JPH055693Y2 - - Google Patents

Info

Publication number
JPH055693Y2
JPH055693Y2 JP2502684U JP2502684U JPH055693Y2 JP H055693 Y2 JPH055693 Y2 JP H055693Y2 JP 2502684 U JP2502684 U JP 2502684U JP 2502684 U JP2502684 U JP 2502684U JP H055693 Y2 JPH055693 Y2 JP H055693Y2
Authority
JP
Japan
Prior art keywords
resonator
coil
output signal
substrate
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2502684U
Other languages
Japanese (ja)
Other versions
JPS60136539U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2502684U priority Critical patent/JPS60136539U/en
Publication of JPS60136539U publication Critical patent/JPS60136539U/en
Application granted granted Critical
Publication of JPH055693Y2 publication Critical patent/JPH055693Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、加速度センサー等として用いられる
メカニカル共振器の改良に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an improvement of a mechanical resonator used as an acceleration sensor or the like.

従来の技術 従来、この種のメカニカル共振器は金属共振子
を細い金属結合子で縦接続することにより構成さ
れているのが通常である。
BACKGROUND ART Conventionally, this type of mechanical resonator is usually constructed by vertically connecting metal resonators with thin metal connectors.

然し、そのメカニカル共振器は金属片をベース
とするから小型なものに形成するのに限界があ
り、また、均質な安定した振動特性を得られない
欠点がある。
However, since the mechanical resonator is based on a metal piece, there is a limit to how small it can be made, and it also has the disadvantage that it is not possible to obtain homogeneous and stable vibration characteristics.

考案が解決しようとする課題 本考案は、安定した振動特性が得られ、加速度
センサー等として好適であり、また、半導体製造
プロセスを適用することにより小型なものに構成
できるメカニカル共振器を提供することを課題と
する。
Problem to be solved by the invention The objective of the present invention is to provide a mechanical resonator that has stable vibration characteristics, is suitable for use as an acceleration sensor, etc., and can be made compact by applying semiconductor manufacturing processes.

課題を解決するための手段 本考案に係るメカニカル共振器においては、入
力信号が基板平面のコイルに印加される入力信号
印加用共振子と、該入力信号印加用共振子との磁
力線作用で共振するのに伴つて基板平面のコイル
に誘導される電流に応じた電気的出力を生ずる出
力信号発生用共振子とを備え、 出力信号発生用共振子はシリコン、サフアイヤ
等の単結晶体から一体に形成されたコイルの形成
面となる基板部と、その基板部より相対的に薄肉
で基板部から側方に延在する橋絡部と、該基板部
より相対的に厚肉で橋絡部を介して基板部を片持
ち支持する基台部とよりなり、 入力信号印加用共振子はコイルの形成面を出力
信号発生用共振子のコイル形成面と相対位置し、
出力信号発生用共振子の基台部に取付け固定され
て構成されている。
Means for Solving the Problems In the mechanical resonator according to the present invention, an input signal is applied to a coil on the plane of the substrate, and resonance occurs due to the magnetic force line action between the input signal applying resonator and the input signal applying resonator. The output signal generating resonator is integrally formed from a single crystal such as silicon or sapphire, and generates an electrical output corresponding to the current induced in the coil on the plane of the substrate. A substrate portion that is a forming surface of the coil, a bridge portion that is relatively thinner than the substrate portion and extends laterally from the substrate portion, and a bridge portion that is relatively thicker than the substrate portion and extends laterally from the substrate portion. The input signal applying resonator has a coil forming surface positioned relative to the coil forming surface of the output signal generating resonator.
It is configured to be attached and fixed to the base of the output signal generating resonator.

