JPH0556221B2 - - Google Patents

Info

Publication number
JPH0556221B2
JPH0556221B2 JP58162459A JP16245983A JPH0556221B2 JP H0556221 B2 JPH0556221 B2 JP H0556221B2 JP 58162459 A JP58162459 A JP 58162459A JP 16245983 A JP16245983 A JP 16245983A JP H0556221 B2 JPH0556221 B2 JP H0556221B2
Authority
JP
Japan
Prior art keywords
powder
valve
nozzle
tank
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58162459A
Other languages
Japanese (ja)
Other versions
JPS6054253A (en
Inventor
Haruo Ooguro
Toshihiro Iwasaki
Takaaki Hirokane
Takashi Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16245983A priority Critical patent/JPS6054253A/en
Publication of JPS6054253A publication Critical patent/JPS6054253A/en
Publication of JPH0556221B2 publication Critical patent/JPH0556221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造設備におけるモールド内にパ
ウダーを気体により定量供送し、均一散布するた
めの装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for supplying a fixed amount of powder using gas and uniformly distributing it into a mold in continuous casting equipment.

〔従来技術〕[Prior art]

現在製鉄業界では世界的に連続鋳造機の導入が
進んでいる。連続鋳造においては、スラブやブル
ーム等の鋳片を形成するモールド内の溶鋼表面
に、オツシレーシヨンと併せ鋳片モールド銅板間
の潤滑、及び不純物除去、保温等を目的にパウダ
ーを供給散布することが不可欠である。従来方法
ではモールド内湯面上へ人手により供給−散布し
ており、この場合、散布量は人の勘によつていた
ため個人差があり、適切な潤滑が常に行えるとは
限らなかつた。また高熱およびパウダー粉塵発生
により作業環境が悪いという問題があつた。他方
最近人手によらず自動的に散布することも試みら
れており、公知な方式としてスプリングフイーダ
ー等による機械輸送−散布方式が知られており、
これが主流となつている。しかし、本方式は供給
散布フイーダーをタンデイツシユーモールド間の
狭スペースに設置する必要があり、フイーダーの
必要大きさから決まる設置スペースの限界及びフ
レキシビリテイーのなさから、特に小断面サイズ
には不適であり、さらにモールド周辺の作業性が
悪い、熱的問題から装置の信頼性が低い等の問題
があつた。気送方式も試みられ、従来の方式は粉
じん防止および気送ガスコスト削減を狙つてパウ
ダーを固めてプラグ状となし(第10図B参照)、
該プラグ状パウダーを加圧ガスで順次気送するも
のであつた。しかしながら、プラグ状パウダーと
給送経路内面との接触抵抗が大きく配管内詰りを
生じたり、圧縮ガスが断続的にノズルよりモール
ド内へ噴出してモールド内パウダーを巻き上がら
せて粉じんを発生する。このためモールド内への
パウダー散布用としては実用化に至つていない。
Continuous casting machines are currently being introduced worldwide in the steel industry. In continuous casting, it is essential to supply and scatter powder onto the surface of the molten steel in the mold that forms slabs, blooms, etc. for the purposes of lubrication between the slab mold copper plates, removal of impurities, heat retention, etc. in addition to oscillation. It is. In the conventional method, the lubricant was manually supplied and sprayed onto the surface of the molten metal in the mold, and in this case, the amount of spraying depended on human intuition, resulting in individual differences, and it was not always possible to achieve appropriate lubrication. There was also the problem of a poor working environment due to high heat and generation of powder dust. On the other hand, attempts have recently been made to automatically spread the powder without manual intervention, and a well-known method is a mechanical transportation/dispersion method using a spring feeder or the like.
This has become the mainstream. However, this method requires the supply distribution feeder to be installed in a narrow space between the tandate shoe molds, and is not particularly suitable for small cross-sectional sizes due to the limited installation space determined by the required size of the feeder and lack of flexibility. Furthermore, there were other problems such as poor workability around the mold and low reliability of the device due to thermal problems. A pneumatic method has also been tried, and the conventional method is to harden the powder into a plug shape (see Figure 10B) to prevent dust and reduce the cost of pneumatic gas.
The plug-shaped powder was sequentially pumped with pressurized gas. However, the contact resistance between the plug-shaped powder and the inner surface of the feeding path is large, causing clogging in the piping, and compressed gas is intermittently ejected into the mold from a nozzle, causing the powder in the mold to roll up and generate dust. For this reason, it has not been put into practical use for powder dispersion into molds.

[発明の目的] 本発明はこれら諸問題を解決するため浮遊輸送
形態をとる気送方式により小量のキヤリヤガスで
顆粒パウダーを定量給送してモールド内への均一
散布を粉塵を発生させることなく作業性良くパウ
ダーを供給する装置を提供するものである。
[Objective of the Invention] In order to solve these problems, the present invention uses a pneumatic conveyance system that uses floating transportation to feed granular powder at a constant rate using a small amount of carrier gas, and uniformly disperse it inside the mold without generating dust. The present invention provides a device that supplies powder with good workability.

