JPH055689A - Oxygen gas sensor - Google Patents
Oxygen gas sensorInfo
- Publication number
- JPH055689A JPH055689A JP15890391A JP15890391A JPH055689A JP H055689 A JPH055689 A JP H055689A JP 15890391 A JP15890391 A JP 15890391A JP 15890391 A JP15890391 A JP 15890391A JP H055689 A JPH055689 A JP H055689A
- Authority
- JP
- Japan
- Prior art keywords
- idt
- oxygen gas
- electrode
- oxygen
- reed screen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸素ガス濃度測定に用
いる酸素ガスセンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen gas sensor used for measuring oxygen gas concentration.
【0002】[0002]
【従来の技術】従来より、防災、プロセス制御、環境計
測等のため、酸素ガス濃度測定に用いる酸素ガスセンサ
として、ガルバニ電池式酸素ガスセンサやセラミック固
体電解質型酸素ガスセンサ等が知られている。2. Description of the Related Art Conventionally, galvanic cell type oxygen gas sensors, ceramic solid electrolyte type oxygen gas sensors, etc. are known as oxygen gas sensors used for measuring oxygen gas concentration for disaster prevention, process control, environmental measurement and the like.
【0003】ガルバニ電池式酸素ガスセンサは、ガルバ
ニ電池を構成する電極と酸素との酸化還元反応による電
流変化を利用して酸素ガス濃度を測定するものである。
また、セラミック固体電解質型酸素ガスセンサは、例え
ば安定化ジルコニアを用いて濃淡電池を構成し、酸素分
圧に応じて発生する起電力を利用して酸素ガス濃度を測
定するものである。The galvanic cell type oxygen gas sensor measures the oxygen gas concentration by utilizing the current change due to the redox reaction between the electrodes constituting the galvanic cell and oxygen.
Further, the ceramic solid electrolyte type oxygen gas sensor constitutes a concentration battery using, for example, stabilized zirconia, and measures the oxygen gas concentration by using electromotive force generated according to oxygen partial pressure.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
ガルバニ電池式のものは、水酸化カリウム、水酸化ナト
リウム等のアルカリ性電解液や、硫酸、塩酸等の酸性電
解液を用いているため、漏洩、腐食の危険性があり、漏
洩に対するシール性の保持、対薬品性の容器材質の選
択、あるいは溶液の補充といった、保守、耐環境性の考
慮が必要となる。However, the galvanic battery type battery described above uses an alkaline electrolytic solution such as potassium hydroxide or sodium hydroxide or an acidic electrolytic solution such as sulfuric acid or hydrochloric acid, and therefore leaks, Since there is a risk of corrosion, it is necessary to consider maintenance and environmental resistance, such as maintaining the sealing property against leakage, selecting a chemical-resistant container material, and supplementing the solution.
【0005】また、セラミック固体電解質型のものは、
漏洩に対するシール性等の保守、耐環境性の考慮は不必
要であるが、センサの作動温度が350〜500℃とい
った高温であるため、センサ素子の劣化が生じ易く、寿
命を短くする原因ともなっていた。Also, the ceramic solid electrolyte type is
It is not necessary to consider maintenance such as sealing property against leakage and consideration of environment resistance, but since the operating temperature of the sensor is as high as 350 to 500 ° C., deterioration of the sensor element is likely to occur, which is also a cause of shortening the life. It was
【0006】そこで本発明は上記の課題を解決すること
を目的とし、保守、耐環境性の考慮の必要がなく、室温
でも作動可能な酸素ガスセンサを提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen gas sensor which can be operated even at room temperature without the need to consider maintenance and environmental resistance.
【0007】[0007]
【課題を解決するための手段】かかる目的を達成すべ
く、本発明は課題を解決するための手段として次の構成
を取った。即ち、圧電基板上に弾性表面波励振用のすだ
れ状電極及び受信用のすだれ状電極を設けると共に、該
両すだれ状電極間における前記弾性表面波の伝搬路に酸
素感応薄膜を設けて発振回路を構成し、該酸素感応薄膜
と反応する酸素量の変化を周波数変化量として出力する
ことを特徴とする酸素ガスセンサの構成がそれである。In order to achieve such an object, the present invention has the following constitution as a means for solving the problem. That is, a comb-shaped electrode for exciting a surface acoustic wave and a comb-shaped electrode for receiving are provided on a piezoelectric substrate, and an oxygen sensitive thin film is provided in a propagation path of the surface acoustic wave between the two comb-shaped electrodes to form an oscillation circuit. This is the configuration of an oxygen gas sensor which is characterized in that a change in the amount of oxygen that reacts with the oxygen sensitive thin film is output as a frequency change amount.