作 用 このメカニカル共振器では入力信号が入力信号
印加用共振子の基板平面に形成されたコイルに印
加されると、出力信号発生用共振子が入力信号印
加用共振子との磁力線作用で共振し、その共振に
伴つて電流が入力信号印加用共振子のコイル形成
面と対向位置する出力信号発生用共振子のコイル
に誘導される。この電流に応じて、出力信号発生
用共振子が電気的出力を生ずるところから、その
電気的出力を応用すれば加速度センサー等として
構成することができる。
Function In this mechanical resonator, when an input signal is applied to the coil formed on the substrate plane of the input signal application resonator, the output signal generation resonator resonates due to the magnetic field line action with the input signal application resonator. With the resonance, a current is induced in the coil of the output signal generating resonator located opposite the coil forming surface of the input signal applying resonator. In response to this current, the output signal generating resonator generates an electrical output, so if the electrical output is applied, it can be configured as an acceleration sensor or the like.

このメカニカル共振器においては、出力信号発
生用共振子がシリコン、サフアイヤ等の単結晶体
固有の弾性、剛性を有するもので形成されている
から、振動特性が均質で安定した電気的出力を生
ずるものに構成できる。また、その単結晶体を用
いては出力信号発生用共振子のコイル部を含む各
部を半導体製造プロセスで形成できるから、全体
的に超小型で寸法精度も優れたものに形成するこ
とができる。
In this mechanical resonator, the resonator for generating the output signal is made of a material such as silicon or sapphire that has the inherent elasticity and rigidity of a single crystal, so it has uniform vibration characteristics and produces a stable electrical output. It can be configured as follows. In addition, since each part of the output signal generating resonator including the coil part can be formed using the single crystal by a semiconductor manufacturing process, the entire resonator can be formed into an extremely small size with excellent dimensional accuracy.

実施例 以下、添付図面を参照して説明すれば、次の通
りである。
Embodiments The following description will be made with reference to the accompanying drawings.

このメカニカル共振器は、第1,2図で示すよ
うに薄膜コイル1,2,3が各基板平面に形成さ
れた三つの共振子A,A′,Bを備えて構成され
ている。そのうち、上下に位置する共振子A,
A′はガラス基板4,5をベースに、各コイル1,
2をガラス基板4,5の板面に形成することによ
り交流信号または磁気バイアスの入力信号が印加
される信号印加用に構成されている。また、中間
に位置する共振子Bは信号印加用共振子A,
A′との磁力線作用で共振するのに伴つて、基板
平面のコイル3に誘導される電流に応じた電気的
出力を生ずる出力信号発生用共振子として構成さ
れている。この出力信号発生用共振子Bに対して
は、各コイル1,2,3の形成面を対向位置させ
て、入力信号印加用共振子A,A′が一体に組み
立てられている。
As shown in FIGS. 1 and 2, this mechanical resonator is comprised of three resonators A, A', and B in which thin film coils 1, 2, and 3 are formed on each substrate plane. Among them, the resonators A located above and below,
A' is based on glass substrates 4 and 5, and each coil 1,
2 on the surfaces of the glass substrates 4 and 5, it is configured for signal application to which an AC signal or a magnetic bias input signal is applied. In addition, the resonator B located in the middle is the signal applying resonator A,
It is configured as an output signal generating resonator that generates an electrical output according to the current induced in the coil 3 on the plane of the substrate as it resonates due to the magnetic force line action with A'. Input signal application resonators A and A' are integrally assembled with the output signal generation resonator B, with the surfaces on which the coils 1, 2, and 3 are formed facing each other.

その出力信号発生用共振子Bは、コイル3を除
く各部がシリコン、サフアイヤ等の単結晶体を基
体にして一体成形されている。また、この出力信
号発生用共振子Bはコイル3の形成面となる基板
部6aと、その基板部6aより相対的に薄肉で基
板部6aから側方に延在する橋絡部6bと、基板
部6aより相対的に厚肉で橋絡部6bを介して基
板部6aを片持ち支持する基台部6cとから形成
されている。
In the output signal generating resonator B, all parts except the coil 3 are integrally molded using a single crystal material such as silicon or sapphire as a base. The output signal generating resonator B includes a substrate portion 6a that is a surface on which the coil 3 is formed, a bridge portion 6b that is relatively thinner than the substrate portion 6a and extends laterally from the substrate portion 6a, and a substrate portion 6a. The base portion 6c is relatively thicker than the portion 6a and supports the substrate portion 6a in a cantilevered manner via a bridging portion 6b.

