JPH0556120B2 - - Google Patents

Info

Publication number
JPH0556120B2
JPH0556120B2 JP60186294A JP18629485A JPH0556120B2 JP H0556120 B2 JPH0556120 B2 JP H0556120B2 JP 60186294 A JP60186294 A JP 60186294A JP 18629485 A JP18629485 A JP 18629485A JP H0556120 B2 JPH0556120 B2 JP H0556120B2
Authority
JP
Japan
Prior art keywords
load
speed
water turbine
simulated
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60186294A
Other languages
Japanese (ja)
Other versions
JPS6248298A (en
Inventor
Shigeru Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60186294A priority Critical patent/JPS6248298A/en
Publication of JPS6248298A publication Critical patent/JPS6248298A/en
Publication of JPH0556120B2 publication Critical patent/JPH0556120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は水車発電機、特に小容量の水車発電
機の出力周波数を一定に保つための調速制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a speed governor control device for keeping the output frequency of a water turbine generator, particularly a small capacity water turbine generator, constant.

〔従来技術とその問題点〕[Prior art and its problems]

この種の従来の調速装置は、基本制御方式を第
6図に示すように発電機負荷の増減に応じて水車
の入力部のガイドベーン等の水量調整弁の開度を
制御して負荷の変動に見合つた水入力の供給を行
うようにしたものである。しかしガイドベーン等
の開度調整に例えば閉操作に関し第7図TCのご
とく回転数上昇率、鉄管水圧上昇率あるいはベー
ン駆動系パワーとその経済性等種々の条件からベ
ーン開閉時間上の制約がある。例えば第7図に示
す負荷減少にともなうガイドベーン閉操作時所定
の開度GV0に至るまで、同時斜線部に示すごと
く、水車は新しい負荷量に見合う値よりも大きな
余分な水入力の供給を受け、この余分な入力が当
然水車の過度的回転数上昇をきたす。同様に負荷
増加の場合もその時間的増加率によつては過度的
回転数低下をきたす。特に突然印加負荷量には制
約があり、全負荷突然印加はもちろん不可能であ
る。これら過度変動の発生はいずれもガイドベー
ン等水車入力制御系の応答速度に起因するもので
あるが、この速度は上記のように独自に早めるこ
とはできない。したがつて負荷変動時の過度的速
度変動の抑制には限界がある。
As shown in Figure 6, the basic control system of this type of conventional speed governor is to control the opening degree of the water flow regulating valve, such as the guide vane at the input section of the water turbine, in response to increases and decreases in the generator load. The system is designed to supply water input commensurate with fluctuations. However, when adjusting the opening of guide vanes, etc., there are restrictions on the vane opening/closing time due to various conditions such as the rotation speed increase rate, the iron pipe water pressure increase rate, the power of the vane drive system, and its economic efficiency, as shown in Figure 7 TC. . For example, when the guide vane is closed due to a load reduction as shown in Figure 7, until the predetermined opening GV 0 is reached, the water turbine will simultaneously supply an excess water input larger than the value corresponding to the new load, as shown in the shaded area. This extra input naturally causes an excessive increase in the rotational speed of the water turbine. Similarly, when the load increases, depending on the rate of increase over time, the rotational speed may drop excessively. In particular, there are restrictions on the amount of load that can be applied suddenly, and it is of course impossible to suddenly apply a full load. The occurrence of these excessive fluctuations is all caused by the response speed of the water turbine input control system such as the guide vane, but this speed cannot be independently increased as described above. Therefore, there is a limit to suppressing transient speed fluctuations during load fluctuations.

〔発明の目的〕[Purpose of the invention]

この発明は、上記に鑑み従来装置に比べて負荷
変動時の過度的速度変動値を極めて小さく抑制
し、かつガイドベーン等水車入力制御系の所要パ
ワーを減らすことにより、構成が簡単で経済的な
ガイドベーン等の駆動系の構成を可能とする特に
小容量の水車発電機に適した調速制御装置を提供
することを目的とする。
In view of the above, the present invention suppresses transient speed fluctuations during load fluctuations to an extremely small value compared to conventional devices, and reduces the required power of the water turbine input control system such as guide vanes, thereby achieving a simple and economical configuration. It is an object of the present invention to provide a speed governor control device that is particularly suitable for small-capacity water turbine generators and allows configuration of a drive system such as guide vanes.