【0008】[0008]
【作用】前記構成を有する本発明の酸素ガスセンサは、
励振用のすだれ状電極から発生させた弾性表面波が、圧
電基板と酸素感応薄膜との界面を伝搬して受信用のすだ
れ状電極に達し、電気信号に変換されて出力される。そ
して、酸素ガス濃度に変化が生じた場合には、酸素感応
薄膜と反応する酸素量が変化する。The oxygen gas sensor of the present invention having the above structure is
The surface acoustic wave generated from the interdigital transducer for excitation propagates through the interface between the piezoelectric substrate and the oxygen sensitive thin film, reaches the interdigital transducer for reception, is converted into an electric signal, and is output. When the oxygen gas concentration changes, the amount of oxygen that reacts with the oxygen sensitive thin film changes.
【0009】この酸素量の変化により、圧電基板と酸素
感応薄膜との界面を伝搬する弾性表面波の伝搬速度が変
化し、出力される電気信号周波数も変化する。そのた
め、酸素ガス濃度の変化を発振周波数の変化量に反映さ
せることができる。Due to this change in the amount of oxygen, the propagation velocity of the surface acoustic wave propagating through the interface between the piezoelectric substrate and the oxygen sensitive thin film changes, and the frequency of the output electric signal also changes. Therefore, the change in the oxygen gas concentration can be reflected in the change amount of the oscillation frequency.
【0010】[0010]
【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。図1は、本発明の一実施例である酸素ガスセ
ンサの概略構成を示す説明図である。水晶STカット板
等の圧電基板1上に、フォトリソグラフィーによって、
励振用、受信用のすだれ状電極(interdigital transd
ucer、以下IDTと呼ぶ。)2,4が所定間隔をおいて
設けられている。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an oxygen gas sensor which is an embodiment of the present invention. By photolithography on the piezoelectric substrate 1 such as a crystal ST cut plate,
Exciting and receiving interdigital transducers
ucer, hereinafter referred to as IDT. ) 2 and 4 are provided at a predetermined interval.
【0011】励振用、受信用の各IDT2,4は櫛歯状
の電極2a,2b,4a,4bの組合せから構成されて
いる。励振用IDT2の一方の電極2aはリード線6を
介して電気信号の入力を受け、圧電作用により圧電基板
1に弾性表面波を発生させる。受信用IDT4の一方の
電極4aは、弾性表面波を受信して圧電反作用により電
気信号に変換し、リード線8を介して出力する。各ID
T2,4の内の他方の電極2b,4bはリード線10,
11を介して接地されている。Each of the excitation and reception IDTs 2 and 4 is composed of a combination of comb-shaped electrodes 2a, 2b, 4a and 4b. One electrode 2a of the exciting IDT 2 receives an electric signal input through the lead wire 6 and causes the piezoelectric substrate 1 to generate a surface acoustic wave by the piezoelectric action. One electrode 4a of the receiving IDT 4 receives the surface acoustic wave, converts the surface acoustic wave into an electric signal by a piezoelectric reaction, and outputs the electric signal via the lead wire 8. Each ID
The other electrodes 2b, 4b of T2, 4 are lead wires 10,
It is grounded via 11.
【0012】さらに、励振用IDT2側のリード線6と
受信用IDT4のリード線8との間が帰還増幅回路12
を介して接続されている。受信用IDT4から出力する
電気信号は、帰還増幅回路12で増幅されて再度励振用
IDT2に帰還することにより発振回路を構成してい
る。Further, a feedback amplifier circuit 12 is provided between the lead wire 6 on the excitation IDT 2 side and the lead wire 8 on the reception IDT 4.
Connected through. The electric signal output from the reception IDT 4 is amplified by the feedback amplification circuit 12 and is fed back to the excitation IDT 2 to form an oscillation circuit.