この各部6a,6b,6c並びにコイル3を含
めて、少なくとも出力信号発生用共振子Bは第3
図で示すような半導体製造プロセスを経て製造す
ることができる。その半導体製造プロセスを適用
しては、まず、同図aで示す如く単結晶体に対し
てフオトエツチングを施すことにより基板部6a
の厚み分を残した凹溝を形成する。次に、同図b
で示すように導電性の良好なAl等の金属を基板
部6aの片面にスパツタリング等で成膜すると共
に、フオトエツチングを施してスパイラル状に連
続するコイル3を基板部6aの平面に形成する。
その後、フオトエツチングを再度施し、同図cで
示す如く基板部6aより薄肉な橋絡部6b並びに
厚肉な基台部6cを形成する。更に、同図dで示
すように橋絡部6bを残存させて周囲を空隙とし
て抜けば、橋絡部6bを含む基板部6aを基台部
6cで片持ち支持した振動部として形成できる。
この橋絡部6b、基台部6cには、上述したと同
様な導電性の良好な金属をスパツタリングで成膜
すると共にフオトエツチングを施すことにより、
同図eで示すようにコイル3の導線部3a,3b
並びに外部接続部3c,3dを形成する。
Including these parts 6a, 6b, 6c and the coil 3, at least the output signal generation resonator B is the third
It can be manufactured through a semiconductor manufacturing process as shown in the figure. When this semiconductor manufacturing process is applied, first, as shown in FIG.
Form a concave groove with a thickness of . Next, figure b
As shown in , a film of a metal such as Al having good conductivity is formed by sputtering or the like on one side of the substrate portion 6a, and photo-etching is performed to form a spirally continuous coil 3 on the plane of the substrate portion 6a.
Thereafter, photoetching is performed again to form a bridge portion 6b thinner than the substrate portion 6a and a thicker base portion 6c as shown in FIG. Furthermore, as shown in FIG. 4D, by leaving the bridging part 6b and leaving the periphery as a gap, it is possible to form a vibrating part in which the substrate part 6a including the bridging part 6b is cantilevered by the base part 6c.
The bridging portion 6b and the base portion 6c are formed by sputtering a film of a metal with good conductivity similar to that described above, and by performing photoetching.
As shown in the figure e, the conductor parts 3a and 3b of the coil 3
In addition, external connection portions 3c and 3d are formed.

その半導体製造プロセスによると、1つの素子
の大きさを数mm角の超小型に形成できるばかりで
なく、1μm以下のバラ付き程度で寸法精度も高
く形成できる。また、出力信号発生用共振子Bは
弾性、剛性が均一なシリコン、サフアイヤ等の単
結晶体を基体とし、基板部6a、橋絡部6b、基
台部6cを一体に形成するから、振動特性が均質
で安定した電気的出力を生ずるものにできて一連
の工程で能率よく製造することができる。上述し
た各部6a〜6cの残部7は、入力信号印加用共
振子A,A′のコイル1,2が形成された板面を
出力信号発生用共振子Bのコイル3が形成された
基板部6aと相対位置させて、信号印加用共振子
A,A′を基台部6cと掛渡し固定するスペーサ
部として用いるようにできる。
According to this semiconductor manufacturing process, not only can each element be formed into an ultra-small size of several millimeters square, but it can also be formed with high dimensional accuracy, with variations of less than 1 μm. In addition, since the output signal generating resonator B uses a single crystal material such as silicon or sapphire having uniform elasticity and rigidity as a base, and the substrate portion 6a, the bridge portion 6b, and the base portion 6c are integrally formed, the vibration characteristics can produce a homogeneous and stable electrical output, and can be manufactured efficiently through a series of steps. The remaining parts 7 of the above-mentioned parts 6a to 6c are such that the plate surface on which the coils 1 and 2 of the input signal applying resonators A and A' are formed is the substrate part 6a on which the coil 3 of the output signal generating resonator B is formed. By positioning the signal applying resonators A and A' relative to each other, the signal applying resonators A and A' can be used as a spacer section that spans and fixes the signal applying resonators A and A' to the base section 6c.