[発明の構成、作用] 本発明は、パウダーを分散して給送管へ供給
し、給送方向に引込効果のある小量の気流によつ
て包囲分散しながら浮遊輸送することにより、パ
ウダーと管内面との接触抵抗を減じ、パウダーを
緩やかに送ることを可能とする。このようにして
粉塵を発生させることなくパウダーを散布ノズル
によつて鋳型内湯面上に散布することが可能とな
る。
[Structure and operation of the invention] The present invention disperses powder, supplies it to a feeding pipe, and transports the powder while floating while surrounding and dispersing it using a small amount of airflow that has a drawing effect in the feeding direction. It reduces the contact resistance with the inner surface of the tube and allows the powder to be sent slowly. In this way, it becomes possible to spray the powder onto the mold surface using the spray nozzle without generating dust.

[実施例] 以下本発明について図面に示す装置により説明
する。
[Example] The present invention will be explained below using an apparatus shown in the drawings.

第1図は、本発明実施例装置の全体図〔Aはブ
ルーム・ビレツト用、Bはスラブ用〕を示し、1
はN2吹込により吸湿を防ぐ程度に密閉されたタ
ンクで、内部にパウダー12が収容され、上部に
N2の導管2が接続され、タンク内上方よりタン
ク1内のパウダーに水分を取り除いたN2ガスを
流すとともに、パウダーの棚吊を防ぐためにN2
ガスをタンク内下方へ向けて噴出させている。導
管2の下端開口を囲む部位には、水平方向の支持
盤13が取り付けられており、支持盤13によつ
てパウダーを支持しパウダーの棚吊を防止する。
またタンク1にはロードセル6を設け、パウダー
の使用量を把握可能にしている。タンク1の下部
には所要量のパウダーを継続して排出し、給送す
るための開閉のバルブ3、エジエクター4が接続
されている。5はエジエクター4に接続されたパ
ウダーの給送管、7A,7Bは給送管5内を通過
中あるいはエジエクター4を通過したパウダーを
給送方向に引込効果のある気流によつて浮遊輸送
するためのインジエクター、8はパウダーを鋳型
内湯面上に連続散布するための散布ノズル、9は
圧力調整器、10は鋳型、11は注入ノズルであ
り湯面上中央部に配置されている。
FIG. 1 shows an overall view of the apparatus according to the present invention [A is for bloom billets, B is for slabs], and 1
is a tank that is sealed to the extent that moisture absorption is prevented by blowing N2 into it, and powder 12 is stored inside, and the top
N 2 conduit 2 is connected, and N 2 gas from which moisture has been removed flows through the powder in tank 1 from above the tank, and N 2 gas is supplied to prevent the powder from hanging on the shelf.
Gas is ejected downward into the tank. A horizontal support plate 13 is attached to a portion surrounding the lower end opening of the conduit 2, and the support plate 13 supports the powder and prevents the powder from hanging on the shelf.
Additionally, a load cell 6 is installed in the tank 1, making it possible to grasp the amount of powder used. Connected to the lower part of the tank 1 are an open/close valve 3 and an ejector 4 for continuously discharging and feeding a required amount of powder. 5 is a powder feeding pipe connected to the ejector 4, and 7A and 7B are for floatingly transporting the powder passing through the feeding pipe 5 or having passed through the ejector 4 in the feeding direction by an air current having a drawing effect. 8 is a spraying nozzle for continuously dispersing powder onto the surface of the mold, 9 is a pressure regulator, 10 is the mold, and 11 is an injection nozzle, which is disposed at the center above the surface of the mold.

第2図は開閉バルブ3及びエジエクター4の詳
細断面図を示し、開閉バルブ3はパウダーの通路
31と該通路と枠体32との間に配設された弁3
3によつて形成された気密室34および該気密室
に圧力気体を送るための導管35および第1図の
タイマー36からの信号を受けて開閉する三方電
磁弁37と二方電磁弁38を備えている。
FIG. 2 shows a detailed sectional view of the on-off valve 3 and the ejector 4, where the on-off valve 3 is a powder passage 31 and a valve 3 disposed between the passage and the frame 32.
3, a conduit 35 for sending pressurized gas to the airtight chamber, and a three-way solenoid valve 37 and a two-way solenoid valve 38 that open and close in response to a signal from a timer 36 shown in FIG. ing.

開閉バルブ3の作動は三方電磁弁37をA方向
へ開、二方電磁弁38を閉にすると各気密室34
に圧力気体が導入され各弁33が図中破線で示す
如く圧接し通路31が閉鎖する。三方電磁弁37
をB方向へ開、二方電磁弁38を開にすると気密
室34内の圧力気体が外方へ吸引され弁33が開
く。エジエクター4は保持体41に装着されたパ
ウダーの分散部材42と該保持体41の上部に螺
合装着されたパウダーの貯溜槽43と、該保持体
41の下部に装着されたインジエクター内管71
を備えている。分散部材42は第3図〔(A)は拡大
断面図、(B)は平面図〕のように中央部に錐状突起
部45が突設され、該錐状突起部の周りに複数の
貫通孔46を備えている。錐状突起部45の頂部
45aは排出口47の下端乃至はこれより下方に
位置している。48は貯溜槽43を保持体41に
固定するための締付ナツト、49は保持体41内
部への外気の侵入を防止するためのOリングであ
る。
The on-off valve 3 operates by opening the three-way solenoid valve 37 in the A direction and closing the two-way solenoid valve 38 to open each airtight chamber 34.
Pressure gas is introduced into the valves 33, and the valves 33 are brought into pressure contact as shown by broken lines in the figure, thereby closing the passage 31. Three-way solenoid valve 37
When the two-way solenoid valve 38 is opened in the B direction, the pressure gas in the airtight chamber 34 is sucked outward, and the valve 33 is opened. The ejector 4 includes a powder dispersion member 42 attached to a holder 41, a powder reservoir 43 screwed to the upper part of the holder 41, and an injector inner tube 71 attached to the lower part of the holder 41.
It is equipped with As shown in FIG. 3 ((A) is an enlarged sectional view, (B) is a plan view), the dispersion member 42 has a conical projection 45 protruding from the center thereof, and a plurality of through holes around the conical projection. A hole 46 is provided. The top 45a of the conical projection 45 is located at or below the lower end of the discharge port 47. 48 is a tightening nut for fixing the storage tank 43 to the holding body 41, and 49 is an O-ring for preventing outside air from entering inside the holding body 41.

第4図はパウダーを給送方向に引込み効果のあ
る気流によつて浮遊輸送するためのインジエクタ
ー7A,7Bの詳細図を示し、71は内管、72
は外管、73は外管72に設けられた圧力気体の
導入管であり、外管72の内径は導管73に向つ
て拡大されており、該拡大部に内管71が挿入さ
れ、該内管71を囲繞して圧力気体の通路74が
形成され、該通路74の先端部に圧力気体の噴出
口としてのリング状のノズル75が形成されてい
る。なお内管71と外管72の内径はほぼ同一で
ある。
FIG. 4 shows a detailed view of the injectors 7A and 7B for floatingly transporting powder by airflow having a drawing effect in the feeding direction, 71 is an inner pipe, 72
73 is an outer pipe, and 73 is a pressure gas introduction pipe provided in the outer pipe 72. The inner diameter of the outer pipe 72 is enlarged toward the conduit 73, and the inner pipe 71 is inserted into the enlarged part. A pressure gas passage 74 is formed surrounding the pipe 71, and a ring-shaped nozzle 75 as a pressure gas ejection port is formed at the tip of the passage 74. Note that the inner diameters of the inner tube 71 and the outer tube 72 are approximately the same.

導入管73から供給された圧力気体はリング状
ノズル75から噴出し、この噴出により内管71
内のパウダー12は外管72へ追送される。リン
グ状ノズル75から噴出した圧力気体は外管72
の内面に沿う気流となつて圧送されるため外管7
2内を送られるパウダーは気流に包囲されながら
送られ、外管内面と殆んど接触せず、該内面との
接触抵抗が非常に小さい。このためパウダーの給
送速度低下を最少限に抑えて給送することがで
き、また外管72、給送管5の摩耗を防止でき
る。
The pressure gas supplied from the introduction pipe 73 is ejected from the ring-shaped nozzle 75, and this ejection causes the inner pipe 71 to
The powder 12 inside is sent to the outer tube 72. Pressure gas ejected from the ring-shaped nozzle 75 flows into the outer tube 72.
The air flow along the inner surface of the outer tube 7
The powder sent through the inside of the tube 2 is sent while being surrounded by an air current, hardly making contact with the inner surface of the outer tube, and has very low contact resistance with the inner surface. Therefore, the powder can be fed while minimizing a decrease in the powder feeding speed, and wear of the outer tube 72 and the feeding tube 5 can be prevented.

第5図はパウダーを鋳型内湯面上に連続散布す
るための散布ノズル(多孔ノズル)の拡大詳細図
〔Aは平面図、BはAのA−A断面図〕を示し、
81はノズル本体、82は本体の長手方向に多数
開口した排出口であり、このような散布ノズル8
が、前述の第1図に示す通り、注入ノズル11を
囲んでかつ湯面中央部に配置されている。パウダ
ーは排出口82から長手方向に均等に排出され、
湯面中央部に落下し徐々に溶解しながら鋳型10
の内面に向つて均等に移動し鋳型縁に到達するま
でに完全に溶解して鋳片表面に供給される。
FIG. 5 shows an enlarged detailed view of a dispersion nozzle (multi-hole nozzle) for continuously dispersing powder onto the mold surface (A is a plan view, B is an AA cross-sectional view of A);
Reference numeral 81 indicates a nozzle main body, and reference numeral 82 indicates a plurality of discharge ports opening in the longitudinal direction of the main body.
As shown in FIG. 1, the nozzle 11 is disposed surrounding the injection nozzle 11 and at the center of the hot water surface. The powder is evenly discharged from the discharge port 82 in the longitudinal direction,
The mold 10 falls to the center of the molten metal surface and gradually melts.
The melt moves evenly toward the inner surface of the mold, and by the time it reaches the edge of the mold, it is completely melted and supplied to the surface of the slab.

このようにパウダーは湯面中央部にかつ連続的
に散布されるため鋳型縁においてパウダーの溶解
に変動がなく、完全に溶解したパウダーを常時供
給可能である。多孔ノズルでは、吐出流速1m/
s以下にすると、第7図Aに示す如く各ノズルよ
り同量のパウダーが真下に散布され、鋳型湯面上
に均一散布される。従つてスラブ鋳片はもちろん
のこと小断面サイズあるいは異型鋳片に適したノ
ズルといえる。
In this way, the powder is continuously dispersed at the center of the hot water surface, so there is no fluctuation in the dissolution of the powder at the edge of the mold, and completely dissolved powder can be constantly supplied. For multi-hole nozzles, the discharge flow rate is 1m/
When the amount is less than s, the same amount of powder is sprayed directly below from each nozzle as shown in FIG. 7A, and is uniformly spread on the mold surface. Therefore, it can be said that this nozzle is suitable not only for slab slabs but also for small cross-sectional size or irregularly shaped slabs.

第6図は散布ノズル(スリツトノズル)の他の
例を示す拡大詳細図〔Aは平面図、Bは側面図〕
で81はノズル本体、82はスリツト状に開口し
た排出口である。本例のスリツトノズルでは第7
図Bに示す如く、パウダー送り方向に傾斜して排
出されるため小断面サイズの鋳型には不都合な点
があるが、スラブなど大断面や長大な断面の鋳型
に適用可能であり、パウダーをノズル前方に散布
できるため、ノズルの近設が困難な注入ノズル周
りを主体にして散布する場合は好都合である。
Figure 6 is an enlarged detailed view showing another example of a dispersion nozzle (slit nozzle) [A is a plan view, B is a side view]
81 is a nozzle body, and 82 is a slit-shaped discharge port. In the slit nozzle of this example, the seventh
As shown in Figure B, powder is ejected at an angle in the feeding direction, which is disadvantageous for molds with small cross-sections, but it can be applied to molds with large or long cross-sections such as slabs, and the powder can be ejected from the nozzle. Since it can be sprayed forward, it is convenient when spraying mainly around the injection nozzle where it is difficult to install the nozzle close to it.

次に一連の作動を説明する。まず鋳型10内に
供給しようとするパウダーの単位時間当りの量に
基いてタイマー36に開閉バルブ3の開閉タイミ
ング、すなわち三方電磁弁37、二方電磁弁38
の開閉タイミングを設定し、また貯溜槽43は所
望量のパウダーを排出可能な口径の排出口47を
有したものを装着しておく。次に圧力気体がバル
ブ13を開くとともにタイマー36のスイツチ
(図示せず)を入れると、タンク1内が加圧され
るとともに開閉バルブ3が設定タイミングで開閉
を繰り返す。開閉バルブ1回の開放により貯溜槽
43内にパウダーがほぼ充満される。貯溜槽43
内にパウダーは排出口47から排出され錐状突起
部45によつて分散されて複数の貫通孔46から
分散状態で落下する。この落下途中のパウダーは
インジエクター7Aから噴出している圧力気体に
よつて給送管5内を圧送される。パウダーは給送
管内を浮遊状態で送られるが管長が長く、管内圧
損が大きい場合、給送管5内のパウダーはインジ
エクター7Bによつて追送される。インジエクタ
ー7Bでは給送管進向方向に引込み効果のある気
流によつて、パウダーがこの気流に包囲分散され
ながら加速され、浮遊輸送される。このためパウ
ダーを低速で送ることができ、散布ノズル8から
粉塵を発生することなく鋳型10内に均等に散布
される。貯溜槽43内が空になると同時に開閉バ
ルブ3が所定時間開き前記同様にして貯溜槽43
にパウダーが満され以下同様にしてパウダーが自
動的に給送散布される。
Next, a series of operations will be explained. First, based on the amount of powder to be supplied into the mold 10 per unit time, the timer 36 determines the opening/closing timing of the opening/closing valve 3, that is, the three-way solenoid valve 37 and the two-way solenoid valve 38.
The opening/closing timing of the storage tank 43 is set, and the storage tank 43 is equipped with a discharge port 47 having a diameter capable of discharging a desired amount of powder. Next, when the pressure gas opens the valve 13 and turns on the switch (not shown) of the timer 36, the inside of the tank 1 is pressurized and the opening/closing valve 3 repeats opening and closing at the set timing. By opening the on-off valve once, the storage tank 43 is almost filled with powder. Storage tank 43
The powder is discharged from the discharge port 47, dispersed by the conical protrusion 45, and falls from the plurality of through holes 46 in a dispersed state. This falling powder is forced into the feed pipe 5 by the pressure gas jetting out from the injector 7A. Powder is sent in a floating state inside the feeding tube, but if the tube is long and the pressure loss inside the tube is large, the powder inside the feeding tube 5 is further fed by the injector 7B. In the injector 7B, the powder is accelerated and suspended while being surrounded and dispersed by the airflow that has a drawing effect in the direction in which the feed pipe advances. Therefore, the powder can be fed at a low speed, and the powder can be evenly dispersed from the spray nozzle 8 into the mold 10 without generating dust. As soon as the inside of the storage tank 43 becomes empty, the on-off valve 3 is opened for a predetermined period of time, and the storage tank 43 is opened in the same manner as described above.
is filled with powder, and the powder is automatically fed and dispersed in the same manner.

またインジエクター7は第8図のようにパウダ
ーの気送方向に開口したノズル75を設けたもの
でもよい。
Further, the injector 7 may be provided with a nozzle 75 that opens in the powder feeding direction as shown in FIG.

次に前記実施例装置によるパウダー散布の具体
例を説明する。
Next, a specific example of powder dispersion using the apparatus of the embodiment will be explained.

連鋳におけるパウダー使用量は通常0.5〜1
Kg/溶鋼・屯である。いま各部の能力としてφ0.5
〜1.2mmの顆粒パウダーを使用し、第2図に示す
貯溜槽43の内容積を135cm3とし、第2図に示す
如く開閉バルブ3のON−OFFによりパウダーの
吐出量を可変とした、例えば間歇サイクルを○入4
秒+○切15秒=19秒/1サイクルにセツトし、25
Kg/hのパウダーを給送した。
The amount of powder used in continuous casting is usually 0.5 to 1
Kg/ton of molten steel. Currently, the capacity of each part is φ0.5
Using granular powder of ~1.2 mm, the internal volume of the storage tank 43 shown in FIG. 2 was set to 135 cm 3 , and the amount of powder discharged was varied by turning on and off the on-off valve 3 as shown in FIG. 2, for example. Intermittent cycle ○ input 4
Set to 15 seconds + 15 seconds = 19 seconds/1 cycle, 25
Kg/h of powder was fed.

次にパウダーの浮遊輸送法として、第4図に示
したインジエクターを5〜10m毎に設置し、ノズ
ル径φ10mmとし、キヤリヤガスとしてN2を元圧
0.3〜0.5Kg/cm2とし、インジエクター7A,7B
の総ガス量を32/分とし、給送管内においてパ
ウダーを浮遊輸送した。
Next, as a floating transportation method for powder, injectors shown in Figure 4 are installed every 5 to 10 m, the nozzle diameter is φ10 mm, and N 2 is used as a carrier gas at the original pressure.
0.3~0.5Kg/ cm2 , injector 7A, 7B
The powder was transported floating in the feed pipe with a total gas flow rate of 32/min.

次にこのパウダーをSGP15Aにノズルφ7mm×
8ケ/200mm×2方向に設けた多孔ノズル(第5
図)によりモールド上面に均一散布した。第9図
に20分間の散布状況を示す。また多孔ノズルより
噴出されるキヤリヤガスの流速は0.8〜0.9m/s
であり、鋳型湯面上に散布されたパウダーが巻き
上がることもなく、環境上の問題も生じなかつ
た。一方多孔ノズルの替りにスリツトノズルを使
用すると第6図Bに示す如くスリツトノズル部で
の吐出流速1m/s以内のときスリツト巾と同じ
巾でキヤリヤガス進行方向に傾斜させることが可
能で、特に、スラブ用に第1図Bに示す如く注入
ノズル11を挾むように配置すると該ノズル周辺
にもパウダー散布がゆきわたる。
Next, apply this powder to SGP15A using nozzle φ7mm
8 pieces/200mm x multi-hole nozzles installed in 2 directions (5th
(Figure) was used to uniformly spread the powder over the top of the mold. Figure 9 shows the spraying situation for 20 minutes. In addition, the flow velocity of the carrier gas ejected from the porous nozzle is 0.8 to 0.9 m/s.
The powder sprinkled on the surface of the mold did not roll up, and there were no environmental problems. On the other hand, if a slit nozzle is used instead of a multi-hole nozzle, as shown in Figure 6B, when the discharge flow velocity at the slit nozzle part is within 1 m/s, it is possible to tilt the carrier gas in the direction of travel with the same width as the slit width. If the injection nozzle 11 is placed between the injection nozzles 11 as shown in FIG. 1B, the powder will be spread around the nozzle as well.

本発明方式は第10図Aに示す浮遊輸送形態を
呈す気送方式であり、従来の方式のように管内流
速を大巾にダウンさせ、管内詰りを発生させるこ
となく、鋳型湯面上に均一散布供給を可能ならし
めたものである。
The method of the present invention is a pneumatic conveying method that exhibits the floating transport form shown in Figure 10A, and unlike the conventional method, the flow velocity in the pipe is greatly reduced, and the flow rate is uniformly distributed over the mold surface without clogging the pipe. This makes spray supply possible.

パウダーとして母材、骨材、炭素微粉末の各成
分を混合した粉体、混合したものを造粒したも
の、これらの各成分を混合し、溶解して冷却凝固
後顆粒状としたもの、さらには炭素微粉末の代わ
りに窒化物を混合した前記粉体状、造粒状、顆粒
状のものを用い、本発明法により給送散布した結
果、何れも給送管で詰りを生じることはなかつ
た。また造粒状、顆粒状のものは給送中における
粒化もきわめて少ないものであつた。
Powder that is a mixture of base material, aggregate, and fine carbon powder, granulated mixture, granulated mixture of these components, melted and solidified after cooling, and As a result of using the powdered, granulated, and granular materials mixed with nitride instead of fine carbon powder and feeding and distributing them according to the method of the present invention, no clogging occurred in the feeding pipe. Ta. In addition, the granulated and granular products had very little granulation during feeding.

これに対し従来の気送方式は第11図の例で示
すとホツパー90よりキニヨンポンプ91(又は
ロータリーバルブ)を通り定量切出しされたパウ
ダーは該キニヨンポンプの出側に取付けられたキ
ヤリヤガス口92より気送供給されノズル93よ
り鋳型湯面上に散布される。しかし本方式の場合
2〜7Kg/cm2の元圧で送る必要があり、その場合
第10図Bに示す如く、プラグ輸送形態をとり、
パウダー12とキヤリヤガスCGが交互に存在し、
輸送先端側ほどガス層が薄くなり、圧力大とな
る。従つてパウダー散布後圧縮されたガスが一時
に噴き出し、散布されたパウダーを巻き上がらせ
発塵の要因となつている。また圧損大のため詰り
やすい。なお、浮遊輸送形態をとらせる為にガス
量を管内流速15m/sにアツプすると、ガス量が
増えノズル93よりの吐出速度が高くなり、この
場合も散布されたパウダーが巻き上がることにな
る。またガス量、ガス圧が高く、更にキニヨンポ
ンプ等の機械部品との接触が多いとパウダーの粉
化の要因にもなる。
On the other hand, in the conventional pneumatic feeding method, as shown in the example of FIG. 11, powder is cut out in a fixed amount from a hopper 90 through a Kinyon pump 91 (or rotary valve), and the powder is fed pneumatically through a carrier gas port 92 attached to the output side of the Kinyon pump. It is supplied and sprayed from the nozzle 93 onto the mold surface. However, in the case of this method, it is necessary to send at a source pressure of 2 to 7 kg/cm 2 , and in that case, as shown in Figure 10B, a plug transportation form is used,
Powder 12 and carrier gas CG exist alternately,
The gas layer becomes thinner toward the tip of the transport, and the pressure increases. Therefore, after the powder is spread, the compressed gas blows out all at once, causing the spread powder to be stirred up and causing dust. Also, due to the large pressure loss, it is easy to get clogged. In addition, when the gas amount is increased to 15 m/s in the pipe flow velocity in order to adopt a floating transportation mode, the gas amount increases and the discharge speed from the nozzle 93 increases, and in this case as well, the dispersed powder will be rolled up. Furthermore, high gas volume and gas pressure, as well as frequent contact with mechanical parts such as Kinyon pumps, can cause the powder to become powder.

〔発明の効果〕〔Effect of the invention〕

従来、パウダーを満足に給送散布することがで
きないため鋳造時の供給は殆んど人手によつてお
り、適正量の供給ができずこのため鋳型内面と鋳
片間の潤滑不良に基づく鋳片表面欠陥がしばしば
発生していたが本発明により上記問題が解決でき
るとともに給送管の摩耗を抑えることができ、ま
た、高温、粉塵を伴なう過酷な鋳造作業からも解
放し得るものであり鋳片品質と作業環境の改善に
格段の効果が得られるものである。
Conventionally, it was not possible to feed and spread the powder satisfactorily, so most of the feeding during casting was done manually, and it was not possible to supply the appropriate amount of powder. Although surface defects often occurred, the present invention can solve the above problems, suppress the wear of the feed pipe, and also relieve the harsh casting work that involves high temperatures and dust. This has a significant effect on improving the quality of slabs and the working environment.

また、本発明装置はその構成が簡潔であるため
故障の心配がなく、保守も容易であり、さらには
コンパクトであるため作業の支障となることもな
く、スラブ鋳片はもちろんのこと、小断面サイズ
鋳片あるいは異型鋳片の場合に更に効力を発揮す
るとともに最近の自動化・機械化の最有力手段と
なりえるものである。
In addition, the device of the present invention has a simple configuration, so there is no need to worry about breakdowns, and maintenance is easy.Furthermore, since it is compact, it does not interfere with work, and can be used not only for slab slabs but also for small cross-sections. It is even more effective in the case of sized slabs or irregular shaped slabs, and can be the most effective means of recent automation and mechanization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明装置例を示す全体断面
図、第2図は第1図の部分詳細断面図、第3図は
第2図の部分詳細図で、Aは断面図、Bは平面
図、第4図は第1図の部分詳細断面図、第5図は
散布ノズルの一例を示し、Aは平面図、BはAの
A−A断面図、第6図は散布ノズルの他の例を示
し、Aは平面図、Bは側面図、第7図A,Bは散
布ノズルの散布態様を示す側面図、第8図は給送
管への圧力気体の噴出の他の例を示す断面図、第
9図は散布ノズルよりモールド上面への散布状況
を示す斜視図、第10図は輸送形態を説明する断
面図で、Aは浮遊輸送形態、Bはプラグ輸送形
態、第11図は従来の気送方式を示す概略図であ
る。 図中、1はタンク、2は導管、3は開閉バル
ブ、4はエジエクター、42は分散部材、43は
貯溜槽、45は錐状突起部、46は貫通孔、47
は排出口、5はパウダー給送管、6はバイブレー
ター、7A,7Bはインジエクター、8はパウダ
ー散布ノズル、10は鋳型、11は注入ノズル、
12はパウダー、61は噴出口、75はリング状
ノズル。
1A and B are overall sectional views showing an example of the device of the present invention, FIG. 2 is a partial detailed sectional view of FIG. 1, and FIG. 3 is a partial detailed view of FIG. A plan view, FIG. 4 is a partial detailed sectional view of FIG. 1, FIG. 5 shows an example of the spray nozzle, A is a plan view, B is a sectional view taken along line A-A of A, and FIG. 6 is a partial detailed sectional view of FIG. 7A and B are side views showing the spraying mode of the spraying nozzle, and FIG. 8 shows another example of the jetting of pressurized gas into the feed pipe. FIG. 9 is a perspective view showing the state of spraying from the spray nozzle to the upper surface of the mold. FIG. 10 is a cross-sectional view illustrating the mode of transportation, where A is the floating mode of transportation, B is the plug mode of transportation, and FIG. is a schematic diagram showing a conventional pneumatic feeding system. In the figure, 1 is a tank, 2 is a conduit, 3 is an on-off valve, 4 is an ejector, 42 is a dispersion member, 43 is a storage tank, 45 is a conical projection, 46 is a through hole, 47
is a discharge port, 5 is a powder feeding pipe, 6 is a vibrator, 7A, 7B are injectors, 8 is a powder dispersion nozzle, 10 is a mold, 11 is an injection nozzle,
12 is powder, 61 is a spout, and 75 is a ring-shaped nozzle.

Claims (1)

【特許請求の範囲】 1 パウダーを収容するタンク1と、タンク1に
収容したパウダーを排出し給送する開閉バルブ3
およびエジエクター4と、エジエクター4から排
出されたパウダーをインジエクター7を介して気
送する給送管5と、パウダーを散布する散布ノズ
ル8とからなり、 (a) タンク1は、密閉されて内部に下方へ向けて
開口した圧力気体の導管2と、導管2を囲む部
位に設けられた水平方向の支持盤13を備え、 (b) 開閉バルブ3は、タンク1の下端に連設され
且つパウダーの通路31に設けられたピンチ方
式の弁33と、弁33の背面に形成された気密
室34に圧力気体を送る導管35と、導管35
に設けられ且つタイマー36の信号を受けて開
閉する三方電磁弁37及び二方電磁弁38を備
え、 (c) エジエクター4は、開閉バルブ3の下端に連
設され下部に錘状の排出口47を有する貯溜槽
43と、貯溜槽43に螺合され排出口47の下
方に装着されて中央部に錐状突起部45および
錐状突起部45の周りに複数の貫通孔46が形
成された分散部材42が内設された保持体41
を備え、 (d) インジエクター7は、保持体41の下端およ
び給送管5の途中に設けられてパウダーの気送
方向に開口したノズル75を備え、 (e) 散布ノズル8は、管状体の先端が閉塞され且
つ長手方向に多数の孔またはスリツト状の排出
口82を備えている ことを特徴とする連続鋳造用パウダー散布装置。
[Claims] 1. A tank 1 that stores powder, and an on-off valve 3 that discharges and feeds the powder stored in the tank 1.
and an ejector 4, a feed pipe 5 for pneumatically feeding the powder discharged from the ejector 4 via an injector 7, and a spray nozzle 8 for dispersing the powder. (b) The on-off valve 3 is connected to the lower end of the tank 1 and is equipped with a pressure gas conduit 2 that opens downward and a horizontal support plate 13 that is provided around the conduit 2. A pinch type valve 33 provided in the passage 31, a conduit 35 for sending pressurized gas to an airtight chamber 34 formed on the back side of the valve 33, and a conduit 35.
(c) The ejector 4 is provided with a three-way solenoid valve 37 and a two-way solenoid valve 38 that open and close in response to a signal from a timer 36. A dispersion tank 43 having a conical protrusion 45 in the center and a plurality of through holes 46 formed around the conical protrusion 45, which is screwed onto the reservoir 43 and installed below the discharge port 47. Holder 41 with member 42 installed inside
(d) The injector 7 is provided with a nozzle 75 provided at the lower end of the holder 41 and in the middle of the feed pipe 5 and opened in the powder feeding direction; (e) The spray nozzle 8 is provided with a A powder scattering device for continuous casting, characterized in that the tip is closed and provided with a large number of holes or slit-shaped discharge ports 82 in the longitudinal direction.
JP16245983A 1983-09-03 1983-09-03 Powder spraying method in continuous casting Granted JPS6054253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16245983A JPS6054253A (en) 1983-09-03 1983-09-03 Powder spraying method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16245983A JPS6054253A (en) 1983-09-03 1983-09-03 Powder spraying method in continuous casting

Publications (2)

Publication Number Publication Date
JPS6054253A JPS6054253A (en) 1985-03-28
JPH0556221B2 true JPH0556221B2 (en) 1993-08-19

Family

ID=15755013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16245983A Granted JPS6054253A (en) 1983-09-03 1983-09-03 Powder spraying method in continuous casting

Country Status (1)

Country Link
JP (1) JPS6054253A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263120A (en) * 1975-11-20 1977-05-25 Nippon Steel Corp Apparatus for powder feeding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263120A (en) * 1975-11-20 1977-05-25 Nippon Steel Corp Apparatus for powder feeding

Also Published As

Publication number Publication date
JPS6054253A (en) 1985-03-28

Similar Documents

Publication Publication Date Title
US5098229A (en) Source material delivery system
US6200203B1 (en) Abrasive delivery system
JP2007075814A (en) Powder supply system
US3411566A (en) Device for supplying powdered material into a mold of a continuous casting machine
US4391319A (en) Apparatus for introducing elements into molten metal streams and casting in inert atmosphere
JP2609389B2 (en) Apparatus for continuously supplying a casting aid to the surface of a melt contained in a continuous casting mold
EP0448710B1 (en) Source material delivery system
JPH0556221B2 (en)
US4327798A (en) Method of applying flux
JPS6054254A (en) Automatic spraying device for powder in continuous casting
JPH0899727A (en) Dustproof device of conveyer
JPH05147042A (en) Material feed device
JPH01118350A (en) Method and device for supplying powder for continuous casting
JP3226809B2 (en) Manufacturing method of hollow granule mold flux
JPH04503348A (en) Feeder for granular materials
US3230117A (en) Process and apparatus for flame scarfing
JP3707444B2 (en) Continuous casting slab cutting device and method for preventing nozzle clogging of continuous casting slab cutting device
JP3226822B2 (en) Method and apparatus for producing mold flux for continuous casting of steel
JPS5913940B2 (en) A device that feeds casting powder flux into continuous casting molds.
JPH0320036Y2 (en)
KR100905592B1 (en) An apparatus for jetting cooling water capable of adjusting injection pressure
JPS59120347A (en) Adding device for inoculating agent
JPH1057800A (en) Powder and granular body supply device
JPH03120304A (en) Method and apparatus for manufacturing metal fine powder
JP3905667B2 (en) Granule spraying device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees