spot welding, they are inferior to conventional steel in terms of strength, and moreover,
As shown in the figure, the range of appropriate welding conditions is shifted to a higher welding current side than for conventional steel types, creating a new problem in that the spot welding machine wears out more quickly. Furthermore, although spot welds made of ultra-low carbon steel have good high-cycle fatigue properties, they still have a problem in that they have poor low-cycle fatigue properties. This invention advantageously solves the above problems, and even when ultra-low carbon steel plates are subjected to spot welding, there is no deterioration in strength, and the spot weldability, especially the fatigue properties of the spot welds, are excellent. The purpose of this study is to propose an advantageous manufacturing method for ultra-low carbon cold-rolled steel sheets. (Means for Solving the Problems) First, the solution history of this invention will be explained. It is well known that softening by reducing the amount of C and improving the texture by adding Ti, Nb, etc. are effective ways to improve workability, that is, r value and El. As a result, this type of steel is generally very soft, which has been considered to be extremely important for improving deep drawability. On the other hand, since ultra-low carbon steel has very few solid solution elements and no yield elongation occurs, it has been thought that temper rolling is not necessarily necessary. This is because the purpose of temper rolling for ultra-low carbon steel is different from that for low carbon steel, and is only for shape correction and surface adjustment, so in the case of ultra-low carbon steel, temper rolling may not be necessary at all. Alternatively, it has been thought that a very light pressure is sufficient. Under these circumstances, the inventors proceeded with research and development of a technology to improve the spot weldability of ultra-low carbon steel. As a result, we found that steel plates that have become too soft are easily deformed by the pressure applied from the electrode during spot welding, resulting in abnormally low contact resistance between the electrode and the steel plates or between the steel plates. (See Figure 11). This decrease in electrical resistance is considered to be a major cause of deviations in the range of appropriate welding conditions during spot welding of ultra-low carbon steel sheets. On the other hand, since ultra-low carbon steel sheets have few impurities and exhibit very large grain growth during heating, coarsening of the crystal grains in the spot weld zone, and thus softening, is also thought to be a factor inhibiting weldability. Therefore, as a result of intensive research to solve the above problem, the inventors added Ti, Nb, and B simultaneously to ultra-low carbon steel, and controlled the coexistence state of these three elements within a specific range. It was found that regulating the strength of spot welds is extremely effective in improving the strength of spot welds. We have also discovered that the manufacturing process, especially the temper rolling process, plays an important role in fully demonstrating its effects. To explain this point in more detail, the effect of increasing the hardness of the weld zone can only be obtained when the three elements Ti, Nb, and B coexist, and even if one of these additive elements is missing, the weldability will be improved. No improvement effect was observed. Even in conventional deep drawing steel sheets
Many component systems such as Ti and Nb addition, Ti-B system, Nb-B system, etc. have been proposed, but all of them have the effect of improving the material quality of each element alone (for example,
It is aimed only at improving El, r value, etc.
To that extent, the effects of adding Ti, Nb, and B elements were mutually independent and merely additive. Moreover, these effects could be well explained by the conventional theory of recrystallization texture formation. However, in order to achieve the desired effect of this invention, it is essential to add appropriate amounts of Ti, Nb, and B3 elements, that is, to coexist in a delicate balance of the three elements. This is significantly different from the case of Nb or B-containing deep drawing steel sheets. In other words, although many steel sheets for deep drawing with addition of Ti, Nb, or B have been proposed, they all focus only on improving deep drawability.
Only steels with excessive addition of Ti, Nb, B, etc., or steels with an inappropriate balance among the three components, are used in terms of spot weldability. Therefore, conventional steels do not have the good spot weldability that this invention aims for. It is thought that this was not possible. In addition, this invention improves the fatigue properties of spot welds, especially the fatigue properties at low cycles, without sacrificing any other properties by setting the reduction rate in temper rolling higher than usual. This was a successful improvement. The gist of the invention is as follows. (1) C: 0.004wt% (hereinafter simply expressed as %) or less,
Si: 0.1% or less, Mn: 0.5% or less, P: 0.025%
Below, S: 0.025% or less, N: 0.004% or less,
Al: 0.01~0.10%, Ti: 0.01~0.04%, Nb:
Contains 0.001 to 0.010% and B: 0.0001 to 0.0010%, and the following formulas (1) to (4) (11/93)Nb−0.0004≦B≦(11/93)Nb+0.0004 ……(1) Ti> (48/12)C+(48/14)N...(2) Nb<1/5・(93/48)Ti...(3) C+(12/14)N+(12/11)B>0.0038
......(4) in a range that satisfies the requirements, and the remainder is essentially Fe at a finishing temperature of 700.
~900℃, coiling temperature: 300~600℃, then cold rolling at a reduction rate of 60~85%, and then continuous annealing at a temperature range of above the recrystallization temperature and below 780℃. A method for producing an ultra-low carbon cold-rolled steel sheet with excellent spot weldability, which comprises applying heat rolling to a rolling reduction of at least [plate thickness (mm) + 0.1]% and no more than 3.0%. This invention will be specifically explained below. First, the experimental results that formed the basis of this invention will be explained. FIG. 1 shows the results of an investigation into the effects of the addition of Ti, Nb, and B, which are particularly important components in this invention, on spot weldability. In the above experiment, the test steels used were general deep drawing steel sheets, C: 0.04%, Si: 0.01%,
Mn: 0.20%, P: 0.01%, N: 0.0040%, Al:
Low carbon steel plate containing 0.036%, C: 0.002%, Si:
0.1%, Mn: 0.1%, P: 0.01%, S: 0.01%,
Based on Al: 0.02%, N: 0.002-0.003%,
Furthermore, conventional Ti-added ultra-low carbon steel sheet with Ti: 0.06% added, Ti: 0.03%, Nb: 0.005%, B:
Ti− according to the invention with the addition of 0.0007% respectively
Nb-B added ultra-low carbon steel plate was used. In addition, spot welding is performed using RWMA (Resistance
Welder Manufacturers', Association) recommended values, the sample size was set to 0.8 x 30 x 30 mm,
Pressure force: 190Kg using 4.5mmφ CF type electrode
I went with f. The lower limit of the appropriate welding current is based on the point where the nugget system formed by welding is 3√mm or more (where t is the thickness of the specimen), while the upper limit is defined at the point where expulsion occurs. . As is clear from the figure, the appropriate welding current of conventional Ti-added ultra-low carbon steel is significantly higher than that of low carbon steel, which places a heavy burden on welding equipment, whereas the present invention For Ti-Nb-B-added ultra-low carbon steel, not only the lower limit of the appropriate welding current is almost the same as that of low-carbon steel sheets, but also the upper limit of the appropriate welding current, which is regulated by spatter, is on the higher current side than for low-carbon steel. , the appropriate welding current range is further expanded than that of low carbon steel. Such an effect is considered to be due to optimization of the softness of the steel plate. Figure 2 shows the YS of steel plate.
The results of an investigation into the relationship between the welding current range and the welding current range are shown below. The test materials were steel slabs with various C contents ranging from 0.002% to 0.4% (with the exception of Si:
0.01%, Mn: 0.1-0.3%, P: 0.01-0.02%,
S: 0.01~0.02%, N: 0.002~0.005%, Al: 0.01
~0.04%, Ti: 0.03%, Nb: 0.005%, B:
0.0007%) to 1100-1250℃, then finishing temperature: 700-1000℃, winding temperature: 450-700℃.
After hot rolling at ℃, cold rolling at a reduction rate of 60 to 85%, and then continuous annealing at a temperature range of 700 to 880 ℃ to obtain various YSs. Spot welding was carried out under the same conditions as in Fig. 1, except that the sample thickness was 0.7 mm, the welding time was 7 cycles, and the pressure was 175 Kgf. As is clear from the figure, the appropriate welding current range is strongly influenced by the YS of the steel plate, and when the YS becomes lower than 19 Kgf/mm 2 , the appropriate welding current range shifts significantly to the high current side. In order to harden a steel sheet while maintaining good deep drawability, it is effective to add Ti, Nb, and B in combination to ultra-low carbon steel. Table 1 shows the results of investigating the mechanical properties of low carbon steels and ultra-low carbon steels with various compositions. The composition and manufacturing conditions of the test steel are the same as those shown in FIGS. 3 and 4. However, regarding the amount of Ti, Nb, and B, Ti: 0.02~0.04%, Nb: 0.005~
0.008%, B: 0.0005 to 0.0008%, as appropriate.