【0013】上述した櫛歯状の電極2a,2b,4a,
4bの材料にはAlが用いられ、各IDT2,4は、そ
れぞれ対数200、電極幅8.2μm、交差長6.56
mm、電極厚み3000オングストロームの真空蒸着膜
から構成されている。交差長とは櫛歯状電極の歯の並ん
でいる長さであり、対数とはその櫛歯の対の数である。
また、本実施例では両IDT2,4間の距離は7mmで
あり、このように構成された弾性表面波素子の基本周波
数は約100MHzである。The above-mentioned comb-teeth-shaped electrodes 2a, 2b, 4a,
Al is used for the material of 4b, and each IDT 2 and 4 has a logarithm of 200, an electrode width of 8.2 μm, and a crossing length of 6.56.
mm, electrode thickness 3000 angstrom vacuum deposition film. The cross length is the length in which the teeth of the comb-shaped electrode are arranged, and the logarithm is the number of pairs of the comb teeth.
Further, in this embodiment, the distance between the IDTs 2 and 4 is 7 mm, and the surface acoustic wave device having such a structure has a fundamental frequency of about 100 MHz.
【0014】そして、両IDT2,4間の弾性表面波伝
搬路には、酸素感応薄膜20が設けられており、本実施
例ではLaF3 (フッ化ランタン)を用い、膜厚100
0オングストロームの真空蒸着膜として構成されてい
る。なお、圧電基板1には、上述した水晶以外にも、L
iNbO3 (ニオブ酸リチウム)、LiTaO3 (タン
タル酸リチウム)、PZT等を用いてもよい。また、ガ
ラス、石英、シリコン、Al2O3等の非圧電基板上に、
ZnO、AlN、CdS、ZnS、BiPbO19、Li
NbO3 等の圧電性薄膜を形成したものを用いてもよ
い。An oxygen sensitive thin film 20 is provided in the surface acoustic wave propagation path between the IDTs 2 and 4, and in the present embodiment, LaF 3 (lanthanum fluoride) is used and the film thickness is 100.
It is configured as a 0 angstrom vacuum deposited film. In addition to the above-mentioned crystal, the piezoelectric substrate 1 has an L
LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), may also be used such as PZT. In addition, on non-piezoelectric substrates such as glass, quartz, silicon, Al 2 O 3 ,
ZnO, AlN, CdS, ZnS, BiPbO 19 , Li
NbO may be used after the formation piezoelectric thin film 3 and the like.
【0015】また、IDT2,4の電極2a,2b,4
a,4bの材料には、上述したAl以外にPt、Au、
ITO等を用い、酸素感応薄膜20には、上述したLa
F3 以外にSrCl2 、SnO2 、PbSnF4 、Eu
F3 、Nb2O5、TiO2 、CrO3 、Cr2O3等、ま
たはこれらの複合化合物等を用いても同様の効果が得ら
れる。The electrodes 2a, 2b, 4 of the IDTs 2, 4 are also
In addition to Al described above, Pt, Au, and
The oxygen sensitive thin film 20 is made of ITO, etc.
In addition to F 3 , SrCl 2 , SnO 2 , PbSnF 4 , Eu
F 3, Nb 2 O 5, TiO 2, CrO 3, Cr 2 O 3 , etc. or a similar effect by using these composite compounds are obtained.
【0016】次に、本実施例の作動について説明する。
リード線6を介して励振用IDT2の一方の電極2aに
制御された周波数の電気信号を入力すると、圧電作用に
より櫛歯状の電極2a,2bは隣合う電極間に互いに逆
位相の歪みが生じ、励振用IDT2から弾性表面波が発
生する。Next, the operation of this embodiment will be described.
When an electric signal having a controlled frequency is input to the one electrode 2a of the excitation IDT 2 via the lead wire 6, the comb-shaped electrodes 2a and 2b are distorted in mutually opposite phases due to the piezoelectric action. A surface acoustic wave is generated from the excitation IDT 2.
