JPH0556675B2 - - Google Patents

Info

Publication number
JPH0556675B2
JPH0556675B2 JP16171784A JP16171784A JPH0556675B2 JP H0556675 B2 JPH0556675 B2 JP H0556675B2 JP 16171784 A JP16171784 A JP 16171784A JP 16171784 A JP16171784 A JP 16171784A JP H0556675 B2 JPH0556675 B2 JP H0556675B2
Authority
JP
Japan
Prior art keywords
layer
etching
gaas
cavity surface
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16171784A
Other languages
Japanese (ja)
Other versions
JPS6140078A (en
Inventor
Masaru Wada
Juichi Shimizu
Takao Shibuya
Kunio Ito
Takeshi Hamada
Itsuki Teramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16171784A priority Critical patent/JPS6140078A/en
Priority to CA000487734A priority patent/CA1247947A/en
Priority to US06/761,023 priority patent/US4675074A/en
Publication of JPS6140078A publication Critical patent/JPS6140078A/en
Publication of JPH0556675B2 publication Critical patent/JPH0556675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザ装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor laser device.

従来例の構成とその問題点 GaAsやGaAlAs系の化合物半導体の化学エツ
チングは以前から研究されており、そのエツチン
グ特性については数多くの報告がある。エツチヤ
ント、エツチング速度、GaAsあるいはGaAlAs
の選択エツチング液、エツチングプロフアイルな
どについてその詳細が知られている。このような
化学エツチング技術を用いてGaAsの表面処理や
GaAs/GaAlAsから成るウエハの選択エツチン
グが行なわれてきた。さらに、半導体レーザなど
のキヤビテイ面の作製にもこのような技術が利用
されてきた。
Structures of conventional examples and their problems Chemical etching of GaAs and GaAlAs-based compound semiconductors has been studied for some time, and there are many reports on their etching characteristics. Etchant, etch rate, GaAs or GaAlAs
The details of the selected etching solution, etching profile, etc. are known. Using such chemical etching technology, surface treatment of GaAs and
Selective etching of GaAs/GaAlAs wafers has been performed. Furthermore, such techniques have also been used to fabricate cavity surfaces for semiconductor lasers and the like.

半導体レーザは一般にへき開法によつてキヤビ
テイ面を形成しているが、光ICなどのように半
導体レーザとデイテクター駆動回路などの素子と
をモノリンツクに集積化しようとする場合、へき
開法は全く用いることはできない。そのために、
化学エツチング法によるウエツトエツチ法やリア
クテイブイオンエツチ(RIE)などによるドライ
エツチ法が研究されている。量産化や信頼性を考
慮すると化学エツチング法が優れており、その容
易さから、いろいろな方法によるキヤビテイ面の
作製が試みられてきた。化学エツチング法による
キヤビテイ面の作製で問題となることは、キヤビ
テイ面の垂直性と表面の平担性である。図1にキ
ヤビテイ面の傾きθと規格化された反射率との関
係を示す。これからもわかるようにキヤビテイ面
が約5°傾くだけで反射率は50%も減少してしまう
ため、しきい値の上昇や外部微分量子効率の低下
につながる。さらにキヤビテイ面の表面の荒れに
よつて反射率は著しく低下する。従来の化学エツ
チング法によつて作製されたレーザではこのよう
な問題のためにへき開法に比べてしきい値電流密
度が高く連続発振が極めて困難な状況にあつた。
The cavity surface of semiconductor lasers is generally formed by the cleavage method, but when attempting to integrate a semiconductor laser and elements such as a detector drive circuit into a monolink, such as in an optical IC, the cleavage method should not be used at all. I can't. for that,
Wet etching methods using chemical etching methods and dry etching methods using reactive ion etching (RIE) are being studied. Chemical etching is superior in terms of mass production and reliability, and because of its ease, various methods have been tried to fabricate the cavity surface. Problems in producing a cavity surface by chemical etching are the perpendicularity of the cavity surface and the flatness of the surface. FIG. 1 shows the relationship between the inclination θ of the cavity surface and the normalized reflectance. As we will see, a tilt of the cavity surface of just 5 degrees reduces the reflectance by as much as 50%, leading to an increase in the threshold value and a decrease in external differential quantum efficiency. Furthermore, the reflectance is significantly reduced due to the roughness of the cavity surface. Due to these problems, lasers fabricated by the conventional chemical etching method have a higher threshold current density than the cleavage method, making continuous oscillation extremely difficult.

発明の目的 本発明は上記欠点に鑑み化学エツチング法によ
つて垂直かつ平坦なキヤビテイ面を形成すること
のできる半導体レーザ装置の製造方法を提供する
ものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a method for manufacturing a semiconductor laser device in which a vertical and flat cavity surface can be formed by a chemical etching method.

発明の構成 この目的を達成するために本発明の半導体レー
ザ装置の製造方法は、活性層の上のGa1-xAlxAs
クラツド層の混晶比xと、前記クラツド層の上に
GaAs層を介して形成されたGa1-zAlzAs層の混晶
比zとの差z−xを0から0.2の間にして、前記
Ga1-zAlzAs層の上の〈011〉方向に平行なエツジ
を有するマスクを通して化学エツチングすること
から構成されている。
Structure of the Invention In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention includes Ga 1-x Al x As on the active layer.
The mixed crystal ratio x of the cladding layer and the
The difference z-x from the mixed crystal ratio z of the Ga 1-z Al z As layer formed via the GaAs layer is set between 0 and 0.2, and the above-mentioned
It consists of chemical etching through a mask with edges parallel to the <011> direction above the Ga 1-z Al z As layer.

実施例の説明 以下、本発明の実施例について図面を参照しな
がら説明する。第2図は(100)GaAs基板上に
Ga1-xAlxAs層を成長させ〈011〉方向に沿つたス
トライプ状のマスクを通してエツチングを行なつ
た時のエツチングプロフアイルの傾き角について
の実験結果を示している。傾き角θ1およびθ2
AlAs混晶比xによつて大きく変化している。x
の値が0.2近傍および0.4近傍では傾き角θ1は約90°
となる。一方、GaAs基板との界面に生じる角θ2
はx<0.1およびx〜0.4のところでほぼ0となつ
ている。xが0.4近傍に注目してみるとθ1〜90°で
θ2〜0°となり、エツチング端面は垂直かつ平担な
面となる。この結果を半導体レーザに応用すると
へき開面とほぼ等価なキヤビテイ面が得られるこ
とになる。実施例の一つとして第2図の結果から
クラツドのAlAs混晶比を0.4としてその作製法を
説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. Figure 2 is on a (100) GaAs substrate.
The graph shows experimental results regarding the tilt angle of the etching profile when a Ga 1-x Al x As layer was grown and etched through a striped mask along the <011> direction. The tilt angles θ 1 and θ 2 are
It changes greatly depending on the AlAs mixed crystal ratio x. x
When the value of is around 0.2 and 0.4, the tilt angle θ 1 is about 90°
becomes. On the other hand, the angle θ 2 generated at the interface with the GaAs substrate
is almost 0 at x<0.1 and x~0.4. Focusing on x in the vicinity of 0.4, θ 1 to 90° and θ 2 to 0°, and the etched end surface becomes a vertical and flat surface. If this result is applied to a semiconductor laser, a cavity surface almost equivalent to a cleavage surface can be obtained. As an example, a manufacturing method will be explained based on the results shown in FIG. 2, with the AlAs mixed crystal ratio of the cladding being set to 0.4.

第3図aに示すように、n型GaAs(100)基板
1上にn型Ga0.6Al0.4Asクラツド層2,GaAs活
性層3,p型Ga0.6Al0.4Asクラツド層4およびp
型GaAsコンタクト層5を連続的に成長させる。
As shown in FIG. 3a, an n-type Ga 0.6 Al 0.4 As cladding layer 2, a GaAs active layer 3, a p-type Ga 0.6 Al 0.4 As cladding layer 4 and a p-type GaAs (100) substrate 1 are formed as shown in FIG.
A GaAs type contact layer 5 is continuously grown.

一般に半導体レーザはこのような4層構造から
成り、従来の化学エツチング法では、最上層のp
型GaAsコンタクト層5上にストライプ状のフオ
トマスク6を〈011〉方向に沿つて形成し、その
マスクを通してGaAs基板1までエツチングを行
なつていた。この方法では第3図bに示すように
逆メサ状のエツチングプロフアイルとなり、垂直
なキヤビテイ面が得られない。これは第2図の結
果からも説明できる。第4図は傾き角θ1とθ2から
エツチングプロフアイルを説明するものである。
すなわち、p型GaAsコンタクト層5上では表面
に対してθ1=65°の逆メサ状となり、p型GaAsコ
ンタクト層5とp型Ga0.6Al0.4Asクラツド層4と
の間の角θ2=0°であることから第4図に示すよう
に角65°の逆メサ形状となり、決して垂直なキヤ
ビテイ面が得られない。そこで、本発明では、p
型GaAsコンタクト層5上に第5層Ga1-zAlzAs層
7を設け(第5図a)その上にストライプ状のフ
オトマスク6を〈011〉方向に沿つて形成し、そ
のマスクを通してGaAs基板1までエツチングを
行なつた(第5図b)。p型クラツド層4以下を
垂直にエツチングする条件は第5層Ga1-zAlzAs
層7とGa1-xAlxAsクラツド層4とのAlAs混晶比
の差z−xがある範囲内に存在することである。
第6図にAlAs混晶比の差z−xとクラツド層4
のエツチ側面の傾きθ3との関係を示す。この図か
ら明らかなようにz−xが0〜0.2の範囲におい
てθ3が90°となることがわかる。このことは化学
エツチングによつて垂直なキヤビテイ面を得るこ
とにおいて重要な意味をもつている。すなわち、
Ga1-xAlxAsクラツド層2,4のAlAs混晶比xが
どのような値であつても、第5層Ga1-zAlzAsの
zの値で垂直なエツチング側面が得られるという
ことである。クラツド層のAlAs混晶比が任意に
変えることができるということは活性層の組成す
なわち発振波長が自由に設計できることになる。
従つて、本発明によれば、赤外、可視領域発振に
かかわらず、化学エツチングによつて垂直なキヤ
ビテイ面が得られる。
Semiconductor lasers generally have a four-layer structure like this, and conventional chemical etching methods cannot remove the top layer p.
A striped photomask 6 was formed along the <011> direction on the type GaAs contact layer 5, and etching was performed to the GaAs substrate 1 through the mask. This method results in an inverted mesa-like etching profile as shown in FIG. 3b, and a vertical cavity surface cannot be obtained. This can also be explained from the results shown in FIG. FIG. 4 explains the etching profile from the angles of inclination θ 1 and θ 2 .
That is, the p-type GaAs contact layer 5 has an inverted mesa shape with θ 1 =65° with respect to the surface, and the angle between the p-type GaAs contact layer 5 and the p-type Ga 0.6 Al 0.4 As cladding layer 4 is θ 2 = Since it is 0°, it becomes an inverted mesa shape with an angle of 65° as shown in Figure 4, and a vertical cavity surface is never obtained. Therefore, in the present invention, p
A fifth layer Ga 1-z Al z As layer 7 is provided on the type GaAs contact layer 5 (FIG. 5a). A striped photomask 6 is formed on it along the <011> direction, and GaAs is Etching was carried out up to substrate 1 (FIG. 5b). The conditions for vertically etching the p-type cladding layer 4 and below are the 5th layer Ga 1-z Al z As
The difference z−x in the AlAs mixed crystal ratio between the layer 7 and the Ga 1-x Al x As cladding layer 4 exists within a certain range.
Figure 6 shows the difference in AlAs mixed crystal ratio z−x and the cladding layer 4.
shows the relationship between the slope of the etched side surface θ3 . As is clear from this figure, θ 3 is 90° in the range of z−x from 0 to 0.2. This has an important meaning in obtaining vertical cavity surfaces by chemical etching. That is,
No matter what the AlAs composition ratio x of the Ga 1-x Al x As cladding layers 2 and 4 is, a vertical etched side surface can be obtained with the value of z of the fifth layer Ga 1-z Al z As. That's what it means. The fact that the AlAs mixed crystal ratio of the cladding layer can be changed arbitrarily means that the composition of the active layer, that is, the oscillation wavelength, can be freely designed.
Therefore, according to the present invention, a vertical cavity surface can be obtained by chemical etching regardless of whether the oscillation is in the infrared or visible region.

本発明の一実施例として、クラツド層2,4の
xを0.4とし、第5層7のAlAs混晶比zをx+0.1
すなわち0.5としてエピウエハを作製した。第5
層7上に〈011〉方向に形成したストライプ状の
フオトマスク6を通して硫酸系のエツチング液で
エツチングし垂直なキヤビテイ面を作製した(第
7図)。その後、第5層7を選択的にエツチして
除去し、露出したp型GaAsコンタクト層5上に
正電極8を、さらに基板側に負電極9を形成した
後、エツチングを行なつた溝のところでブレイク
して第8図に示すような垂直なキヤビテイ面をも
つ半導体レーザ素子を得た。
As an embodiment of the present invention, x of the cladding layers 2 and 4 is set to 0.4, and the AlAs mixed crystal ratio z of the fifth layer 7 is set to x+0.1.
In other words, epitaxial wafers were prepared with a value of 0.5. Fifth
A vertical cavity surface was prepared by etching with a sulfuric acid-based etching solution through a striped photomask 6 formed in the <011> direction on the layer 7 (FIG. 7). Thereafter, the fifth layer 7 is selectively etched and removed, a positive electrode 8 is formed on the exposed p-type GaAs contact layer 5, and a negative electrode 9 is formed on the substrate side, and then the etched grooves are etched. By the way, a semiconductor laser device having a vertical cavity surface as shown in FIG. 8 was obtained.

第8図の半導体レーザ素子の光出力−電流特性
を第9図に示す。連続発振で非常に高歩留で得ら
れており、典型的な発振しきい値は72mA(へき
開法では70mA)で微分量子効率は片面当り29%
(へき開法では30%)とへき開法とほとんど差の
ない特性が得られた。
FIG. 9 shows the optical output-current characteristics of the semiconductor laser device shown in FIG. 8. Achieved with very high yield through continuous oscillation, with a typical oscillation threshold of 72 mA (70 mA for the cleavage method) and a differential quantum efficiency of 29% per side.
(30% for the cleavage method), properties with almost no difference from the cleavage method were obtained.

発明の効果 以上のように本発明の半導体レーザ装置の製造
方法は、接合面に垂直かつ鏡面のキヤビテイ面を
化学エツチング法によつて作製できるので、この
ようにへき開面と等価なキヤビテイ面が化学エツ
チング法によつて得られることのメリツトは同一
基板上に他の素子と一体化しやすいこと、シヨー
トキヤビテイレーザが作製できること、レーザ端
面の保護膜形成がバツチ処理でできること、特性
の検査がウエハのままでできることなどがあげら
れその実用的効果は大なるものがある。
Effects of the Invention As described above, in the method for manufacturing a semiconductor laser device of the present invention, a cavity surface that is perpendicular to the bonding surface and has a mirror surface can be fabricated by chemical etching. The advantages of the etching method are that it is easy to integrate with other elements on the same substrate, that short cavity lasers can be fabricated, that the protective film on the laser end face can be formed by batch processing, and that the characteristics can be inspected on the wafer. There are many things you can do on your own, and the practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はキヤビテイ面の傾きと反射率との関係
を示す図、第2図は半導体レーザ装置における
AlAs混晶比とキヤビテイ面の傾き角の関係を示
す図、第3図は従来の半導体レーザ装置の製造工
程図、第4図は従来の半導体レーザ装置の要部断
面図、第5図は本発明の半導体レーザ装置の製造
工程図、第6図は同装置のAlAs混晶比の差とキ
ヤビテイ面の傾き角との関係を示す図、第7図は
同装置のキヤビテイ端面の傾きを示す図、第8図
は同装置の斜視図、第9図は同装置における電流
と光出力の関係を示した図である。 1……n型GaAs(100)基板、2……n型Ga0.6
Al0.4Asクラツド層、3……GaAs活性層、4……
p型Ga0.6Al0.4Asクラツド層、5……p型GaAs
キヤツプ層、6……フオトマスク、7……第
5Ga0.5Al0.5As層。
Figure 1 is a diagram showing the relationship between the inclination of the cavity surface and the reflectance, and Figure 2 is a diagram showing the relationship between the inclination of the cavity surface and the reflectance.
A diagram showing the relationship between the AlAs mixed crystal ratio and the tilt angle of the cavity plane, Figure 3 is a manufacturing process diagram of a conventional semiconductor laser device, Figure 4 is a cross-sectional view of the main part of a conventional semiconductor laser device, and Figure 5 is a diagram of the main part of the conventional semiconductor laser device. FIG. 6 is a diagram showing the manufacturing process of the semiconductor laser device of the invention. FIG. 6 is a diagram showing the relationship between the difference in the AlAs mixed crystal ratio and the tilt angle of the cavity surface of the same device. FIG. 7 is a diagram showing the tilt of the cavity end face of the same device. , FIG. 8 is a perspective view of the same device, and FIG. 9 is a diagram showing the relationship between current and optical output in the same device. 1...n-type GaAs (100) substrate, 2...n-type Ga 0.6
Al 0.4 As clad layer, 3...GaAs active layer, 4...
p-type Ga 0.6 Al 0.4 As cladding layer, 5... p-type GaAs
Cap layer, 6...Photomask, 7th...
5Ga 0.5 Al 0.5 As layer.

Claims (1)

【特許請求の範囲】[Claims] 1 (100)GaAs基板上にGa1-xAlxAs(0<x<
1)クラツド層にはさまれたGa1-yAlyAs(0<y
<1)活性層と、GaAsコンタクト層と、前記ク
ラツド層の混晶比xとの差が0から0.2までの混
晶比zを有するGa1-zAlzAs(0<z<1)層とを
順次形成する工程と、前記Ga1-zAlzAs層の上に
〈011〉方向のエツジを有するマスクを形成する工
程と、前記マスクを通して化学エツチングを行な
う工程とをそなえたことを特徴とする半導体レー
ザ装置の製造方法。
1 Ga 1-x Al x As (0<x<
1) Ga 1-y Al y As (0<y
<1) A Ga 1-z Al z As (0<z<1) layer in which the difference between the active layer, the GaAs contact layer, and the cladding layer has a mixed crystal ratio z ranging from 0 to 0.2. a step of forming a mask having an edge in the <011> direction on the Ga 1-z Al z As layer; and a step of performing chemical etching through the mask. A method for manufacturing a semiconductor laser device.
JP16171784A 1984-07-31 1984-07-31 Manufacture of semiconductor laser device Granted JPS6140078A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16171784A JPS6140078A (en) 1984-07-31 1984-07-31 Manufacture of semiconductor laser device
CA000487734A CA1247947A (en) 1984-07-31 1985-07-30 Method of manufacturing semiconductor device
US06/761,023 US4675074A (en) 1984-07-31 1985-07-31 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16171784A JPS6140078A (en) 1984-07-31 1984-07-31 Manufacture of semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6140078A JPS6140078A (en) 1986-02-26
JPH0556675B2 true JPH0556675B2 (en) 1993-08-20

Family

ID=15740538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16171784A Granted JPS6140078A (en) 1984-07-31 1984-07-31 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6140078A (en)

Also Published As

Publication number Publication date
JPS6140078A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US4675074A (en) Method of manufacturing semiconductor device
JP2958084B2 (en) Method for manufacturing mesa-type semiconductor substrate
US4661961A (en) Buried heterostructure devices with unique contact-facilitating layers
EP0076761B1 (en) Semiconductor lasers and method for producing the same
US4865684A (en) Process for producing a semiconductor laser mirror by ionic machining
Yuasa et al. Dry‐etched‐cavity pair‐groove‐substrate GaAs/AlGaAs multiquantum well lasers
JPH0556675B2 (en)
US4523318A (en) Semiconductor laser having high manufacturing yield
JPH0584075B2 (en)
JPH067622B2 (en) Method for manufacturing semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
US4461008A (en) Terraced heterostructure semiconductor laser
JPS6142186A (en) Manufacture of semiconductor laser device
US4097819A (en) Semiconductor laser
JPS6142185A (en) Manufacture of semiconductor laser device
JPH10173289A (en) Manufacture of semiconductor device
JPS6085586A (en) Manufacture of semiconductor laser
JPS6344311B2 (en)
JPS6142184A (en) Manufacture of semiconductor laser device
JPH11274657A (en) Semiconductor laser and manufacture thereof
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPS59210681A (en) Manufacture of semiconductor laser
KR910008440B1 (en) Laser diode mirror phase manufacture method using 2 step chemical method
JPH01100985A (en) Semiconductor laser
JPS6140079A (en) Manufacture of semiconductor laser device