なお、上述した各部3,6a〜6cは大きな面
積を有する単結晶体に複数単位体毎に並べて形成
し、事後に各単位体毎に分割することにより複数
個を同時成形するようにできる。また、上述した
フオトエツチング工程、スパツタリング工程、フ
オトエツチング工程を経る半導体製造プロセスを
適用することから、ガラス基板4,5による入力
信号印加用共振子A,A′も形成することができ
る。その入力信号印加用共振子A,A′は大きな
平面積を有するガラス基板に複数個並べてコイル
1,2を形成した後、出力信号発生用共振子Bを
構成する分割前の単結晶体に上下に重ねて接着す
ると共に縦、横方向に切断すれば、第1,2図で
示すような単位体を複数個同時に製造するように
できる。この場合にはガラス基板を最終工程でフ
オトエツチングし、出力信号発生用共振子Bのコ
イル3から導出された外部接続部3c,3dを外
部に露呈させればよい。
In addition, each of the above-mentioned parts 3, 6a to 6c can be formed by arranging a plurality of units in a single crystal body having a large area, and by dividing each unit after the fact, a plurality of units can be molded at the same time. Furthermore, by applying the semiconductor manufacturing process that includes the photo-etching process, sputtering process, and photo-etching process described above, it is also possible to form resonators A and A' for applying input signals using the glass substrates 4 and 5. The resonators A and A' for applying the input signal are arranged on a glass substrate with a large plane area to form coils 1 and 2, and then placed on the upper and lower sides of the undivided single crystal that constitutes the resonator B for generating the output signal. By stacking them together and gluing them together and cutting them in the vertical and horizontal directions, a plurality of units as shown in FIGS. 1 and 2 can be manufactured at the same time. In this case, the glass substrate may be photoetched in the final step to expose the external connection portions 3c and 3d led out from the coil 3 of the output signal generating resonator B to the outside.

このように構成するメカニカル共振器は、入力
信号印加用共振子A,A′のコイル1,2のいず
れか両端に、或いはコイル1,2が同一旋回方向
に巻装されていれば相互を直列に繋いでコイル
1,2の両端に入力信号を印加することができ
る。
The mechanical resonator configured in this way can be wound at either end of the coils 1 and 2 of the input signal application resonators A and A', or if the coils 1 and 2 are wound in the same rotation direction, they can be wound in series. An input signal can be applied to both ends of the coils 1 and 2 by connecting the coils to the coils 1 and 2.

そのメカニカル共振器を第4図に示す回路で加
速度センサーとして適用する場合、入力信号印加
用共振子A,A′のコイル端に磁気バイアスを印
加すると、磁力線が信号印加用共振子A,A′の
コイル1,2に発生し、また、出力信号発生用共
振子Bのコイル3にも電流が誘導されて磁力線が
発生する。そのコイル1,2から発生した磁力線
とコイル3に誘導された電流で生ずる磁力線とは
吸引、反発力として相互に作用し合い、出力信号
発生用共振子Bが信号印加用共振子A,A′と共
振することにより、出力信号発生用共振子Bの橋
絡部6bを含む基板部6aが振動を開始する。
When the mechanical resonator is applied as an acceleration sensor in the circuit shown in Fig. 4, when a magnetic bias is applied to the coil ends of the input signal application resonators A, A', the lines of magnetic force change between the signal application resonators A and A'. A current is generated in the coils 1 and 2 of the output signal generating resonator B, and a current is also induced in the coil 3 of the output signal generating resonator B, thereby generating lines of magnetic force. The magnetic lines of force generated from the coils 1 and 2 and the lines of magnetic force generated by the current induced in the coil 3 interact with each other as attraction and repulsion forces, and the output signal generation resonator B acts on the signal application resonators A and A'. By resonating with , the substrate portion 6a including the bridge portion 6b of the output signal generating resonator B starts to vibrate.

これと共に、出力信号発生用共振子Bの橋絡部
6bを含む基板部6aに外部から機械的な振動や
変動力を加えると、コイル3に貫通する磁束数が
変化することにより電流がコイル3に誘導され、
外部よりの振動や変動力の加速度成分に対応した
電気的出力Iが得られる。
At the same time, when external mechanical vibration or fluctuating force is applied to the substrate section 6a including the bridge section 6b of the output signal generating resonator B, the number of magnetic fluxes penetrating the coil 3 changes, causing a current to flow through the coil 3. guided by
An electrical output I corresponding to external vibrations and acceleration components of fluctuating force can be obtained.

その電気的出力は、出力信号発生用共振子Bの
橋絡部6bを含む基板部6aがシリコン、サフア
イヤ等の単結晶体で形成され、基板部6aの質量
並びに橋絡部6bの長さから固有の共振周波数を
持つことにより安定したものとして得られる。こ
の電気的出力を応用すれば、振動特性の安定した
加速度センサーとして機能させることができる。
また、そのコイル1,2には一定の振動数を有す
る交流信号を印加しても同様な出力が得られる。
The electrical output is determined based on the mass of the substrate section 6a and the length of the bridge section 6b since the substrate section 6a including the bridge section 6b of the output signal generating resonator B is formed of a single crystal such as silicon or sapphire. It can be obtained as a stable product by having a unique resonant frequency. By applying this electrical output, it can function as an acceleration sensor with stable vibration characteristics.
Further, even if an alternating current signal having a constant frequency is applied to the coils 1 and 2, a similar output can be obtained.

考案の効果 以上の如く、本考案に係るメカニカル共振器に
依れば、少なくとも電気的出力を得る共振子をシ
リコン、サフアイヤ等の単結晶体を基体として形
成するから、その単結晶体の固有の弾性、剛性で
安定した振動特性が得られ、また、半導体製造プ
ロセスで形成できることにより超小型に成形でき
て加速度センサー等に好適な共振器を構成するこ
とができる。
Effects of the Invention As described above, according to the mechanical resonator of the present invention, at least the resonator that obtains an electrical output is formed using a single crystal such as silicon or sapphire as a base. Stable vibration characteristics can be obtained due to elasticity and rigidity, and since it can be formed using a semiconductor manufacturing process, it can be formed into an ultra-small size, and a resonator suitable for an acceleration sensor or the like can be configured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るメカニカル共振器の平面
図、第2図は同共振器の側面図、第3図a〜eは
単結晶体を用いる共振子の半導体製造プロセス工
程を示す説明図、第4図は本考案に係るメカニカ
ル共振器で加速度センサーを構成する場合の回路
である。 A,A′……信号印加用共振子、B……出力信
号発生用共振子、1,2,3……コイル、6……
シリコン、サフアイヤ等に単結晶体、6a……基
板部、6b……橋絡部、6c……基台部。
FIG. 1 is a plan view of a mechanical resonator according to the present invention, FIG. 2 is a side view of the resonator, and FIGS. 3 a to 3 are explanatory diagrams showing semiconductor manufacturing process steps for a resonator using a single crystal. FIG. 4 shows a circuit in which an acceleration sensor is constructed using a mechanical resonator according to the present invention. A, A'... Resonator for signal application, B... Resonator for output signal generation, 1, 2, 3... Coil, 6...
Single crystal material such as silicon or sapphire, 6a...substrate part, 6b...bridge part, 6c...base part.

Claims (1)

【実用新案登録請求の範囲】 入力信号が基板平面のコイルに印加される入力
信号印加用共振子と、該入力信号印加用共振子と
の磁力線作用で共振するのに伴つて基板平面のコ
イルに誘導される電流に応じた電気的出力を生ず
る出力信号発生用共振子とを備え、 上記出力信号発生用共振子はシリコン、サフア
イヤ等の単結晶体から一体に形成されたコイルの
形成面となる基板部と、その基板部より相対的に
薄肉で基板部から側方に延在する橋絡部と、該基
板部より相対的に厚肉で橋絡部を介して基板部を
片持ち支持する基台部とよりなり、 上記入力信号印加用共振子はコイルの形成面を
出力信号発生用共振子のコイル形成面と相対位置
し、出力信号発生用共振子の基台部に取付け固定
されてなることを特徴とするメカニカル共振器。
[Utility Model Claims] A mechanical resonator comprising: an input signal applying resonator in which an input signal is applied to a coil on a substrate plane; and an output signal generating resonator which generates an electrical output corresponding to a current induced in the coil on the substrate plane as a result of resonance due to the action of magnetic lines of force with the input signal applying resonator, wherein the output signal generating resonator comprises a substrate portion which serves as a coil forming surface formed integrally from a single crystal such as silicon or sapphire, a bridging portion which is relatively thinner than the substrate portion and extends laterally from the substrate portion, and a base portion which is relatively thicker than the substrate portion and cantilevers the substrate portion via the bridging portion, wherein the coil forming surface of the input signal applying resonator is positioned relative to the coil forming surface of the output signal generating resonator, and is attached and fixed to the base portion of the output signal generating resonator.
JP2502684U 1984-02-23 1984-02-23 mechanical resonator Granted JPS60136539U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2502684U JPS60136539U (en) 1984-02-23 1984-02-23 mechanical resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2502684U JPS60136539U (en) 1984-02-23 1984-02-23 mechanical resonator

Publications (2)

Publication Number Publication Date
JPS60136539U JPS60136539U (en) 1985-09-10
JPH055693Y2 true JPH055693Y2 (en) 1993-02-15

Family

ID=30519729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2502684U Granted JPS60136539U (en) 1984-02-23 1984-02-23 mechanical resonator

Country Status (1)

Country Link
JP (1) JPS60136539U (en)

Also Published As

Publication number Publication date
JPS60136539U (en) 1985-09-10

Similar Documents

Publication Publication Date Title
US4912990A (en) Magnetically driven vibrating beam force transducer
US4215570A (en) Miniature quartz resonator force transducer
US3479536A (en) Piezoelectric force transducer
US5005413A (en) Accelerometer with coplanar push-pull force transducers
EP0130705A2 (en) Beam structure for piezoelectric vibrating beam force or pressure sensors
JPH03501529A (en) Electrostatically excited dual vibrating beam force transducer
US3710275A (en) Low frequency oscillator employing a pair of u-shaped mechanical vibrators
US3190129A (en) Accelerometer and parts therefor
JPH0643179A (en) Acceleration sensor and manufacture of said sensor
JPH055693Y2 (en)
JPS58220515A (en) Elongated mode piezoelectric microwave resonator
US3636810A (en) Tuning forks and oscillators embodying the same
JPS62188975A (en) Piezoelectric angular velocity sensor
JPS6246266A (en) Oscillation sensor
JPH10115527A (en) Resonator
JPH0464409B2 (en)
JPS618630A (en) Vibration sensor
JPS5850644Y2 (en) Vertical vibration type piezoelectric vibrator
US3622933A (en) Electromechanical vibrating reed device
JPH04337430A (en) Force converter
JPH064080Y2 (en) Piezoelectric fan
JPS6342742Y2 (en)
JPS5970923A (en) Vibration sensor
JPH0611400A (en) Vibrator of vibrating sensor
JPS6359565B2 (en)