【0017】励振用IDT2から発生した弾性表面波
は、圧電基板1と酸素感応薄膜20との界面を伝搬して
受信用IDT4に達し、電気信号に変換される。その電
気信号の周波数が発振周波数に影響を与える。そして、
被検出対象の酸素ガスに濃度変化が生じた場合には、酸
素感応薄膜20と反応する酸素量が変化する。この酸素
量の変化により、圧電基板1と酸素感応薄膜20との界
面を伝搬する弾性表面波の伝搬速度が変化し、出力され
る電気信号の周波数も変化する。The surface acoustic wave generated from the exciting IDT 2 propagates through the interface between the piezoelectric substrate 1 and the oxygen sensitive thin film 20, reaches the receiving IDT 4, and is converted into an electric signal. The frequency of the electric signal affects the oscillation frequency. And
When the concentration of the oxygen gas to be detected changes, the amount of oxygen that reacts with the oxygen-sensitive thin film 20 changes. Due to this change in the amount of oxygen, the propagation velocity of the surface acoustic wave propagating through the interface between the piezoelectric substrate 1 and the oxygen sensitive thin film 20 changes, and the frequency of the electric signal to be output also changes.
【0018】そのため、発振回路として構成された本実
施例の酸素ガスセンサにより、酸素ガス濃度の変化を図
示しない周波数カウンタ等により、発振周波数の変化量
として測定することができる。このような酸素ガスセン
サを用いた酸素濃度の測定例を次に示す。まず、実験シ
ステムについて簡単に説明すると、弾性表面波(以下S
AWという。)酸素ガスセンサは湿度一定としたチャン
バに保持され、このチャンバは高温水槽中で25±1℃
に保たれている。チャンバ内の酸素ガス濃度、温度はそ
れぞれガルバニ式酸素センサ、CA熱電対により計測さ
れ、SAW酸素ガスセンサからの出力は周波数カウンタ
により計測される。これらの計測データは処理系として
のコンピュータに入力され、表示及び記憶がなされる。Therefore, with the oxygen gas sensor of this embodiment configured as an oscillation circuit, the change in oxygen gas concentration can be measured as the amount of change in oscillation frequency by a frequency counter (not shown). An example of measurement of oxygen concentration using such an oxygen gas sensor is shown below. First, the experimental system will be briefly described.
It is called AW. ) The oxygen gas sensor is held in a chamber with constant humidity, which is 25 ± 1 ° C in a high temperature water bath.
Is kept at. The oxygen gas concentration and temperature in the chamber are measured by a galvanic oxygen sensor and CA thermocouple, respectively, and the output from the SAW oxygen gas sensor is measured by a frequency counter. These measurement data are input to a computer as a processing system and displayed and stored.
【0019】こうして構成された実験システムにおい
て、チャンバ内の酸素濃度を変化させ、SAW酸素ガス
センサの、酸素ガス濃度に対する反応を調べた。図2に
その結果を示す。計測開始時の酸素ガス濃度は22%で
あり、周波数が安定していることを20分間確かめた
後、5N酸素ガスを100ml/分の流量でチャンバに
入れていくと、図2に示すように、周波数は下がりはじ
めた。In the experimental system thus constructed, the oxygen concentration in the chamber was changed and the reaction of the SAW oxygen gas sensor with respect to the oxygen gas concentration was investigated. The results are shown in FIG. The oxygen gas concentration at the start of measurement was 22%, and after confirming that the frequency was stable for 20 minutes, 5N oxygen gas was introduced into the chamber at a flow rate of 100 ml / min, as shown in FIG. , The frequency started to drop.
【0020】そして、酸素ガス濃度30%の時点で酸素
ガスの流入を一旦止め、10分間一定に保った。その後
また酸素ガスを流入し、酸素ガス濃度40%の時点で酸
素ガスの流入を一旦止めて10分間一定に保ち、同様
に、酸素ガス濃度50%の時点で酸素ガスの流入を一旦
止めて10分間一定に保った後、大気雰囲気に戻してい
った。Then, when the oxygen gas concentration was 30%, the inflow of oxygen gas was once stopped and kept constant for 10 minutes. After that, oxygen gas is again supplied, and when the oxygen gas concentration is 40%, the oxygen gas inflow is temporarily stopped and kept constant for 10 minutes. Similarly, when the oxygen gas concentration is 50%, the oxygen gas inflow is temporarily stopped. After keeping it constant for a minute, it was returned to the atmosphere.
【0021】この結果、図2からも判るように、SAW
酸素ガスセンサは酸素ガスと反応を示し、ガス濃度が高
くなると周波数は下がる。この結果に基づき、最小二乗
法により周波数と酸素ガス濃度の関係にプロットしたも
のを図3に示す。周波数と酸素ガス濃度との相関係数は
0.9997となり、両者は良好な直線関係をもってい
る事が判る。As a result, as can be seen from FIG. 2, the SAW
The oxygen gas sensor reacts with oxygen gas, and the frequency decreases as the gas concentration increases. Based on this result, a plot of the relationship between frequency and oxygen gas concentration by the method of least squares is shown in FIG. The correlation coefficient between the frequency and the oxygen gas concentration is 0.9997, and it can be seen that the two have a good linear relationship.
【0022】そして、図3の直線グラフの傾きはマイナ
ス14.34となり、本実験で用いたSAW酸素ガスセ
ンサの感度は約マイナス14[Hz/O2 %]であるこ
とが判った。従来のガルバニ電池式酸素ガスセンサで
は、電解液を用いているため、漏洩、腐食の危険性があ
ったが、本実施例の酸素ガスセンサはそのような保守、
耐環境性の考慮が不必要である。またセラミック固体電
解質型の酸素ガスセンサのように作動温度が高温でな
く、室温であっても問題なく作動するので、センサ素子
の劣化が生じ難く、寿命を長くすることができる。The slope of the straight line graph in FIG. 3 was minus 14.34, and it was found that the sensitivity of the SAW oxygen gas sensor used in this experiment was about minus 14 [Hz / O 2 %]. In the conventional galvanic cell type oxygen gas sensor, since the electrolyte is used, there is a risk of leakage and corrosion, but the oxygen gas sensor of the present embodiment has such maintenance,
It is unnecessary to consider environmental resistance. Further, unlike the ceramic solid electrolyte type oxygen gas sensor, the sensor element does not have a high operating temperature and operates at room temperature without any problem. Therefore, deterioration of the sensor element is unlikely to occur and the life can be extended.
【0023】以上本発明はこの様な実施例に何等限定さ
れるものではなく、本発明の要旨を逸脱しない範囲にお
いて種々なる態様で実施し得る。As described above, the present invention is not limited to such embodiments, and can be carried out in various modes without departing from the scope of the present invention.
【0024】[0024]
【発明の効果】以上詳述したように本発明の酸素ガスセ
ンサは、電解液等を用いておらず、保守、耐環境性の考
慮の必要がなく、また室温でも作動可能であり、センサ
素子の劣化も防止できるという効果を奏する。As described in detail above, the oxygen gas sensor of the present invention does not use an electrolytic solution or the like, does not require consideration of maintenance and environmental resistance, and can operate at room temperature. This has the effect of preventing deterioration.
【図1】本発明の一実施例である酸素ガスセンサの概略
構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of an oxygen gas sensor which is an embodiment of the present invention.
【図2】本実施例の酸素ガスセンサを用いて実験した際
の酸素ガス濃度に対する周波数の反応を示すグラフであ
る。FIG. 2 is a graph showing the response of frequency to oxygen gas concentration when an experiment was performed using the oxygen gas sensor of this example.
【図3】本実施例の酸素ガスセンサの酸素ガス濃度変化
に対する周波数変化特性を示すグラフである。FIG. 3 is a graph showing frequency change characteristics of the oxygen gas sensor of this embodiment with respect to changes in oxygen gas concentration.
1…圧電基板 2,4…IDT(=
すだれ状電極) 2a,2b,4a,4b…電極 20…酸素感応
薄膜1 ... Piezoelectric substrate 2, 4 ... IDT (=
Interdigital electrodes 2a, 2b, 4a, 4b ... Electrode 20 ... Oxygen sensitive thin film
Claims (1)
状電極及び受信用のすだれ状電極を設けると共に、該両
すだれ状電極間における前記弾性表面波の伝搬路に酸素
感応薄膜を設けて発振回路を構成し、該酸素感応薄膜と
反応する酸素量の変化を周波数変化量として出力するこ
とを特徴とする酸素ガスセンサ。Claims: 1. A comb-shaped electrode for exciting a surface acoustic wave and a comb-shaped electrode for reception are provided on a piezoelectric substrate, and a propagation path of the surface acoustic wave is provided between the comb-shaped electrodes. An oxygen gas sensor characterized in that an oxygen sensitive thin film is provided to form an oscillation circuit, and a change in the amount of oxygen that reacts with the oxygen sensitive thin film is output as a frequency change amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15890391A JPH055689A (en) | 1991-06-28 | 1991-06-28 | Oxygen gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15890391A JPH055689A (en) | 1991-06-28 | 1991-06-28 | Oxygen gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH055689A true JPH055689A (en) | 1993-01-14 |
Family
ID=15681883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15890391A Pending JPH055689A (en) | 1991-06-28 | 1991-06-28 | Oxygen gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH055689A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007538236A (en) * | 2004-05-21 | 2007-12-27 | アトノミックス アクティーゼルスカブ | Surface acoustic wave sensor containing hydrogel |
WO2008102577A1 (en) * | 2007-02-19 | 2008-08-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave sensor |
KR101244819B1 (en) * | 2010-10-27 | 2013-03-18 | 재단법인대구경북과학기술원 | radiation detection sensor using of surface acoustic wave |
US10392065B2 (en) | 2014-06-16 | 2019-08-27 | Ino Vision Ltd. | Bicycle seat and lock assembly |
-
1991
- 1991-06-28 JP JP15890391A patent/JPH055689A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007538236A (en) * | 2004-05-21 | 2007-12-27 | アトノミックス アクティーゼルスカブ | Surface acoustic wave sensor containing hydrogel |
WO2008102577A1 (en) * | 2007-02-19 | 2008-08-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave sensor |
JPWO2008102577A1 (en) * | 2007-02-19 | 2010-05-27 | 株式会社村田製作所 | Surface acoustic wave sensor device |
US8156814B2 (en) | 2007-02-19 | 2012-04-17 | Murata Manufacturing Co., Ltd. | Surface acoustic wave sensor |
KR101244819B1 (en) * | 2010-10-27 | 2013-03-18 | 재단법인대구경북과학기술원 | radiation detection sensor using of surface acoustic wave |
US10392065B2 (en) | 2014-06-16 | 2019-08-27 | Ino Vision Ltd. | Bicycle seat and lock assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6378370B1 (en) | Temperature compensated surface-launched acoustic wave sensor | |
US8156814B2 (en) | Surface acoustic wave sensor | |
US9465012B2 (en) | Measurement method using a sensor; sensor system and sensor | |
JPWO2011030519A1 (en) | Elastic wave element and acoustic wave element sensor | |
Fritze et al. | High temperature bulk acoustic wave properties of langasite | |
JP2007010378A (en) | Surface acoustic wave element, its manufacturing method, surface acoustic wave sensor and surface acoustic wave sensor system | |
KR101711204B1 (en) | Single-input Multi-output Surface Acoustic Wave Device | |
JP6604238B2 (en) | Elastic wave sensor | |
JPH055689A (en) | Oxygen gas sensor | |
Tirole et al. | Lamb waves pressure sensor using an AlN/Si structure | |
JP5061287B2 (en) | Gas sensor and hydrogen concentration detection system | |
CN114793103B (en) | Acoustic wave resonator suitable for multi-parameter sensing | |
KR20070020619A (en) | Surface acoustic wave gas sensor for detecting volatile chemicals | |
JPS62190905A (en) | Surface acoustic wave device | |
JPH09178714A (en) | Ultrasonic odor sensor | |
JPH04148844A (en) | Oxygen gas sensor | |
JP4852283B2 (en) | Gas sensor | |
JP2008180668A (en) | Lamb wave type high-frequency sensor device | |
JP2010048696A (en) | Surface elastic wave type gas sensor | |
Caliendo et al. | Surface acoustic wave H/sub 2/sensor on silicon substrate | |
JP2018155723A (en) | Elastic wave sensor | |
JPH0611492A (en) | Elastic surface wave device | |
JPH08145614A (en) | Method for measuring strain of object | |
JPH09178713A (en) | Ultrasonic concentration sensor | |
Kumar et al. | Design and simulation of polyisobutylene/silicon nitride for detection of gas sensing |