【表】 同表より明らかなように、Ti−Nb−B三元素
を添加した鋼板においては、Y.S.が他の極低炭素
鋼板に比べて格段に向上しているにもかかわら
ず、Elやr値はほとんど変わらず深絞り性の劣化
はない。この点低炭素鋼板は、Y.S.レベルについ
てはTi−Nb−B複合添加鋼板とほぼ同じである
が、深絞り性については極低炭素鋼に比べて格段
に劣る。 次に第3図に、上掲表1に示した種々の鋼板に
スポツト溶接を施した場合の、溶接部の硬度につ
いて調べた結果を示す。 同図より明らかなように、この発明に従うTi
−Nb−B複合添加鋼板は、極低炭素鋼であるに
もかかわらず低炭素鋼並みの母材硬度が得られて
いるのに対し、同じ極低炭素鋼板とはいえTi,
Nb,Bの何れか1成分でも欠けたものは低い母
材強度しか得られなかつた。 またこの発明に従い得られたTi−Nb−B複合
添加鋼は、他の極低炭素鋼よりもナゲツト部の硬
度が高いという利点もある。一般にスポツト溶接
部またはその近傍の硬度が低い場合には、スポツ
ト溶接部が母材よりも先に破断してしまい溶接強
度を充分に上げることができない不利があり、こ
の点からすると従来の極低炭素鋼板の溶接部硬度
は不充分であつた。 この点、スポツト溶接部よりも母材が先に破断
する程度まで溶接部硬度が上がると、あとはそれ
以上硬度が上がつてもスポツト溶接強度には原則
的に影響しない。この発明鋼板と低炭素鋼板は、
この状態に相当する。 しかしながらただ単にTi,Nb,Bを添加すれ
ば上記の効果が得られるというわけではむろんな
く、冶金学的ないくつかの相互作用によつて各成
分の適正な添加範囲が存在する。 まず、NbとBの共存効果について調べた結果
を示す。 第4図に、NbおよびBの添加量とスポツト溶
接部(ナゲツト部)硬度との関係を示す。 供試鋼は、板厚:0.8mmで、C:0.0015〜0.004
%、Mn:0.13〜0.33%、S:0.008〜0.025%、
P:0.011〜0.018%、Al:0.022〜0.035%、N:
0.0011〜0.0033%、Ti:0.015〜0.037%をベース
とし、BおよびNbをそれぞれ0〜0.0010%、0
〜0.011%までにわたつて種々に変化させたもの
を用いた、またスポツト溶接条件は第1図の場合
と同じである。 同図より明らかなように、Nb:0.001〜0.010
%、B:0.0001〜0.0010%の範囲で溶接部(ナゲ
ツト部)の硬度が大きく、とくに上記の成分組成
範囲を満足し、かつB量が(11/93)Nb±
0.0004(%)の範囲にあるときにとりわけ良好な
結果が得られた。 上記の結果は、BとNbとが原子数でほぼ同数
存在するときスポツト溶接部の硬度が最大になる
ことを示しており、鋼中のNbとBとの間に何ら
かの相互作用が存在する可能性を示唆している
が、これが例えば固溶状態にある置換型溶質原子
と侵入型溶質原子間の直接的な相互作用であるか
どうかは現状では断定できない。 なおTi,Nb,Bの複合添加による母板材質の
変化も、上記のNbおよびBの相互作用に起因す
ると考えられる。すなわち上記の相互作用によつ
て熱延板の結晶粒径が細かくなり、焼鈍板の結晶
粒径も比較的細かくなるのでY.S.は増加し、同時
に熱延板粒径の微細均質化がr値の改善ならびに
Elの改善ももたらすものと考えられる。 次に、この発明の成分組成を前記の範囲に限定
した理由について説明する。 C: 鋼を軟質化させ、El,r値を改善するには、
C含有量を極力低減させることが有利である。
C含有量が0.0040%を超えると材質が大幅に劣
化しはじめるので、C量の上限は0.0040%に定
めた。 Si,Mn: Si,Mnはいずれも、脱酸剤として有効に寄
与するが、過剰に含有されると延性を害する原
因となるので、それぞれ上限をSiは0.1%、Mn
は0.5%に限定した。 P,S: いずれも不純物元素であり、極力低減させる
ことが望ましいが、ともに0.025%以下程度な
ら許容できる。 N: NはCと同様、加工性を低下させるだけでな
く耐時効性も劣化させるので、0.004%以下の
範囲に限定するものとした。 Al: 脱酸剤として0.01%以上の添加は必要であ
る。しかしながらあまりに多量の添加は介在物
の増加を招き、材質に及ぼす悪影響が大きくな
るので、上限は0.10%に定めた。 Nb: NbはBと共存することによりスポツト溶接
部の組織は微細化し、溶接部の硬度を上げる有
用元素である。 またNbとTiとの複合添加により、高El、高
r値を確保した上で、Y.P.を向上させるのに
も有効に寄与する。 その効果は0.001%以上で現われるが、0.010
%を超えるとY.P.の過度の上昇やElの低下を
招くため、0.001〜0.010%に制限する。しかし
ながらNbのTiに対する比が高くなると、NbC
の析出量が増大し材料が劣化しやすくなり、熱
延巻取り温度を600℃以上の高温としなければ
ならなくなるので、Nbの添加はTiとの兼ね合
いで少なくする必要がある。とくにNbのTiに
対する原子比が0.2以上になると材質の劣化が
著しくなるので、原子比でNb/Ti<1/5す
なわち重量比でNb<1/5・(93/48)Tiと
する必要がある。 第5図に、Elに及ぼすNb/Ti(原子比)の
影響について調べた結果を示す。 同図より明らかなように、Nb/Tiが0.2以上
になるとElが急激に低下している。 B: Nbの存在下で微量添加することによりスポ
ツト溶接部および母材の強度とくんY.S.を上昇
させるのに有用である。その結果は0.0001%以
上の添加により認められるが、多量の添加は材
質の劣化を招くため上限は0.0010%とした。 しかしながら上記の効果を充分満足いくほど
発揮させるためには、ただ単にB量が上記の範
囲を満足するだけでは不充分で、前掲第4図に
示したように、Nb量との兼ね合いで (11/93)Nb−0.0004≦B≦(11/93)Nb
+0.0004の範囲に限定することが肝要である。 Ti: 上記のNbおよびBによるスポツト溶接性改
善効果は、前掲第5図に示したように、Tiの
存在なしでは実現されない。これは、Nbおよ
びBが十分な相互作用を起こすためにはN,C
等のNbあるいはBを析出物として固定してし
まう鋼中元素の大部分をTiで固定する必要が
あるからである。このためTiはC+N(原子
数)以上添加する必要があり、したがつて
Ti/(48/12・C+48/14・N)>1でなけれ
ばならない。また絶対量として0.01%以上添加
しないと、固溶元素の固定が不充分なためやは
りNbとBの添加効果が十分には発揮されない。 また深絞り性については、やはりTi≧0.01%
で高r値、高El値が得られるが、調質圧延によ
りY.S.を調整するためにはTiの過剰添加は悪
影響を及ぼす。そこでTi添加の上限は0.04%と
した。なお適正量のTiの存在は、Nbを含有す
る微細析出物の出現を抑える効果があることか
ら、熱延後のコイル巻取り温度を通常のNb添
加のように高く(>600℃)する必要がないの
で経済的にも有利であり、また結晶粒成長によ
る過度の軟化も防止することができる。以上の
知見によりTiは0.01〜0.04%でかつTi/(48/
12・C+48/14・N)>1を満足する範囲にお
いて添加するものとした。 なお上述の効果を最大限に得るためには、
Ti含有量を必要最少限度に添加することが一
層有利である。 第6図に、溶接部硬度に及ぼすTi含有量の影
響について広い成分範囲にわたつて調べた結果を
整理して示す。ここに成分範囲および溶接条件は
第4図の場合とほぼ同様にした。 その結果、Ti含有量の範囲でデータを3つに
大別できた。すなわちTi≦(48/12・C+48/
14・N)の範囲では一部硬度が高目のものもあつ
た、非常に低いものもあり、バラツキが大きかつ
た。この理由はおそらくTi含有量が少なくなつ
たためにBの歩留りが低下し、Nb−Bの相互作
用効果が不充分だつたためと考えられる。一方
Ti>(48/12・C+48/14・N)の領域になると
硬度が最低でもHv≧180となり十分な硬度となつ
た。そしてさらにその中でもTi<(48/12・C+
48/14・N+48/32・S)では溶接部の硬度が非
常に高い水準に安定することを確認された。これ
はTiが必要最低限度、すなわち、CとNに対し
て当量以上添加すれば十分な硬度が得られるが、
さらにSに対しても当量以上の量を添加するとか
えつて溶接部の硬度が低下する傾向にあることを
示している。この理由は、TiがC,N,Sに対
して十分な(過剰な)量が存在した場合には、一
部Cと析出物をつくる筈のNbの効果がほとんど
なくなるためと考えられる。 したがつてこの発明においては、Ti>(48/
12・C+48/14・N)とすることによつて一応の
効果は得られるが、より一層優れた効果を得るた
めには、Ti量をC,N,Sとの兼ね合いでさら
に、Ti<(48/12・C+48/14・N+48/32・
S)の狭い範囲に限定することが好ましい。 なお、Ti,Nb,Bを添加した場合でも、C,
N,Bの含有量があまりに少なすぎると溶接部の
硬化が不充分となつた。第7図に、各種鋼の溶接
部硬度に及ぼす侵入型固溶元素であるC,N,B
の影響についての調査結果を調整して示す。同図
では各元素をすべてC量に換算する意味でC+
12/14・N+12/11・Bを横軸にとつた。 同図より明らかなように、C+12/14・N+
12/11・Bが38ppm以下になると組織の微細化効
果が不十分となつて十分な溶接部硬度が得られな
い。したがつてこの発明では、C,NおよびBを
C+12/14・N+12/11・Bで38ppm以上含有さ
せるものとした。 次に、この発明の製造条件の限定理由について
説明する。 極低炭素鋼におけるY.S.と適正溶接電流範囲の
関係については前掲第2図に示したとおりである
が、同一成分系にもかかわらずY.S.の低下によつ
て適正電流範囲が高い値にずれている。従つて
Y.S.を高くすることによつて溶接電流値の変化は
抑制できるわけであるが、この時r値やEl等の他
の特性を劣化させないことが肝要である。そこで
Ti−Nb−B系では、良好な材質を確保するため
に、以下のような製造条件の制限が必要となる。 すなわちこの発明に従う適正成分組成に調整し
た鋼スラブの熱間圧延に際しては、700〜900℃で
仕上げ圧延後、300〜600℃の温度範囲で巻取る必
要がある。 ここに仕上げ温度の下限は、歪の残留によるr
値の劣化を抑制する観点から、一方上限は結晶粒
の粗大化によるr値の劣化を防ぐ観点から定め
た。 また巻取り温度が高くなりすぎるとNb−B共
存による溶接性改善効果が著しく弱まるので、巻
取り温度の上限は600℃とした。しかしながら巻
取り温度があまりに低いとその後の工程に支障を
きたすので下限は300℃とした。 次に冷間圧延の目的は再結晶集合組織の形成に
必要な適度の冷間歪を付与することにある。した
がつて圧下率は十分な圧延歪が得られるよう下限
を60%とした。とはいえあまり高圧下率になると
圧延機の負荷が大きくなりすぎて生産性が低下す
のるので圧下率の上限は85%とした。 CAL焼鈍温度についてあ、再結晶温度以上と
する必要がある。しかしながら、焼鈍温度があま
りに高すぎると鋼が軟質化しすぎてこの発明で所
期した効果が得難くなるので上限を780℃とした。 ついでこの発明では調質圧延を施すわけである
が、この発明ではこの調質圧延工程がとりわけ重
要である。第8図に、溶接可能限界電流値に及ぼ
す調質圧延圧下率の影響について調べた結果を示
す。 供試材としては、板厚:0.7mmの種々の成分系
の深絞り用軟鋼板を用い、溶接可能下限電流を調
べた。 同図より明らかなように、Ti−Nb−B系鋼で
とくに調質圧延圧下量の効果が大きく、〔板厚
(mm)+0.1〕%以上の圧下率ではむしろ低炭素鋼
よりも溶接可能下限電流値が低くなる現象が認め
られた。 次に低サイクル疲労特性に及ぼす調質圧延圧下
率の影響について調べた。供試材はいずれも、板
厚:0.8mmの冷延焼鈍鋼板で、A鋼は一般的な
0.04%Cの低炭素Alキルド鋼、B鋼は0.003%C
でTi,Nb等を添加しない極低炭素鋼、そしてC
鋼はこの発明の成分範囲を満足する0.002%C−
0.031%Ti−0.007%Nb−0.0006%B鋼である。調
質圧延圧下率については一般的な0.3%とした。
ただしD鋼はC鋼と同一成分、条件で製造された
鋼であるが、このD鋼についてのみ調質圧延圧下
率を1.3%と高目に設定した。 溶接は、8サイクル、溶接電流:7.5kA、加圧
力:200Kgfとした。また疲労試験における付加
モードは0−Tension、つまり完全片振りの引張
剪断疲労とした。そして試験の停止はJIS Z
3136に基き、ナゲツト径と同等の長さの疲労クラ
ツクが鋼表面から観察されたときとした。 得られた結果を第9図に示す。 同図より明らかなように、通常の低炭素鋼であ
るA鋼に比べ極低炭素鋼であるB鋼の疲労強度は
低い。この点Ti−Nb−Bを含有するとはいえ調
質圧延圧下率が0.3%と低いC鋼では、高サイク
ル域の疲労強度は幾分改善されるとはいえ、やは
り低サイクル域の疲労強度は低い。これに対し調
質圧延圧下率を高目に設定したD鋼では、高サイ
クル域のみならず低サイクル域の疲労強度も大幅
に改善されている。 そしてこのような効果は第8図の場合と同様
Ti−Nb−B系でかつ調質圧延が高圧下のときに
優れた特性が得られることが確認された。 そこでこの発明では、圧下率:〔板厚(mm)+
0.1〕%以上で調質圧延を行うことが必要となつ
たのである。しかしながら圧下率があまりに高く