〔発明の要点〕[Key points of the invention]

この発明は上記目的を以下の構成により達成し
ようとするものである。すなわち、水車発電機の
水車の入口部に水入力を調整する調整弁を設け、
発電機の出力に負荷量の調整可能な模擬負荷を接
続し、前記調整弁および模擬負荷の調整により水
車発電機の調速を行うものにおいて、予め設定さ
れた速度設定信号と前記水車発電機の速度検出信
号とを比較しその偏差に応じた制御信号発生する
速度調整器と、この速度調整器の制御信号に応じ
て前記模擬負荷の負荷量を調整する電力調整装置
と、前記速度調整装置の制御信号および前記前記
模擬負荷の電力または電流検出信号に応じて前記
調整弁の駆動装置への開閉指令信号を発生する制
御装置とにより構成した水車発電機の調速制御装
置である。つまりこの発明は水車発電機の調速の
基本である水車入力と発電機出力間の入出力平衡
制御を水車入力側の制御だけでなく発電機出力側
に設置した模擬負荷の電力調整による電気的制御
も同時に行なうようにして負荷変動時の調速応答
性を極めて高くしようとするものである。いゝか
えると、水車がイドベーン等水車入力制御系を緩
駆動することにより駆動系の簡易化と駆動パワー
の低減をはかりながら、即応的な電気出力調整系
を組合せることにより総合的には高即応度、高精
度の小容量水車発電機の調速を可能にしようとす
るものである。なお、模擬負荷は複数に分割さ
れ、各分割単位毎に模擬負荷制御信号によつて発
電機出力側に接続または解列される定値模擬負荷
群と、いずれの定値模擬負荷単位よりも大きくか
つ連続的に負荷量可変な可変模擬負荷とで構成す
るとよく、さらに模擬負荷は全体として全域にわ
たり連続可変制御が可能な模擬負荷回路として構
成してもよい。
This invention attempts to achieve the above object by the following configuration. In other words, a regulating valve is installed at the inlet of the water turbine of the water turbine generator to adjust the water input.
A simulated load whose load amount can be adjusted is connected to the output of the generator, and the speed of the water turbine generator is controlled by adjusting the regulating valve and the simulated load. a speed regulator that compares a speed detection signal and generates a control signal according to the deviation; a power regulator that adjusts the load amount of the simulated load in accordance with the control signal of the speed regulator; This is a speed governor control device for a water turbine generator, which includes a control signal and a control device that generates an opening/closing command signal to a driving device for the regulating valve in accordance with a control signal and a power or current detection signal of the simulated load. In other words, this invention performs the input/output balance control between the water turbine input and generator output, which is the basics of regulating the speed of a water turbine generator, by not only controlling the water turbine input side but also electrically adjusting the power of a simulated load installed on the generator output side. The aim is to perform control at the same time to extremely improve the speed regulating response during load fluctuations. In other words, by slowly driving the water turbine input control system such as the id vane, the water turbine can simplify the drive system and reduce the drive power, while combining it with a quick-response electric output adjustment system to achieve overall high performance. The aim is to enable speed regulation of small-capacity water turbine generators with quick response and high precision. The simulated load is divided into multiple units, and for each division unit there is a fixed value simulated load group that is connected or disconnected from the generator output side by the simulated load control signal, and a fixed value simulated load group that is larger than any fixed value simulated load unit and is continuous. In addition, the simulated load may be constructed as a simulated load circuit that can be continuously variable controlled over the entire area.

〔発明の実施例〕[Embodiments of the invention]

以下この発明を実施例を示す図面により詳細に
説明する。第1図ないし第5図はこの発明の実施
例を示す図面で、第1図にこの発明の基本制御方
式を示す。第1図からわかるようにこの発明にお
いては調速の応答性に関して、ガイドベーン等入
力制御系の応答速度自体はもはや基本的な特性で
はなく、ガイドベーン等の駆動速度を従来方式の
ものに比してむしろ遅く選択することが可能であ
る。第2図に模擬負荷を可変部のみで構成した例
を、第4図に同負荷をn個の固定部と1個の可変
部にて構成した例をそれぞれ示す。又第3図およ
び第5図にそれぞれ第2図および第4図に対応し
た負荷急変時の各部動作モードを示す。まず第2
図および第3図について説明する。発電機2の負
荷がPLrからPL0に急減した場合、水車1の入力
PWは直ちには変化しないため、水車の回転速度
が上昇し始める。回転速度の上昇は回転計発電機
5により検出され自動速度調整器8に加えられ、
ここで速度設定器10で設定された速度設定信号
と比較されその偏差に応じた制御信号が発生され
模擬負荷4の負荷量を調整する電力調整器6加え
られる。これにより電力(調整器6は模擬負荷4
の電力消費量(負荷量)Pdを増加させ水車の回
転速度を下げる動作をする。またシーケンス演算
部として示された制御装置9は速度度調整器8の
回転速度上昇を示す制御信号および電流または電
力検出器で検出された模擬負荷4の回路の増加し
た電流または電力の検出信号を受けてガイドベー
ン等の調整弁3を駆動するサーボ機構7に対して
ガイドベーン3の閉指令信号を出す。これにより
ガイドベーン3の閉動作が徐々に進み、水車1に
供給される水量が減少するのにともない水車入力
PWが減少し、これに見合つて模擬負荷4の負荷
量Pdも減少する。ガイドベーン3の開度が当初
のGVrから実負荷の負荷量PLoに見合つた最終値
GVoに達するとガイドベーン3の閉動作が停止
するとともに、模擬負荷4の負荷量Pdが零とな
る。水車回転数は、負荷急減直後、回転計5、速
度調整器8、電力調整器6部分の総合的な制御時
間遅れによる過渡的な入出力不平衡にもとづく上
昇△Nuが発生するが短時間で解消し、以後上記
の動作中略一定に保たれる。以上の動作中の入出
力変動模様は概略次の様になる。
Hereinafter, the present invention will be explained in detail with reference to drawings showing embodiments. 1 to 5 are drawings showing embodiments of the present invention, and FIG. 1 shows the basic control system of the present invention. As can be seen from Fig. 1, in this invention, regarding the responsiveness of regulating speed, the response speed itself of input control systems such as guide vanes is no longer a fundamental characteristic, but the drive speed of guide vanes, etc. is compared to that of the conventional system. It is possible to choose rather late. FIG. 2 shows an example in which the simulated load is composed of only variable parts, and FIG. 4 shows an example in which the same load is composed of n fixed parts and one variable part. Further, FIGS. 3 and 5 show operating modes of each part when the load suddenly changes corresponding to FIGS. 2 and 4, respectively. First, the second
The figure and FIG. 3 will be explained. When the load of generator 2 suddenly decreases from PLr to PL0, the input of water turbine 1
Since PW does not change immediately, the rotation speed of the water wheel begins to increase. The increase in rotational speed is detected by the tachometer generator 5 and applied to the automatic speed regulator 8;
Here, it is compared with the speed setting signal set by the speed setting device 10, a control signal corresponding to the deviation is generated, and a power regulator 6 is added to adjust the load amount of the simulated load 4. As a result, the power (regulator 6 is the simulated load 4
increases the power consumption (load amount) Pd and lowers the rotation speed of the water turbine. In addition, the control device 9 shown as a sequence calculation unit outputs a control signal indicating an increase in the rotational speed of the speed regulator 8 and a detection signal of increased current or power in the circuit of the simulated load 4 detected by the current or power detector. In response, a command signal for closing the guide vane 3 is issued to the servo mechanism 7 that drives the regulating valve 3 such as a guide vane. As a result, the closing operation of the guide vane 3 progresses gradually, and as the amount of water supplied to the water turbine 1 decreases, the water turbine input
PW decreases, and the load amount Pd of the simulated load 4 also decreases accordingly. The final value of the opening degree of guide vane 3 commensurate with the actual load PLo from the initial GVr
When GVo is reached, the closing operation of the guide vane 3 stops, and the load amount Pd of the simulated load 4 becomes zero. Immediately after the load suddenly decreases, the water turbine rotational speed increases △Nu due to transient input/output imbalance due to the overall control time delay of the tachometer 5, speed regulator 8, and power regulator 6, but this occurs in a short period of time. After that, it is kept approximately constant during the above operation. The input/output fluctuation pattern during the above operation is roughly as follows.

変動前 変動直後 Pwr=Plr→ Pwr=Plr−△Pl+Pd ∴Pd=△Pl 但し△Pl=Plr−Plo 模擬電力動作のみ 正常動作中 操作完了 →Pwr−△Pw=Plr−△Pl+Pd→ Pwo=Plo ∴Pd=△Pl−△Pw △Pw=Pwr−Pwo 模擬電力動作と △Pl=Plr−Plo GV閉動作併存 Pd=O 次に負荷を投入して実負荷がステツプ状に増加
する場合について説明する。
Before fluctuation Immediately after fluctuation Pwr=Plr→ Pwr=Plr−△Pl+Pd ∴Pd=△Pl However, △Pl=Plr−Plo Only simulated power operation is operating normally Operation completed→Pwr−△Pw=Plr−△Pl+Pd→ Pwo=Plo ∴ Pd=ΔPl−ΔPw ΔPw=Pwr−Pwo Coexistence of simulated power operation and ΔPl=Plr−Plo GV closing operation Pd=O Next, the case where a load is applied and the actual load increases stepwise will be explained.

まず、図示しない指令装置により負荷の投入指
令をシーケンス演算部9に与えるとこの演算部8
は新たな実負荷量に相当する開度の開指令信号を
サーボ機構7に出力する。これに応じてガイドベ
ーン3は指令された開度GVrまで所定の速度で
開動作を行う。これにより水車1への供給水量が
増加し、水車入力が増えるが、実負荷は不変のま
まのため、水車の回転速度が上昇し始めるので、
これを一定速度に保つように速度調整器8が動作
し、電力調整器6を介して模擬負荷4の負荷量
Pdが増加され、この模擬負荷4により水車入力
PWの増加分を一時的に負担させて水車入力PW
と発電機出力Pgの平衡が計られる。ガイドベー
ン3が指令された予定開度GVrに達したところ
で投入予定の実負荷を投入し、実負荷量を予定の
PLrにステツプ状に増加させると、水車の回転速
度が減少し始めるので自動速度調整器8の動作に
より模擬負荷4の負荷量Pdが減じられ、発電機
の負荷が急速に実負荷へ振り替えられる。この
間、制御系の動作遅れによる過渡的な入出力不平
衡にもとづく回転速度低下△Ndが発生するが短
時間で解消する(第3図右半部部分参照)。
First, when a load application command is given to the sequence calculation unit 9 by a command device (not shown), this calculation unit 8
outputs to the servo mechanism 7 an opening command signal with an opening degree corresponding to the new actual load amount. In response to this, the guide vane 3 performs an opening operation at a predetermined speed up to the commanded opening GVr. As a result, the amount of water supplied to the water turbine 1 increases and the water turbine input increases, but the actual load remains unchanged and the rotation speed of the water turbine begins to increase.
The speed regulator 8 operates to keep this at a constant speed, and the load amount of the simulated load 4 is controlled via the power regulator 6.
Pd is increased and this simulated load 4 causes the water turbine input
The increase in PW is temporarily borne by the water turbine input PW.
and the balance between the generator output Pg and the generator output Pg is measured. When the guide vane 3 reaches the commanded scheduled opening GVr, apply the actual load that is scheduled to be applied, and change the actual load amount to the planned amount.
When PLr is increased stepwise, the rotational speed of the water turbine begins to decrease, so the load amount Pd of the simulated load 4 is reduced by the operation of the automatic speed regulator 8, and the generator load is rapidly transferred to the actual load. During this period, a decrease in rotational speed ΔNd occurs due to transient input/output imbalance due to delay in operation of the control system, but this is resolved in a short time (see the right half of FIG. 3).

以上のようにこの発明では最も厳しいステツプ
状負荷変動に対しても良好な調速性を示しガイド
ベーン等の入力制御系の応答性は調速特性を左右
する基本的要素ではなくなつている。
As described above, the present invention exhibits good speed regulating performance even in the most severe step-like load fluctuations, and the responsiveness of the input control system such as guide vanes is no longer a fundamental factor that influences speed regulating characteristics.

次に第4図および第5図に示す実施例の動作に
ついて説明する。この実施例の動作は、基本的に
は第2図および第3図に示した実施例と同じであ
るが模擬負荷関連の回路の構成とそれにともなう
動作モードが少し異なつている。模擬負荷の可変
部分4aは電力調整器6を介して発電機1の出力
に接続され、模擬負荷の固定部分4b,4cは電
磁接触器等の開閉器を介して発電機出力に接続さ
れ、余分の入力の吸収制御を行つている。吸収す
べき入力が模擬負荷の可変部分4aの最大容量
Pdc(max)を超えるとシーケンス演算部9を通
してn個の模擬負荷の固定部分4b〜4cから必
要な負荷量となるように適当な個数を選び可変部
分4aに並列に投入する。逆に可変部分4aの吸
収量が最小値Pdc(min)以下になると適当数の固
定部分4b,4cを切り離す。
Next, the operation of the embodiment shown in FIGS. 4 and 5 will be explained. The operation of this embodiment is basically the same as that of the embodiments shown in FIGS. 2 and 3, but the configuration of the simulated load-related circuit and the accompanying operation mode are slightly different. The variable portion 4a of the simulated load is connected to the output of the generator 1 via the power regulator 6, and the fixed portions 4b and 4c of the simulated load are connected to the generator output via a switch such as a magnetic contactor. The input absorption control is performed. The input to be absorbed is the maximum capacity of the variable part 4a of the simulated load.
When Pdc(max) is exceeded, an appropriate number of fixed portions 4b to 4c of the n simulated loads are selected through the sequence calculation unit 9 so as to obtain the required load amount and are injected in parallel into the variable portion 4a. Conversely, when the absorption amount of the variable portion 4a becomes less than the minimum value Pdc (min), an appropriate number of fixed portions 4b and 4c are separated.

第5図は固定部分の模擬負荷が2個の場合を示
している。実負荷の急減時に可変部分4aととも
にまず全部の固定部分の模擬負荷4b,4cが投
入される。ガイドベーン3の閉操作の進行ととも
に可変部分模擬負荷4aの負荷量Pdcは減少し
Pdc(min)以下になると固定部分模擬負荷の1個
が切り離され、可変部分の負荷量が再び増加され
るが、ガイドベーンの閉操作が更に進み可変部分
模擬負荷の負荷量が再度Pdc(min)以下になつた
ところで残り1個の固定部分模擬負荷も切り離さ
れ、余分な入力の吸収は可変部分模擬負荷4aの
みにより行われる。以後は第2図の場合と同様で
ある。
FIG. 5 shows a case where there are two simulated loads on the fixed part. When the actual load suddenly decreases, the simulated loads 4b and 4c of all the fixed parts are first applied together with the variable part 4a. As the closing operation of the guide vane 3 progresses, the load amount Pdc of the variable portion simulated load 4a decreases.
When the load falls below Pdc (min), one of the fixed part simulated loads is disconnected and the load of the variable part is increased again, but as the guide vane continues to close, the load of the variable part simulated load increases again to Pdc (min). ), the remaining fixed partial simulated load is also disconnected, and the excess input is absorbed only by the variable partial simulated load 4a. The subsequent steps are the same as in the case of FIG.

負荷投入の場合は以上と逆の動作で模擬負荷の
可変部分と固定部分の組合せが行われる。
In the case of load application, the variable part and fixed part of the simulated load are combined by the reverse operation.

模擬負荷の総容量は原則として発電機2の容量
と同一に選ばれるので、発電機容量の増大ととも
に模擬負荷の容量も増大し、同時に負荷量の調整
を行う電力調整器6の容量もまた増大させる必要
がある。電力調整器6の容量を発電機容量に応じ
て変更、増大することは種々の面から得策ではな
く、第4図の実施例に示すような分割模擬負荷を
使用すると、発電機容量より小さい容量の電力調
整器を使用できるようになり、電力調整器の容量
増大を回避できる。また、負荷変動時の各模擬負
荷における調整電力消費は、ガイドベーンの開度
が新たな負荷への対応値に到達した時点で終結す
る。したがつて各模擬負荷は、連続定格にする必
要はなく、その最大通電時間はガイドベーン等の
制御系の最大ストロークの通過時間を越えること
がないので極めて短時間の定格にすることができ
る。
In principle, the total capacity of the simulated load is selected to be the same as the capacity of the generator 2, so as the generator capacity increases, the capacity of the simulated load also increases, and at the same time, the capacity of the power regulator 6 that adjusts the load amount also increases. It is necessary to do so. It is not advisable to change or increase the capacity of the power regulator 6 according to the generator capacity from various aspects, and if a divided simulated load as shown in the example of FIG. 4 is used, the capacity will be smaller than the generator capacity. power regulator can be used, and an increase in the capacity of the power regulator can be avoided. In addition, the adjusted power consumption for each simulated load during load change ends when the opening degree of the guide vane reaches a value corresponding to the new load. Therefore, each simulated load does not need to be rated continuously, and since its maximum energization time does not exceed the maximum stroke passing time of the control system such as the guide vane, it can be rated for an extremely short time.

この発明においては、水車入力を一時的に制御
応答の速い電気的制御系により制御される模擬負
荷に負担させることにより調速を行うので発電機
に全負荷を投入したり遮断したりした際の速度変
動を極めて小さく抑えることができる。
In this invention, speed regulation is performed by temporarily passing the turbine input to a simulated load controlled by an electrical control system with quick control response, so that when the generator is fully loaded or shut off, Speed fluctuations can be kept extremely small.

〔発明の効果〕〔Effect of the invention〕

上記のようにこの発明によれば、ガイドベーン
等の水車入力部の機械式制御系と模擬負荷による
電気的制御系の2つの制御系により調速を行うよ
うに構成したため、負荷変動時にまず速応性の高
い模擬負荷により余分の水車入力を吸収して速度
を安定させたうえで、水車入力がガイドベーン等
の応答速度の遅い機械的制御系により負荷に見合
つた量に調整されるようになり、負荷変動時の過
渡的速度変動を極めて小さく抑えることができ
る。そしてガイドベーン等の制御系の応答速度を
高める必要はないので、ガイドベーンを駆動する
サーボ機構の出力を減らすことができ、その分こ
の制御系の構造を簡単かつ小形にすることがで
き、高性能の小水力発電設備を安価に提供できる
効果も得られる。
As described above, according to the present invention, the speed is controlled by two control systems: the mechanical control system of the input part of the water turbine such as the guide vane, and the electrical control system using the simulated load. After absorbing the excess water turbine input using a highly responsive simulated load and stabilizing the speed, the water turbine input is adjusted to an amount commensurate with the load using a mechanical control system with a slow response speed such as guide vanes. , it is possible to suppress transient speed fluctuations during load fluctuations to an extremely small level. Since there is no need to increase the response speed of the control system for the guide vanes, etc., the output of the servo mechanism that drives the guide vanes can be reduced, and the structure of this control system can be made simpler and more compact. It also has the effect of being able to provide high-performance small-scale hydroelectric power generation equipment at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はこの発明の実施例を示
し、第1図はその基本制御式、第2図および第4
図はそのそれぞれ異なる実施例を示すブロツク
図、第3図および第5図は第2図および第4図に
それぞれ対応するタイムチヤート図、第6図ない
し第7図は従来例を示すもので第6図はその基本
制御式、第7図はそのタイムチヤート図である。 1……水車、2……発電機、3……水車入力調
整部(ガイドベーンまたは入口弁)、4……模擬
負荷、4a……可動側模擬負荷、4b,4c……
固定側模擬負荷、5……回転計、6……電力調整
器、7……電動または油圧サーボモータ、8……
自動速度調整器、9……シーケンス演算部、10
……速度設定器、11……電力または電流検出
器、12,16……変流器、14,15……電磁
接触器。
1 to 5 show embodiments of the present invention, in which FIG. 1 shows its basic control formula, and FIGS.
The figures are block diagrams showing different embodiments, Figures 3 and 5 are time charts corresponding to Figures 2 and 4, respectively, and Figures 6 and 7 are conventional examples. FIG. 6 shows its basic control formula, and FIG. 7 shows its time chart. 1... Water turbine, 2... Generator, 3... Water turbine input adjustment section (guide vane or inlet valve), 4... Simulated load, 4a... Movable side simulated load, 4b, 4c...
Fixed side simulated load, 5... Tachometer, 6... Power regulator, 7... Electric or hydraulic servo motor, 8...
automatic speed regulator, 9...sequence calculation section, 10
... Speed setting device, 11 ... Power or current detector, 12, 16 ... Current transformer, 14, 15 ... Magnetic contactor.

Claims (1)

【特許請求の範囲】[Claims] 1 水車発電機の水車の入口部に水入力を調整す
る調整弁を設け、発電機の出力に負荷量の調整可
能な模擬負荷を接続し、前記調整弁および模擬負
荷の調整により水車発電機の調速を行うものにお
いて、予め設定された速度設定信号と前記水車発
電機の速度検出信号とを比較しその偏差に応じた
制御信号発生する速度調整器と、この速度調整器
の制御信号に応じて前記模擬負荷の負荷量を調整
する電力調整装置と、前記速度調整装置の制御信
号および前記前記模擬負荷の電力または電流検出
信号に応じて前記調整弁の駆動装置への開閉指令
信号を発生する制御装置とを備えたことを特徴と
する水車発電機の調速制御装置。
1. A regulating valve for adjusting the water input is provided at the inlet of the water turbine of the water turbine generator, and a simulated load whose load amount can be adjusted is connected to the output of the generator. A speed regulator that compares a preset speed setting signal with a speed detection signal of the water turbine generator and generates a control signal according to the deviation, and a speed regulator that generates a control signal according to the deviation thereof. a power adjustment device that adjusts the amount of load of the simulated load; and a power adjustment device that generates an opening/closing command signal to a drive device of the regulating valve in response to a control signal of the speed adjustment device and a power or current detection signal of the simulated load. A speed regulating control device for a water turbine generator, characterized by comprising a control device.
JP60186294A 1985-08-24 1985-08-24 Composite speed governing method for small-capacity water-wheel generator Granted JPS6248298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186294A JPS6248298A (en) 1985-08-24 1985-08-24 Composite speed governing method for small-capacity water-wheel generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186294A JPS6248298A (en) 1985-08-24 1985-08-24 Composite speed governing method for small-capacity water-wheel generator

Publications (2)

Publication Number Publication Date
JPS6248298A JPS6248298A (en) 1987-03-02
JPH0556120B2 true JPH0556120B2 (en) 1993-08-18

Family

ID=16185795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186294A Granted JPS6248298A (en) 1985-08-24 1985-08-24 Composite speed governing method for small-capacity water-wheel generator

Country Status (1)

Country Link
JP (1) JPS6248298A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244155A (en) * 2006-03-10 2007-09-20 High Frequency Heattreat Co Ltd Micro hydraulic power generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170095A (en) * 1981-04-14 1982-10-20 Nippon Electric Ind Co Ltd Speed controlling device for water wheel generator
JPS59226699A (en) * 1983-06-07 1984-12-19 Fuji Electric Co Ltd Load controller of generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170095A (en) * 1981-04-14 1982-10-20 Nippon Electric Ind Co Ltd Speed controlling device for water wheel generator
JPS59226699A (en) * 1983-06-07 1984-12-19 Fuji Electric Co Ltd Load controller of generator

Also Published As

Publication number Publication date
JPS6248298A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
CN87103153A (en) Variable speed water raising shenerate electricity arrangement
US4625125A (en) Method and apparatus for controlling variable-speed hydraulic power generating system
JPH11352284A (en) Reactor system pressure control method through core power control
JP3144451B2 (en) Variable speed pumped storage generator
JPH0264201A (en) Method of reducing degree of throttle of valve of partial feed-in type steam turbine and steam turbine generator
JPH0556120B2 (en)
JPS5895998A (en) Controller for wind power generator
JP2894978B2 (en) Tank level control device for hydroelectric power plant
JPH11117894A (en) Gas compression facility and its operating method
JPH0428907B2 (en)
JPS6230303B2 (en)
JPS6153559B2 (en)
JP2735328B2 (en) Control method of water turbine
JP3915085B2 (en) Variable speed pumped storage power generation controller
JPS58107098A (en) Regulator for load of water-turbine generator
JP2513277B2 (en) Operating method of AC excitation synchronous machine
JP2731147B2 (en) Control unit for hydroelectric power plant
JP2523520B2 (en) Control device for variable speed turbine generator
JP2642999B2 (en) Load control device for combined cycle plant
JP2870039B2 (en) Water turbine speed control method
JP2685199B2 (en) How to start a variable speed hydropower plant
SU442312A1 (en) Control system of the boiler turbine unit
Erickson et al. Maximum slew-rate governor control for impulse turbines
JPS58105306A (en) Water supply controller
JPS6285698A (en) Controller for generator