なると材質の劣化が著しくなるので、上限は3.0
%とした。 なお上記のような圧下率での調質圧延によつ
て、スポツト溶接部の疲労特性が効果的に改善さ
れる理由は必ずしも明確に解明されたわけではな
いが、調質圧延時の残留応力の板厚方向の分布の
変化が何らかの影響を与えているものと推察され
る。 (作用) この発明においてとくに重要なTi,Nb,B複
合添加の作用効果に関してまとめると以下のよう
になる。 まずTiは所定の材質確保とNの固定に必要で
ある。NbはTiの材質向上効果を補うと共に、B
との共存により組織の著しい微細化に大きく貢献
する。 Bは単独では組織微細化効果をほとんど有しな
いけれども、Nbとの共存でその効果が著しい。
ただしNb−B共存による組織微細化効果は非常
に強力なので、いずれも含有量を必要最小限に抑
制すると共に、各成分のバランスが重要である。 このような効果が得られる理由については、ま
だ明確に解明されたわけではないが次のように考
えられる。 スポツト溶接時には、鋼板は一部溶融しかつそ
の近傍もかなりの高温となる。その際、一般に極
低炭素鋼は著しく結晶粒が粗大化する。これが従
来、極低炭素鋼の溶接部の組織が健全でなかつた
理由であり、溶接部の強度が低かつた最大の理由
であつた。 しかるにこの発明鋼においては、溶接部近傍の
組織が粗大化するどころか、むしろ微細化するこ
とが確かめられている。これはδ→γあるいはγ
→α変態時にNb−B原子対が変態の核生成、成
長を強力に抑制するためと推察される。ここに溶
接部の組織は等軸粒ではなく、針状組織であり、
極低炭素鋼としては非常にまれな組織を示してい
る。 この発明最大の特徴、材質の劣化を引きおこさ
ない範囲でこの組織微細化効果を得たところにあ
る。 なお、深絞り性、2次加工脆性等の改善を目的
としてTi,Nb,Bを加算的に添加した鋼板ない
しその製造方向については、特公昭60−47328号、
特開昭59−74232号、特開昭59−190332号、特開
昭59−193221号、特開昭61−133323号各公報など
に提案されているが、いずれもTi,Nb,Bそれ
ぞれの作用効果を利用して良好な深絞り性を得よ
うとするものであり、この発明でもつとも重要視
しているスポツト溶接性さらにはスポツト溶接部
の疲労特性の改善効果は全く期待できないもので
ある。 例えば上掲した各公報においては、Bを焼付け
硬化性および2次加工性の改善のみを目的として
添加し、一方Nbは常温時効性の抑制のために、
またTiは材質向上のみを主目的として添加して
いる。このため、各成分の添加効果は原則として
単純に加算的であり、特開昭59−74232号、同61
−133323号公報におけるTi+Nb<0.04%、およ
び特開昭59−190332号、同59−193221号公報にお
けるTi+Nb<0.06%の限定条件はいずれも鋼板
に良化成処理性を付加するためのものに過ぎな
い。したがつてこの発明で目的とした優れたスポ
ツト溶接性を実現するようなTi,Nb,Bの相互
の作用を考慮した複合添加という思想は、これら
の提案には全く見られず、当然のことながらこの
発明におけるB:0.0001〜0.0010%、Nb:0.001
〜0.010%、Ti:0.01〜0.04%でかつ、B:(11/
93)Nb−0.0004〜(11/93)Nb+0.0004%、Ti
(48/12・C+48/14・N>1、Nb<1/5・
(93/48)Tiに規定される成分系とは異なる成分
の鋼板しか開示されていない。このことは上掲各
公報の実施例を見れば一層明確である。さらに上
掲各公報のTiに関する請求範囲、Ti<48/14・
NおよびTi<48/12・C+48/14・Nがこの発
明を全く満足しないことからも明らかである。 なお言うまでもないことであるが、目的とする
鋼板特性および成分系が異なるわけであるから鋼
板の製造工程も異なつている。たとえば巻取り温
度を例にとると、特開昭59−74232号公報におい
ては650℃以上を必須としており、一方特公昭60
−47328号、特開昭59−190332号、同59−193221
号および同61−133323号各公報においても巻取り
は600℃を超える温度を提言している。このよう
に巻取り温度を高くすると材質はある程度改善さ
れるものの、脱スケール性の低下、表面特性の劣
化等、種々の弊害を伴うことは良く知られている
ところであり、この発明は従来技術のこのような
高温巻取りを適用した場合の欠点をもあわせて改
善するものである。 (実施例) 実施例 1 表2に示す成分組成になる連鋳スラブを、1250
℃に加熱後、880℃で熱間仕上げ圧延を施して3.2
mm厚の熱延板としたのち、550℃で巻取つた。つ
いで75%の圧下率で冷間圧延を施して0.8mmの冷
延板としたのち、750℃の温度で連続焼鈍を施し、
しかるのち圧下率:1.2%の調質圧延を行つた。 かくして得られた各鋼板の機械的諸特性、最小
溶接適正電流および溶接強度について調べた結果
を表3に示す。 なお各機械的性質は、圧延方向、圧延方向から
45℃の方向および圧延方向から90°の方向の1:
2:1の割合の平均値で示した。またスポツト溶
接は、4.8mmφのCF型電極を用い、溶接時間:8
サイクル、加圧力:200Kgfで行い、さらに溶接
強度は溶接電流7.5kAの時の値で評価した。
[Table] As is clear from the table, although the steel sheet containing the three elements Ti-Nb-B has significantly improved YS compared to other ultra-low carbon steel sheets, El and r The values are almost unchanged and there is no deterioration in deep drawability. In this respect, the low carbon steel sheet has almost the same YS level as the Ti-Nb-B composite addition steel sheet, but its deep drawability is significantly inferior to the ultra-low carbon steel. Next, FIG. 3 shows the results of investigating the hardness of welded parts when spot welding was performed on various steel plates shown in Table 1 above. As is clear from the figure, Ti according to the present invention
Although the -Nb-B composite steel sheet is an ultra-low carbon steel, it has a base metal hardness comparable to that of low carbon steel, but although it is an ultra-low carbon steel sheet, it has Ti,
When either Nb or B was missing, only low base material strength was obtained. The Ti--Nb--B composite addition steel obtained according to the present invention also has the advantage that the nugget portion has a higher hardness than other ultra-low carbon steels. In general, if the hardness of the spot weld or its vicinity is low, the spot weld will break before the base metal and the weld strength cannot be sufficiently increased. The hardness of the welded part of the carbon steel plate was insufficient. In this regard, once the hardness of the weld increases to such an extent that the base metal breaks before the spot weld, even if the hardness increases further, in principle it will not affect the strength of the spot weld. This invention steel plate and low carbon steel plate are
This corresponds to this state. However, simply adding Ti, Nb, and B does not necessarily mean that the above effects can be obtained; there are appropriate addition ranges for each component depending on several metallurgical interactions. First, we will show the results of investigating the coexistence effect of Nb and B. FIG. 4 shows the relationship between the amounts of Nb and B added and the hardness of the spot weld (nugget). The sample steel has a plate thickness of 0.8 mm and a C value of 0.0015 to 0.004.
%, Mn: 0.13-0.33%, S: 0.008-0.025%,
P: 0.011-0.018%, Al: 0.022-0.035%, N:
Based on 0.0011-0.0033%, Ti: 0.015-0.037%, B and Nb 0-0.0010%, 0 respectively.
The spot welding conditions were the same as those shown in FIG. As is clear from the figure, Nb: 0.001 to 0.010
%, B: In the range of 0.0001 to 0.0010%, the hardness of the welded part (nugget part) is high, especially when the above component composition range is satisfied, and the amount of B is (11/93)Nb±
Particularly good results were obtained in the range of 0.0004 (%). The above results show that the hardness of the spot weld is maximum when B and Nb exist in approximately the same number of atoms, indicating that some kind of interaction may exist between Nb and B in the steel. However, it cannot be determined at present whether this is a direct interaction between a substitutional solute atom and an interstitial solute atom in a solid solution state. Note that the change in the mother plate material due to the combined addition of Ti, Nb, and B is also considered to be due to the interaction of Nb and B described above. In other words, due to the above interaction, the grain size of the hot-rolled sheet becomes finer, and the grain size of the annealed sheet also becomes relatively finer, so YS increases, and at the same time, the fine homogenization of the grain size of the hot-rolled sheet increases the r value. improvement and
It is thought that this also brings about an improvement in El. Next, the reason why the component composition of the present invention is limited to the above range will be explained. C: To soften the steel and improve the El,r value,
It is advantageous to reduce the C content as much as possible.
If the C content exceeds 0.0040%, the material begins to deteriorate significantly, so the upper limit of the C content was set at 0.0040%. Si, Mn: Both Si and Mn contribute effectively as deoxidizing agents, but if they are contained in excess, they will cause damage to ductility.
was limited to 0.5%. P, S: Both are impurity elements, and it is desirable to reduce them as much as possible, but both are acceptable if they are about 0.025% or less. N: Like C, N not only reduces workability but also deteriorates aging resistance, so it was limited to a range of 0.004% or less. Al: It is necessary to add 0.01% or more as a deoxidizing agent. However, adding too much leads to an increase in inclusions, which has a significant negative effect on the quality of the material, so the upper limit was set at 0.10%. Nb: Nb is a useful element that, when coexisting with B, refines the structure of the spot weld and increases the hardness of the weld. Moreover, the combined addition of Nb and Ti ensures high El and high r values and also effectively contributes to improving YP. The effect appears above 0.001%, but 0.010%
If it exceeds %, it will cause an excessive increase in YP and a decrease in El, so limit it to 0.001 to 0.010%. However, as the ratio of Nb to Ti increases, NbC
The amount of Nb precipitated increases and the material deteriorates easily, and the hot rolling winding temperature must be set to a high temperature of 600°C or higher, so the addition of Nb needs to be reduced in balance with Ti. In particular, when the atomic ratio of Nb to Ti exceeds 0.2, the deterioration of the material becomes significant, so it is necessary to set the atomic ratio to Nb/Ti<1/5, or the weight ratio to Nb<1/5・(93/48)Ti. be. Figure 5 shows the results of investigating the influence of Nb/Ti (atomic ratio) on El. As is clear from the figure, when Nb/Ti becomes 0.2 or more, El decreases rapidly. B: Adding a small amount of Nb in the presence of Nb is useful for increasing the strength and YS of spot welds and base metals. The results can be seen when adding 0.0001% or more, but since adding too much leads to deterioration of the material, the upper limit was set at 0.0010%. However, in order to fully and satisfactorily exhibit the above effects, it is not enough for the amount of B to simply satisfy the above range; as shown in Figure 4 above, it is necessary to balance the amount of Nb (11 /93)Nb−0.0004≦B≦(11/93)Nb
It is important to limit the range to +0.0004. Ti: The above-mentioned effect of improving spot weldability by Nb and B cannot be realized without the presence of Ti, as shown in FIG. 5 above. This means that in order for Nb and B to have sufficient interaction, N,C
This is because most of the elements in the steel, such as Nb or B, which are fixed as precipitates, need to be fixed with Ti. For this reason, it is necessary to add Ti at least C+N (number of atoms).
Ti/(48/12・C+48/14・N)>1 must be satisfied. Furthermore, unless the absolute amount of Nb and B is added in an amount of 0.01% or more, the effect of adding Nb and B will not be fully exhibited because the solid solution elements will be insufficiently fixed. Also, regarding deep drawability, Ti≧0.01%
Although a high r value and a high El value can be obtained, excessive addition of Ti has an adverse effect on adjusting YS by temper rolling. Therefore, the upper limit of Ti addition was set at 0.04%. The presence of an appropriate amount of Ti has the effect of suppressing the appearance of fine precipitates containing Nb, so it is necessary to raise the coil winding temperature after hot rolling (>600℃) as with normal Nb addition. It is economically advantageous because there is no such phenomenon, and excessive softening due to crystal grain growth can also be prevented. Based on the above findings, Ti is 0.01 to 0.04% and Ti/(48/
12.C+48/14.N)>1. In order to maximize the above effects,
It is more advantageous to add the Ti content to the minimum necessary limit. Figure 6 summarizes the results of investigating the effect of Ti content on weld hardness over a wide range of ingredients. Here, the component range and welding conditions were almost the same as in the case of FIG. 4. As a result, the data could be roughly divided into three categories based on the range of Ti content. That is, Ti≦(48/12・C+48/
In the range of 14 N), there were some with high hardness and some with very low hardness, and there was a large variation. The reason for this is probably that the yield of B decreased due to the decrease in Ti content, and the interaction effect of Nb-B was insufficient. on the other hand
When Ti>(48/12・C+48/14・N), the hardness was at least Hv≧180, which was sufficient hardness. And among them, Ti<(48/12・C+
48/14・N+48/32・S), it was confirmed that the hardness of the welded part was stable at a very high level. This is because sufficient hardness can be obtained if Ti is added to the minimum necessary amount, that is, at least equivalent to C and N.
Furthermore, it has been shown that when S is added in an amount greater than the equivalent amount, the hardness of the welded part tends to decrease. The reason for this is thought to be that when Ti is present in a sufficient (excess) amount relative to C, N, and S, the effect of Nb, which would form precipitates with some C, is almost eliminated. Therefore, in this invention, Ti>(48/
12・C+48/14・N), a certain effect can be obtained, but in order to obtain an even better effect, the amount of Ti should be adjusted to Ti<( 48/12・C+48/14・N+48/32・
S) is preferably limited to a narrow range. Note that even when Ti, Nb, and B are added, C,
If the contents of N and B were too low, the hardening of the welded part was insufficient. Figure 7 shows the effects of interstitial solid solution elements C, N, and B on the weld hardness of various steels.
The results of the study on the impact of In the figure, C+ means that all elements are converted to C content.
12/14・N+12/11・B was taken on the horizontal axis. As is clear from the figure, C+12/14・N+
When 12/11.B is less than 38 ppm, the effect of refining the structure becomes insufficient and sufficient weld hardness cannot be obtained. Therefore, in this invention, C, N and B are contained in an amount of C+12/14.N+12/11.B of 38 ppm or more. Next, the reasons for limiting the manufacturing conditions of this invention will be explained. The relationship between YS and the appropriate welding current range for ultra-low carbon steel is as shown in Figure 2 above, but even though the compositions are the same, the appropriate current range shifts to a higher value due to a decrease in YS. . Accordingly
Changes in the welding current value can be suppressed by increasing YS, but at this time it is important not to deteriorate other characteristics such as the r value and El. Therefore
In the Ti-Nb-B system, the following restrictions on manufacturing conditions are required to ensure good material quality. That is, when hot rolling a steel slab adjusted to the proper composition according to the present invention, it is necessary to finish roll it at 700 to 900°C and then wind it at a temperature in the range of 300 to 600°C. Here, the lower limit of finishing temperature is r due to residual strain.
The upper limit was determined from the viewpoint of suppressing the deterioration of the r value, and from the viewpoint of preventing the deterioration of the r value due to coarsening of crystal grains. Furthermore, if the winding temperature becomes too high, the effect of improving weldability due to the coexistence of Nb-B will be significantly weakened, so the upper limit of the winding temperature was set at 600°C. However, if the winding temperature is too low, it will interfere with subsequent steps, so the lower limit was set at 300°C. Next, the purpose of cold rolling is to impart an appropriate cold strain necessary for forming a recrystallized texture. Therefore, the lower limit of the rolling reduction ratio was set at 60% to obtain sufficient rolling strain. However, if the rolling reduction ratio is too high, the load on the rolling mill becomes too large and productivity decreases, so the upper limit of the rolling reduction ratio was set at 85%. Regarding the CAL annealing temperature, it needs to be higher than the recrystallization temperature. However, if the annealing temperature is too high, the steel becomes too soft, making it difficult to obtain the desired effect of the present invention, so the upper limit was set at 780°C. Next, in this invention, skin-pass rolling is performed, and this skin-pass rolling process is particularly important in this invention. FIG. 8 shows the results of an investigation into the influence of the temper rolling reduction rate on the weldable limit current value. The lower limit of weldable current was investigated using deep drawing mild steel plates of various compositions with a thickness of 0.7 mm as test materials. As is clear from the figure, the effect of temper rolling reduction is particularly large for Ti-Nb-B steel, and at a reduction rate of [plate thickness (mm) + 0.1]% or more, welding is more effective than for low carbon steel. A phenomenon in which the lowest possible current value became lower was observed. Next, the effect of temper rolling reduction on low cycle fatigue properties was investigated. All test materials were cold-rolled annealed steel plates with a thickness of 0.8 mm, and steel A was a common steel plate.
0.04%C low carbon Al killed steel, B steel is 0.003%C
Ultra-low carbon steel without the addition of Ti, Nb, etc., and C
The steel contains 0.002% C-, which satisfies the composition range of this invention.
It is 0.031%Ti-0.007%Nb-0.0006%B steel. The temper rolling reduction rate was set to the standard 0.3%.
However, although D steel is a steel manufactured under the same composition and conditions as C steel, the skin pass rolling reduction rate was set to be as high as 1.3% only for this D steel. Welding was carried out for 8 cycles, welding current: 7.5kA, and pressure: 200Kgf. The additional mode in the fatigue test was 0-Tension, that is, complete oscillation tensile shear fatigue. And the test stop is JIS Z
3136, when a fatigue crack with a length equivalent to the nugget diameter was observed from the steel surface. The results obtained are shown in FIG. As is clear from the figure, the fatigue strength of Steel B, which is an extremely low carbon steel, is lower than that of Steel A, which is a normal low carbon steel. In this regard, although steel C contains Ti-Nb-B and has a low temper rolling reduction of 0.3%, although its fatigue strength in the high cycle range is somewhat improved, the fatigue strength in the low cycle range is still low. low. On the other hand, in steel D, in which the temper rolling reduction was set to a high value, the fatigue strength not only in the high cycle region but also in the low cycle region was significantly improved. And this effect is similar to the case in Figure 8.
It was confirmed that excellent properties can be obtained when the Ti--Nb--B type material is temper-rolled under high pressure. Therefore, in this invention, the rolling reduction ratio: [plate thickness (mm) +
It became necessary to perform temper rolling with a steel content of 0.1% or more. However, if the rolling reduction rate becomes too high, the deterioration of the material will become significant, so the upper limit is 3.0.
%. The reason why skin pass rolling at the above rolling reduction effectively improves the fatigue properties of spot welds has not been clearly elucidated, but the residual stress during skin pass rolling is It is presumed that changes in the distribution in the thickness direction have some influence. (Function) The functions and effects of the combined addition of Ti, Nb, and B, which are particularly important in this invention, are summarized as follows. First, Ti is necessary to ensure a certain material quality and to fix N. Nb supplements the material quality improvement effect of Ti, and B
The coexistence of this material greatly contributes to the remarkable refinement of the structure. Although B alone has almost no effect on refining the structure, its effect is remarkable when it coexists with Nb.
However, since the effect of microstructural refinement due to the coexistence of Nb-B is very strong, it is important to suppress the content of both to the necessary minimum and balance of each component. The reason why such an effect is obtained has not yet been clearly elucidated, but it is thought to be as follows. During spot welding, a portion of the steel plate melts, and the temperature in the vicinity also becomes quite high. At that time, in general, the crystal grains of ultra-low carbon steel become significantly coarsened. This is the reason why the structure of the welded part of ultra-low carbon steel was not healthy in the past, and was the biggest reason why the strength of the welded part was low. However, in the steel of this invention, it has been confirmed that the structure near the welded part does not become coarser, but rather becomes finer. This is δ→γ or γ
→It is presumed that this is because the Nb-B atom pair strongly suppresses the nucleation and growth of transformation during α transformation. Here, the structure of the weld zone is not an equiaxed grain, but an acicular structure,
It shows an extremely rare structure for an ultra-low carbon steel. The greatest feature of this invention is that this microstructure effect can be obtained within a range that does not cause deterioration of the material. For information on steel sheets additively added with Ti, Nb, and B for the purpose of improving deep drawability, secondary work brittleness, etc., and the manufacturing direction thereof, please refer to Japanese Patent Publication No. 60-47328,
It has been proposed in JP-A-59-74232, JP-A-59-190332, JP-A-59-193221, and JP-A-61-133323, but all of them are based on Ti, Nb, and B, respectively. This is an attempt to obtain good deep drawability by utilizing the action and effect, and it cannot be expected to improve spot weldability or the fatigue properties of spot welds, which is an important aspect of this invention. . For example, in the above publications, B is added only to improve bake hardenability and secondary workability, while Nb is added to suppress room temperature aging.
Furthermore, Ti is added primarily for the purpose of improving material quality. Therefore, the effect of adding each component is, in principle, simply additive;
The limiting conditions of Ti+Nb<0.04% in JP-A-133323 and Ti+Nb<0.06% in JP-A-59-190332 and JP-A-59-193221 are only for adding good chemical conversion treatability to the steel sheet. do not have. Therefore, the idea of a composite addition that takes into account the interaction of Ti, Nb, and B to achieve the excellent spot weldability that is the objective of this invention is not seen at all in these proposals, and it is no surprise that However, B in this invention: 0.0001 to 0.0010%, Nb: 0.001
~0.010%, Ti: 0.01~0.04%, and B: (11/
93) Nb−0.0004~(11/93)Nb+0.0004%, Ti
(48/12・C+48/14・N>1, Nb<1/5・
(93/48) Only a steel plate with a composition different from the composition specified for Ti is disclosed. This becomes even clearer when looking at the examples of the above-mentioned publications. Furthermore, the scope of claims related to Ti in each of the above publications, Ti<48/14・
It is clear from the fact that N and Ti<48/12.C+48/14.N do not satisfy the present invention at all. Needless to say, since the target steel sheet properties and composition systems are different, the manufacturing process of the steel sheets is also different. For example, taking the winding temperature as an example, JP-A-59-74232 requires a temperature of 650°C or higher;
-47328, JP-A-59-190332, JP-A-59-193221
No. 61-133323 also recommend winding at a temperature exceeding 600°C. It is well known that increasing the winding temperature improves the material quality to some extent, but it also brings with it various disadvantages such as reduced descaling and surface properties. This also aims to improve the drawbacks that occur when such high-temperature winding is applied. (Example) Example 1 A continuous cast slab having the composition shown in Table 2 was
After heating to 3.2°C, hot finish rolling was performed at 880°C.
After forming a hot-rolled sheet with a thickness of mm, it was rolled up at 550℃. Then, it was cold-rolled at a reduction rate of 75% to form a cold-rolled sheet of 0.8 mm, and then continuously annealed at a temperature of 750°C.
Thereafter, temper rolling was performed at a reduction rate of 1.2%. Table 3 shows the results of examining the mechanical properties, minimum appropriate welding current, and welding strength of each steel plate thus obtained. In addition, each mechanical property is calculated from the rolling direction and from the rolling direction.
1 in the direction of 45℃ and in the direction of 90° from the rolling direction:
It is shown as an average value with a ratio of 2:1. In addition, spot welding uses a CF type electrode with a diameter of 4.8 mm, and welding time: 8
The welding was performed at a cycle and pressure of 200Kgf, and the welding strength was evaluated using the value at a welding current of 7.5kA.

【表】【table】

【表】【table】

【表】【table】

【表】 表3より明らかなように、この発明に従うTi
−Nb−B複合添加極低炭素鋼板(鋼種A〜E)
はいずれも、値、値とも良好で深絞り性に優
れるのは勿論のこと、スポツト溶接においても適
正溶接電流値の下限は広く、またスポツト溶接強
度も十分であつた。 これに対し、この発明の適正範囲を逸脱してい
る比較例はいずれもスポツト溶接性に劣つてい
た。 実施例 2 実施例1の鋼種Aの組成になる鋼スラブを、表
4に示す種々の条件下に処理して冷延板(板厚は
すべて0.8mm)とした。 かくして得られた各冷延板の機械的諸特性およ
びスポツト溶接性について調べた結果を表5に示
す。
[Table] As is clear from Table 3, Ti according to the present invention
-Nb-B composite additive ultra-low carbon steel sheet (steel types A to E)
In all cases, not only the values were good and the deep drawability was excellent, but also the lower limit of the appropriate welding current value was wide in spot welding, and the spot welding strength was also sufficient. On the other hand, all of the comparative examples which deviated from the appropriate range of the present invention had poor spot weldability. Example 2 Steel slabs having the composition of steel type A in Example 1 were processed under various conditions shown in Table 4 to obtain cold rolled plates (all plate thicknesses were 0.8 mm). Table 5 shows the results of examining the mechanical properties and spot weldability of each of the cold-rolled sheets thus obtained.

【表】【table】

【表】 表5より明らかなように、この発明法に従い得
られた鋼板(No.1〜3)はいずれも、深絞り性に
優れるのは言うまでもなく、高い低サイクル溶接
疲労強度を有し、優れたスポツト溶接性を呈して
いたのに対し、製造条件が適正範囲を逸脱した場
合(No.4,5)は、機械的諸特性およびスポツト
溶接性ともに劣つていた。 (発明の効果) かくしてこの発明によれば、成形加工性を損う
ことなしに優れたスポツト溶接性とくに高い溶接
部疲労強度をそなえる極低炭素冷延鋼板を得るこ
とができる。
[Table] As is clear from Table 5, all of the steel plates (Nos. 1 to 3) obtained according to the method of the present invention not only have excellent deep drawability but also have high low cycle welding fatigue strength. While excellent spot weldability was exhibited, in cases where the manufacturing conditions were outside the appropriate range (Nos. 4 and 5), both mechanical properties and spot weldability were poor. (Effects of the Invention) Thus, according to the present invention, it is possible to obtain an ultra-low carbon cold-rolled steel sheet that has excellent spot weldability and particularly high weld fatigue strength without impairing formability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ti,Nb,Bの添加がスポツト溶接
性に及ぼす影響を示したグラフ、第2図は、鋼板
のY.S.と適正溶接電流範囲との関係を示したグラ
フ、第3図は、Ti,Nb,Bの添加が溶接部の硬
度に及ぼす影響を示したグラフ、第4図は、Nb
およびBの添加量とスポツト溶接部の硬度との関
係を示したグラフ、第5図は、鋼板のElに及ぼす
Nb/Tiの影響を示したグラフ、第6図は、溶接
部硬度に及ぼすTi含有量の影響を示したグラフ、
第7図は、溶接部硬度に及ぼすC,N,Bの影響
を示したグラフ、第8図は、調質圧延圧下率と溶
接可能電流下限値との関係を示すグラフ、第9図
は、鋼中成分と調質圧延圧下率がスポツト溶接部
の疲労強度に及ぼす影響を示したグラフ、第10
図は、従来の低炭素鋼と極低炭素鋼における適正
溶接条件範囲を比較して示した図、第11図は、
鋼板のY.S.と電気抵抗値との関係を示したグラフ
である。
Figure 1 is a graph showing the effects of the addition of Ti, Nb, and B on spot weldability, Figure 2 is a graph showing the relationship between YS of steel plate and appropriate welding current range, and Figure 3 is Figure 4 is a graph showing the effect of the addition of Ti, Nb, and B on the hardness of the weld zone.
Figure 5, a graph showing the relationship between the addition amount of B and the hardness of the spot weld, shows the effect on El of the steel plate.
A graph showing the influence of Nb/Ti. Figure 6 is a graph showing the influence of Ti content on weld hardness.
Fig. 7 is a graph showing the influence of C, N, and B on the weld hardness, Fig. 8 is a graph showing the relationship between skin pass rolling reduction rate and lower limit of weldable current, and Fig. 9 is a graph showing the influence of C, N, and B on the weld hardness. Graph showing the influence of steel components and temper rolling reduction on the fatigue strength of spot welds, No. 10
The figure shows a comparison of the range of appropriate welding conditions for conventional low carbon steel and ultra-low carbon steel.
It is a graph showing the relationship between YS and electrical resistance value of a steel plate.

Claims (1)

【特許請求の範囲】 1 C:0.004wt%以下、 Si:0.1wt%以下、 Mn:0.5wt%以下、 P:0.025wt%以下、 S:0.025wt%以下、 N:0.004wt%以下、 Al:0.01〜0.10wt%、 Ti:0.01〜0.04wt%、 Nb:0.001〜0.010wt%および B:0.0001〜0.0010wt% を含み、かつ次式(1)〜(4) (11/93)Nb−0.0004≦B ≦(11/93)Nb+0.0004 ……(1) Ti>(48/12)C+(48/14)N ……(2) Nb<1/5・(93/48)Ti ……(3) C+(12/14)N+(12/11)B>0.0038 ……(4) を満足する範囲において含有し、残部は実質的に
Feの組成になる鋼スラブを、仕上げ温度:700〜
900℃、巻取り温度:300〜600℃の条件下に熱間
圧延し、ついで圧下率:60〜85%で冷間圧延した
のち、再結晶温度以上、780℃以下の温度範囲で
連続焼鈍を施し、しかるのち〔板厚(mm)+0.1〕
%以上、3.0%以下の圧下率で調質圧延を施すこ
とを特徴とする、スポツト溶接部の疲労特性に優
れた極低炭素冷延鋼板の製造方法。
[Claims] 1 C: 0.004wt% or less, Si: 0.1wt% or less, Mn: 0.5wt% or less, P: 0.025wt% or less, S: 0.025wt% or less, N: 0.004wt% or less, Al. : 0.01 to 0.10wt%, Ti: 0.01 to 0.04wt%, Nb: 0.001 to 0.010wt% and B: 0.0001 to 0.0010wt%, and the following formulas (1) to (4) (11/93)Nb− 0.0004≦B≦(11/93)Nb+0.0004……(1) Ti>(48/12)C+(48/14)N……(2) Nb<1/5・(93/48)Ti…… (3) C+(12/14)N+(12/11)B>0.0038...Contains within the range that satisfies (4), and the remainder is substantially
Finishing temperature of steel slab with Fe composition: 700~
Hot rolled at 900℃, coiling temperature: 300~600℃, then cold rolled at a reduction rate of 60~85%, and then continuously annealed at a temperature range of above the recrystallization temperature and below 780℃. After treatment [Plate thickness (mm) + 0.1]
A method for producing ultra-low carbon cold-rolled steel sheets with excellent fatigue properties at spot welds, characterized by performing temper rolling at a rolling reduction of % or more and 3.0% or less.
JP62152979A 1987-06-18 1987-06-19 Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part Granted JPS63317625A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62152979A JPS63317625A (en) 1987-06-19 1987-06-19 Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part
US07/204,619 US4889566A (en) 1987-06-18 1988-06-09 Method for producing cold rolled steel sheets having improved spot weldability
AU17752/88A AU591843B2 (en) 1987-06-18 1988-06-16 Cold rolled steel sheets having improved spot weldability and method for producing the same
DE3851374T DE3851374T2 (en) 1987-06-18 1988-06-16 Cold rolled steel sheets with improved spot welding ability and process for their manufacture.
CA000569634A CA1339525C (en) 1987-06-18 1988-06-16 Cold rolled steel sheets having improved spot weldability and method forproducing the same
EP88109682A EP0295697B1 (en) 1987-06-18 1988-06-16 Cold rolled steel sheets having improved spot weldability and method for producing the same
KR1019880007420A KR960010819B1 (en) 1987-06-18 1988-06-17 Making method of cold rolled steel sheet having improved spot weldability and the same product
US07/410,414 US5089068A (en) 1987-06-18 1989-09-21 Cold rolled steel sheets having improved spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152979A JPS63317625A (en) 1987-06-19 1987-06-19 Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part

Publications (2)

Publication Number Publication Date
JPS63317625A JPS63317625A (en) 1988-12-26
JPH0557330B2 true JPH0557330B2 (en) 1993-08-23

Family

ID=15552310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152979A Granted JPS63317625A (en) 1987-06-18 1987-06-19 Production of extremely low carbon cold-rolled steel sheet having excellent fatigue characteristic in spot welded part

Country Status (1)

Country Link
JP (1) JPS63317625A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225748A (en) * 1988-03-04 1989-09-08 Sumitomo Metal Ind Ltd Cold rolled steel sheet excellent in fatigue strength and its production
US5053194A (en) * 1988-12-19 1991-10-01 Kawasaki Steel Corporation Formable thin steel sheets
CN1043905C (en) * 1993-10-05 1999-06-30 日本钢管株式会社 Continuously annealed and cold rolled steel sheet
EP0769565A4 (en) * 1995-03-27 1999-01-20 Nippon Steel Corp Ultralow-carbon cold-rolled sheet and galvanized sheet both excellent in fatigue characteristics and process for producing both
KR20020046663A (en) * 2000-12-15 2002-06-21 이구택 A method for manufacturing steel sheet for can with superior workability
CN103131843B (en) * 2013-01-02 2014-05-28 河北钢铁股份有限公司邯郸分公司 Stabilization continuous annealing process of low-alloy and high-strength steel cold-rolled sheet used for automobile structural components

Also Published As

Publication number Publication date
JPS63317625A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
EP0295697B1 (en) Cold rolled steel sheets having improved spot weldability and method for producing the same
JP2000080440A (en) High strength cold rolled steel sheet and its manufacture
US4830686A (en) Low yield ratio high-strength annealed steel sheet having good ductility and resistance to secondary cold-work embrittlement
JPS61276927A (en) Production of cold rolled steel sheet having good deep drawability
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
TWI506146B (en) High strength cold rolled steel sheet excellent in weldability and method for manufacturing the same
JPH0557330B2 (en)
JP3275783B2 (en) Method for producing Ti-added hot-rolled high-strength steel sheet excellent in formability
JPS63317647A (en) Cold-rolled steel sheet excellent in strength and toughness in weld zone and its production
JP3458416B2 (en) Cold rolled thin steel sheet excellent in impact resistance and method for producing the same
CN111511949A (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH0567684B2 (en)
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JPH0434615B2 (en)
JP2828793B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability, chemical conversion property, secondary work brittleness resistance and spot weldability, and method for producing the same
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JP3282887B2 (en) Thin steel sheet excellent in deep drawability and weldability and method for producing the same
JP2000290749A (en) Hot rolled steel sheet for press forming
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP3589416B2 (en) Manufacturing method of ultra-low carbon hot-dip galvanized steel sheet for deep drawing with excellent fatigue properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees