JPH0555985B2 - - Google Patents

Info

Publication number
JPH0555985B2
JPH0555985B2 JP60057263A JP5726385A JPH0555985B2 JP H0555985 B2 JPH0555985 B2 JP H0555985B2 JP 60057263 A JP60057263 A JP 60057263A JP 5726385 A JP5726385 A JP 5726385A JP H0555985 B2 JPH0555985 B2 JP H0555985B2
Authority
JP
Japan
Prior art keywords
nickel
sintered body
oxide layer
heat treatment
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60057263A
Other languages
Japanese (ja)
Other versions
JPS61216244A (en
Inventor
Masayuki Yoshimura
Toshio Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60057263A priority Critical patent/JPS61216244A/en
Publication of JPS61216244A publication Critical patent/JPS61216244A/en
Publication of JPH0555985B2 publication Critical patent/JPH0555985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニツケル−カドミウム蓄電池などのア
ルカリ蓄電池に用いるニツケル焼結基板に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel sintered substrate used in alkaline storage batteries such as nickel-cadmium storage batteries.

従来の技術 従来、アルカリ蓄電池用焼結基板は、水に水溶
性有機高分子、例えばメチルセルロースあるいは
カルボキシメチルセルロースのナトリウム塩など
を溶解した結着剤溶液とニツケル粉末、例えばカ
ーボニルニツケル粉末とを混練してニツケルスラ
リーとなし、このニツケルスラリーを多孔性集電
体、例えばニツケルメツキした穿孔鋼板などに塗
布、乾燥した後、還元雰囲気中で焼結することに
より製造されていた。このようなニツケル焼結体
は活性が高いため、後の活性物質含浸工程の際、
酸性の活物質溶液によつてその一部が腐食され
る。つまり正極用含浸液、例えば硝酸ニツケル溶
液や負極用含浸液、例えば硝酸カドミウム溶液な
どによつてニツケル焼結体の腐食が起こる。その
ため極板の機械的強度が低下することになる。さ
らにカドミウム負極板においては、ニツケル焼結
体の腐食生成物である水酸化ニツケルが活物質で
ある水酸化カドミウム中に混入して、高温で長期
のトリクル充電を受けるとNi−Cd合金が生成し、
その次の放電において末期の電圧が低下するとい
う放電が二段階となる現象(以後、二段放電と呼
ぶ)の原因となつていた。
BACKGROUND ART Conventionally, sintered substrates for alkaline storage batteries have been produced by kneading a binder solution in which a water-soluble organic polymer, such as methyl cellulose or sodium salt of carboxymethyl cellulose, is dissolved in water, and nickel powder, such as carbonyl nickel powder. It was produced by preparing a nickel slurry, applying this nickel slurry to a porous current collector, such as a nickel-plated perforated steel plate, drying it, and then sintering it in a reducing atmosphere. Since such nickel sintered bodies have high activity, during the subsequent active substance impregnation process,
Part of it is corroded by the acidic active material solution. In other words, the nickel sintered body is corroded by the impregnating liquid for the positive electrode, such as a nickel nitrate solution, and the impregnating liquid for the negative electrode, such as a cadmium nitrate solution. Therefore, the mechanical strength of the electrode plate decreases. Furthermore, in cadmium negative electrode plates, nickel hydroxide, which is a corrosion product of the nickel sintered body, mixes into the active material cadmium hydroxide, and when subjected to long-term trickle charging at high temperatures, a Ni-Cd alloy is formed. ,
In the next discharge, the voltage at the end of the discharge decreases, which causes a two-stage discharge phenomenon (hereinafter referred to as a two-stage discharge).

これらを解決する手段としてニツケル焼結体表
面にニツケル酸化物層(以下、単に酸化物層とい
う)よりなる不働態膜を形成し、活物質含浸工程
でのニツケル焼結体の腐食を防ぐことが提案され
ている。(例えば特開昭59−96659号公報) 発明が解決しようとする問題点 純粋なニツケル焼結体を酸素を含む雰囲気中で
熱処理して、その表面に酸化物層を形成した場
合、下地金属との比容積の差によつて酸化物層に
は圧縮応力が発生し、緻密な不働態膜が出来る。
活物質含浸工程で酸性の活物質溶液中に前記不働
態膜を形成したニツケル焼結体を浸漬しても、ニ
ツケルの腐食はほとんど起こらず、極板の機械的
強度は低下しない。さらにカドミウム負極板では
水酸化ニツケルの生成が抑えられ、Ni−Cd合金
による二段放電の現象を防止する効果もある。
As a means to solve these problems, it is possible to form a passive film made of a nickel oxide layer (hereinafter simply referred to as an oxide layer) on the surface of the nickel sintered body to prevent corrosion of the nickel sintered body during the active material impregnation process. Proposed. (For example, JP-A-59-96659) Problems to be Solved by the Invention When a pure nickel sintered body is heat treated in an atmosphere containing oxygen to form an oxide layer on its surface, the oxide layer is formed on the surface of the pure nickel sintered body. Compressive stress is generated in the oxide layer due to the difference in specific volume of the oxide, forming a dense passive film.
Even if the nickel sintered body with the passive film formed thereon is immersed in an acidic active material solution in the active material impregnation step, almost no corrosion of nickel occurs and the mechanical strength of the electrode plate does not decrease. Furthermore, the cadmium negative electrode plate suppresses the formation of nickel hydroxide and has the effect of preventing the phenomenon of two-stage discharge caused by the Ni-Cd alloy.

しかるに、実際のニツケル焼結基板はいくつか
の不純物を含有していて、その結果、不導態膜の
生成量を適切に制御できなくなり、ニツケル焼結
体の腐食量が増加する不都合や、活物質利用率が
低下したりバラツキが増加する不都合が生じた。
そして、従来の酸化膜の形成方法だけでは、これ
らの問題点を同時に解決することは困難であつ
た。
However, actual nickel sintered substrates contain several impurities, and as a result, the amount of nonconducting film produced cannot be properly controlled, resulting in the disadvantage of increased corrosion of the nickel sintered body and increased activity. This resulted in inconveniences such as a decrease in the material utilization rate and an increase in variation.
It has been difficult to solve these problems at the same time using only conventional oxide film formation methods.

本発明は以上のような従来技術の問題点を解決
することを目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 本発明はニツケルスラリーを多孔性集電体に塗
布、乾燥した後、焼結工程直前のニツケルに混入
している炭素の10倍当量以上の水蒸気を含む還元
雰囲気中でニツケル粉末を焼結し、さらに該ニツ
ケル焼結体を160〜300℃の酸素を含む雰囲気中で
熱処理して、ニツケル焼結体の表面に極く薄い酸
化物層よりなる不働態膜を均一に形成させるもの
である。またさらに酸化物層の厚みを精度良く制
御するために、前記ニツケルスラリー調製に際
し、水溶性有機高分子として非イオン性の物質を
用いるものである。
Means for Solving the Problems The present invention applies a nickel slurry to a porous current collector, dries it, and then puts it in a reducing atmosphere containing water vapor in an amount more than 10 times the equivalent of carbon mixed in the nickel immediately before the sintering process. The nickel powder is sintered in the nickel sintered body, and the nickel sintered body is then heat-treated in an oxygen-containing atmosphere at 160 to 300°C to uniformly form a passive film consisting of an extremely thin oxide layer on the surface of the nickel sintered body. It is intended to be formed. Furthermore, in order to precisely control the thickness of the oxide layer, a nonionic substance is used as the water-soluble organic polymer when preparing the nickel slurry.

作 用 表面に酸化物層を形成したニツケル焼結基板か
ら作製した極板では、酸化物層の厚さの増加とと
もに極板の活物質利用率が低下するという傾向が
ある。この理由としては、ニツケルの酸化物であ
るNiOは元来常温付近では絶縁体に近い半導体で
あり、NiO層が厚くなるとその絶縁体的性質が表
われ、極板の電子伝導性を阻害することによると
考えられる。
Effect In an electrode plate made from a nickel sintered substrate with an oxide layer formed on its surface, there is a tendency for the active material utilization rate of the electrode plate to decrease as the thickness of the oxide layer increases. The reason for this is that NiO, the oxide of nickel, is originally a semiconductor that is close to an insulator at room temperature, and as the NiO layer becomes thicker, its insulator properties appear and inhibit the electron conductivity of the electrode plate. This is thought to be due to the following.

また一般にニツケルの不働態化には数原子層以
上の酸化物層を形成する事が必要とされている
が、その膜厚はおよそ30Å程度と考えられ、極く
薄いものである。
Furthermore, in order to passivate nickel, it is generally necessary to form an oxide layer of several atomic layers or more, but the thickness of this film is thought to be approximately 30 Å, which is extremely thin.

これらのことからニツケル焼結体表面に極く薄
い均一な酸化物層を形成する方法について検討し
た結果、その制御には熱処理時の温度条件とニツ
ケル焼結体に混入している不純物の除去が重要で
あることがわかつた。
Based on these facts, we investigated a method to form an extremely thin and uniform oxide layer on the surface of the nickel sintered body, and found that the temperature conditions during heat treatment and the removal of impurities mixed in the nickel sintered body are important for controlling the process. It turned out to be important.

酸素による純粋なニツケルの酸化速度は酸化物
層中の反応成分の移動速度によつて定まり、この
移動速度は高温になるに従い著しく増大する。つ
まり熱処理温度が300℃以下の低温酸化の場合、
酸化速度はおそらく電子の移動が律速であり、ト
ンネル効果によつて酸化物層を通過する電子の数
は酸化物層の厚みに対し指数的に減少する。酸化
物層の厚みと酸化時間の間には対数則が成立し実
質的に酸化物層の厚みは数10Åより厚くならず、
薄い酸化物層を形成するのに適している。またこ
の場合、ニツケルの酸化速度は酸素分圧に依存し
ない。これに対し400℃以上の中・高温下の酸化
においては、酸化物層の厚みと酸化時間の間には
直線則あるいは放物線則が成立し、低温酸化に比
べて酸化物層の成長速度は著しく大きくなる。従
つて、このような高温酸化は数100Å以上の厚み
の酸化物層を形成するには有利であるが、薄い酸
化物層の形成に対してはその制御が著しく困難で
あり、適していない。
The rate of oxidation of pure nickel by oxygen is determined by the rate of movement of the reactants in the oxide layer, and this rate of movement increases significantly as the temperature increases. In other words, in the case of low-temperature oxidation where the heat treatment temperature is 300℃ or less,
The rate of oxidation is probably determined by the movement of electrons, and the number of electrons passing through the oxide layer due to tunneling decreases exponentially with the thickness of the oxide layer. A logarithmic law is established between the thickness of the oxide layer and the oxidation time, and the thickness of the oxide layer is practically no thicker than several tens of Å.
Suitable for forming thin oxide layers. Also, in this case, the nickel oxidation rate does not depend on the oxygen partial pressure. On the other hand, in oxidation at medium to high temperatures above 400°C, a linear or parabolic law is established between the thickness of the oxide layer and the oxidation time, and the growth rate of the oxide layer is significantly faster than in low-temperature oxidation. growing. Therefore, such high-temperature oxidation is advantageous for forming an oxide layer with a thickness of several hundred angstroms or more, but it is extremely difficult to control and is not suitable for forming a thin oxide layer.

これらのことからニツケル焼結体の表面に極く
薄い酸化物層を形成させるには、300℃以下の温
度で熱処理すべきであるが、160℃よりも低い温
度では必要とする酸化物層を形成するのに非常に
長時間を要するため、実用的ではなく、実際には
160〜300℃での熱処理が望ましい。
For these reasons, in order to form an extremely thin oxide layer on the surface of a nickel sintered body, heat treatment should be performed at a temperature of 300°C or lower; however, at a temperature lower than 160°C, the necessary oxide layer may not be formed. It takes a very long time to form, making it impractical;
Heat treatment at 160-300°C is desirable.

次に上記で述べた酸化物層の望ましい形成を阻
害するものとして、ニツケル焼結体に混入する不
純物のうちでも主に炭素の影響があげられる。こ
れはニツケルスラリー調製に用いられるカーボニ
ルニツケル中の炭素や結着剤としての水溶性有機
高分子が焼結工程で完全に除去することが出来ず
にニツケル焼結体中に残留しているのであるが、
このようなニツケル焼結体を用いた場合には、酸
素を含む雰囲気中で熱処理を行なつても、後の活
物質含浸工程でニツケルの腐食を充分に抑えるこ
とは出来ない。その理由としては、熱処理時にニ
ツケル焼結体の表面では酸化物層が形成される
が、同時に炭素の酸化も起こり、固体の炭素が気
体の炭素酸化物になる場合の体積変化に伴なう圧
力によつて酸化物層が破壊され、金属のニツケル
面が露出することによると考えられる。
Next, among the impurities mixed into the nickel sintered body, carbon is the main factor that inhibits the desired formation of the oxide layer described above. This is because the carbon in the carbonyl nickel used to prepare the nickel slurry and the water-soluble organic polymer as a binder cannot be completely removed during the sintering process and remain in the nickel sintered body. but,
When such a nickel sintered body is used, even if heat treatment is performed in an atmosphere containing oxygen, corrosion of the nickel cannot be sufficiently suppressed in the subsequent active material impregnation step. The reason for this is that an oxide layer is formed on the surface of the nickel sintered body during heat treatment, but at the same time carbon oxidation also occurs, and the pressure associated with the volume change when solid carbon becomes gaseous carbon oxide. This is thought to be due to the fact that the oxide layer is destroyed and the nickel surface of the metal is exposed.

ニツケルに混入している炭素を除去する方法と
しては、水蒸気を含んだ還元雰囲気中でニツケル
の焼結を行なうのが効果的で、その反応は(1)式に
よるものと考えられる。この場合、添加する水蒸
気量は第1図に示すように焼結直前のニツケルに
混入している炭素量の約10倍当量以上必要で、こ
れによつてほぼ完全に炭素が除去される。
An effective method for removing carbon mixed in nickel is to sinter nickel in a reducing atmosphere containing water vapor, and the reaction is thought to be based on equation (1). In this case, as shown in FIG. 1, the amount of water vapor added needs to be about 10 times the equivalent of the amount of carbon mixed in the nickel immediately before sintering, thereby almost completely removing the carbon.

C+H2O→CO+H2 ……(1) 以上述べた2つの事柄から、つまり焼結直前の
ニツケルに混入している炭素の10倍当量以上の水
蒸気を含んだ還元雰囲気中でニツケルの焼結を行
なうこと、及びニツケル焼結体の表面に酸化物層
よりなる不働態膜を形成することを目的とする熱
処理は160〜300℃で行なうということを守れば、
作製された極板の性能は通常、ほとんどの場合、
許容できる範囲であるが、酸化物層の厚みをさら
に精度良く制御するには、1価の金属イオン、主
にNa+イオンが熱処理前のニツケル焼結体に混入
していることが問題となる。
C+H 2 O→CO+H 2 ...(1) From the above two points, it is possible to sinter nickel in a reducing atmosphere containing water vapor equivalent to more than 10 times the amount of carbon mixed in the nickel just before sintering. and that the heat treatment for the purpose of forming a passive film consisting of an oxide layer on the surface of the nickel sintered body is carried out at 160 to 300°C.
The performance of the prepared plates is usually, in most cases,
Although this is within an acceptable range, in order to control the thickness of the oxide layer more precisely, the problem is that monovalent metal ions, mainly Na + ions, are mixed into the nickel sintered body before heat treatment. .

ニツケル焼結体中にNa+イオン等の1価の金属
イオンが含まれていると、酸素を含む雰囲気中で
熱処理した場合、原子価制御の理論から純粋なニ
ツケルのみの場合に比べニツケルの酸化速度は小
さくなる。ニツケル焼結体中に混入するNa+イオ
ンの量は常に一定している量ではないと考えられ
るため、生成する酸化物層の厚さは再現性の低い
ものとなる。Na+イオンがニツケル焼結体中に混
入する原因の1つは、ニツケルスラリー調製に用
いる水溶性有機高分子としてカルボキシメチルセ
ルロースのナトリウム塩やアルギン酸ナトリウム
などの金属塩形態の物質が用いられることにあ
る。
If a nickel sintered body contains monovalent metal ions such as Na + ions, when heat treated in an oxygen-containing atmosphere, the oxidation of nickel will be higher than in the case of pure nickel, based on the theory of valence control. speed becomes smaller. Since it is thought that the amount of Na + ions mixed into the nickel sintered body is not always constant, the thickness of the generated oxide layer has low reproducibility. One of the reasons why Na + ions are mixed into the nickel sintered body is that substances in the form of metal salts, such as sodium salt of carboxymethyl cellulose and sodium alginate, are used as water-soluble organic polymers used to prepare the nickel slurry. .

このことからニツケルスラリー調製に用いる水
溶性有機高分子としては、メチルセルロース、ヒ
ドロキシエチルセルロース、ヒドロキシプロピル
セルロースなどの非イオン性の化合物を用いるべ
きである。
For this reason, nonionic compounds such as methylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose should be used as the water-soluble organic polymer used in preparing the nickel slurry.

実施例 以下、本発明を実施例により詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

1 カーボニルニツケル粉末をメチルセルロース
及び水と混練してニツケルスラリーとなし、該
ニツケルスラリーをニツケルメツキした穿孔鋼
板に塗布、乾燥した後、ニツケル中に混入して
いる炭素の20倍当量の水蒸気を含む還元雰囲気
中で900℃で焼結し、ニツケル焼結基板を作製
した。次に該ニツケル焼結基板を200℃の空気
雰囲気の電気炉で各0分間(A−1)、1分間
(A−2)、3分間(A−3)、10分間(A−
4)、30分間(A−5)、100分間(A−6)、
300分間(A−7)熱処理を行ない、その後通
常の化学含浸法によつてカドミウム負極板を作
製し、これを試料A−1〜A−7(本発明品)
とした。
1. Knead carbonyl nickel powder with methylcellulose and water to make a nickel slurry, apply the nickel slurry to a nickel-plated perforated steel plate, dry it, and then apply it to a reducing atmosphere containing water vapor equivalent to 20 times the amount of carbon mixed in the nickel. A nickel sintered substrate was produced by sintering at 900°C. Next, the nickel sintered substrate was placed in an electric furnace at 200°C in an air atmosphere for 0 minutes (A-1), 1 minute (A-2), 3 minutes (A-3), and 10 minutes (A-
4), 30 minutes (A-5), 100 minutes (A-6),
Heat treatment was performed for 300 minutes (A-7), and then a cadmium negative electrode plate was prepared by a normal chemical impregnation method, and this was used as samples A-1 to A-7 (products of the present invention).
And so.

2 上記実施例1における熱処理条件を400℃の
空気雰囲気の電気炉で各0秒間(B−1)、10
秒間(B−2)、20秒間(B−3)、30秒間(B
−4)、40秒間(B−5)、50秒間(B−6)、
60秒間(B−7)とし、実施例1と同様の方法
でカドミウム負極板を作製し、これを試料B−
1〜B−7(従来品)とした。
2 The heat treatment conditions in Example 1 above were changed to 0 seconds each in an electric furnace in an air atmosphere at 400°C (B-1), 10
seconds (B-2), 20 seconds (B-3), 30 seconds (B
-4), 40 seconds (B-5), 50 seconds (B-6),
60 seconds (B-7), a cadmium negative electrode plate was prepared in the same manner as in Example 1, and this was used as sample B-7.
1 to B-7 (conventional products).

3 上記実施例1におけるニツケルの焼結を水蒸
気を含まない還元雰囲気中での通常の焼結と
し、その後熱処理を200℃×30分間とした他は
実施例1と同様の方法でカドミウム負極板を作
製し、これを試料C(従来品)とした。
3 A cadmium negative electrode plate was formed in the same manner as in Example 1, except that the sintering of the nickel in Example 1 was carried out as normal sintering in a reducing atmosphere that does not contain water vapor, and then the heat treatment was performed at 200°C for 30 minutes. This was designated as Sample C (conventional product).

4 上記実施例1におけるメチルセルロースの代
りにカルボキシメチルセルロースを用い、熱処
理条件を200℃×30分間とした他は実施例1と
同様の方法でカドミウム負極板を作製し、これ
を試料D(従来品)とした。
4 A cadmium negative electrode plate was prepared in the same manner as in Example 1 except that carboxymethylcellulose was used instead of methylcellulose in Example 1 and the heat treatment conditions were 200°C for 30 minutes, and this was used as Sample D (conventional product). And so.

5 上記実施例1における焼結を水蒸気を含まな
い還元雰囲気中での通常の焼結とし、熱処理を
行なわずに通常の化学含浸法によつてカドミウ
ム負極板を作製し、これを試料E(従来品)と
した。
5 The sintering in Example 1 above was performed as normal sintering in a reducing atmosphere that does not contain water vapor, and a cadmium negative electrode plate was produced by a normal chemical impregnation method without heat treatment. product).

6 上記実施例1における熱処理条件を200℃×
30分間とした他は実施例1と同様の方法でニツ
ケル正極板を作製し、これを試料F(本発明品)
とした。
6 The heat treatment conditions in Example 1 above were changed to 200°C
A nickel positive electrode plate was prepared in the same manner as in Example 1, except that the time was 30 minutes, and this was used as Sample F (product of the present invention).
And so.

7 上記実施例5と同様の方法でニツケル正極板
を作製し、これを試料G(従来品)とした。
7 A nickel positive electrode plate was produced in the same manner as in Example 5 above, and this was designated as Sample G (conventional product).

第2図は実施例1の水蒸気添加の焼結後に200
℃で熱処理した試料A−1〜A−7を40×40mmの
寸法に切断した後、比重1.250(20℃)のKOH溶
液中で試料と同寸法のニツケル平板2枚を対極と
して用い、試料の理論容量に対し、5時間率の通
電電流で充放電した場合の3サイクル目放電時の
活物質利用率及び活物質含浸工程後のニツケル腐
食量(%)を示す。対象品としては実施例5の通
常の焼結後に熱処理せずに活物質の含浸を行なつ
た試料Eを併記する。
Figure 2 shows 200 ml after sintering with water vapor addition in Example 1.
Samples A-1 to A-7 heat-treated at ℃ were cut into a size of 40 x 40 mm, and then two nickel plates of the same size as the samples were used as counter electrodes in a KOH solution with a specific gravity of 1.250 (20 ℃). The active material utilization rate at the third cycle of discharge and the amount of nickel corrosion (%) after the active material impregnation step when charging and discharging at a 5 hour rate of current with respect to the theoretical capacity are shown. Sample E, which was impregnated with an active material without heat treatment after normal sintering in Example 5, is also shown as a target product.

第3図は第2図と同様の試験内容で、実施例2
の水蒸気添加の焼結後に熱処理温度のみを400℃
とした試料B−1〜B−7の結果を示す。
Figure 3 shows the same test content as Figure 2, and Example 2.
Heat treatment temperature only 400℃ after sintering with water vapor addition
The results of samples B-1 to B-7 are shown below.

熱処理温度の異なるこの2つの図を比較した場
合、例えばニツケルの腐食量が1%以下で且つ活
物質利用率が従来品である試料Eより2%低い72
%以上である熱処理時間の範囲は、第2図の200
℃で熱処理した本発明による場合はおよそ18分〜
100分であるのに対し、第3図の400℃で熱処理し
た場合には、そのような範囲が30秒〜32秒と非常
に狭く、且つ短時間であるため、その制御は困難
であることがわかる。同様のことは水酸化ニツケ
ルを活物質とするニツケル正極板において認めら
れる。
When comparing these two figures with different heat treatment temperatures, for example, the amount of corrosion of nickel is less than 1%, and the active material utilization rate is 2% lower than that of sample E, which is a conventional product72
The range of heat treatment time that is 200% or more is shown in Figure 2.
Approximately 18 minutes in the case of the present invention heat-treated at °C
100 minutes, whereas in the case of heat treatment at 400°C as shown in Figure 3, such a range is extremely narrow and short at 30 to 32 seconds, making it difficult to control. I understand. A similar phenomenon is observed in a nickel positive electrode plate using nickel hydroxide as an active material.

第4図は焼結時の水蒸気添加の影響を調べたも
ので、実施例3の通常の焼結後に200℃×30分間
熱処理した試料Cと、実施例1の水蒸気添加の焼
結後に試料Cと同様の熱処理を行なつた試料A−
5の高温トリクル充電(充電電流30時間率、充電
時間1カ月、電解液温度45℃)後の放電曲線を示
す。試料A−5については放電曲線が二段になつ
ておらず、第2図の結果と一致して活物質の含浸
工程でニツケルの腐食が起こつていないが、一
方、焼結時に水蒸気を添加しなかつた試料Cは放
電曲線が二段になつており、ニツケルの腐食が抑
えられていないことがわかる。このことから水蒸
気を含んだ還元雰囲気中でニツケルを焼結しなけ
れば、後の熱処理において酸化物層からなる有効
な不働態膜が形成できないことがわかる。
Figure 4 shows the effects of water vapor addition during sintering. Sample C was heat-treated at 200°C for 30 minutes after normal sintering in Example 3, and Sample C was heat-treated at 200°C for 30 minutes after sintering in Example 1. Sample A- which was subjected to the same heat treatment as
The discharge curve after high-temperature trickle charging (charging current 30 hours, charging time 1 month, electrolyte temperature 45° C.) of No. 5 is shown. Regarding sample A-5, the discharge curve is not two-stage, and consistent with the results shown in Figure 2, corrosion of nickel does not occur during the active material impregnation process. Sample C, which was not treated, had a two-stage discharge curve, indicating that the corrosion of nickel was not suppressed. This shows that unless nickel is sintered in a reducing atmosphere containing water vapor, an effective passive film consisting of an oxide layer cannot be formed in the subsequent heat treatment.

次にニツケルスラリー調製用の水溶性有機高分
子の影響を調べるために、実施例4のカルボキシ
メチルセルロースを用いた試料Dとメチルセルロ
ースを用いた試料A−5の各100サンプルのニツ
ケルの腐食量を調べたところ、試料Dは試料A−
5に比べ、平均腐食量で約2.3倍、標準偏差は約
2.8倍であり、腐食量とそのバラツキは非イオン
性のメチルセルロースを用いた方が小さく、再現
性のよいことがわかる。
Next, in order to investigate the influence of water-soluble organic polymers for preparing nickel slurry, we investigated the amount of corrosion of nickel in 100 samples each of Sample D using carboxymethylcellulose and Sample A-5 using methylcellulose in Example 4. However, sample D was sample A-
Compared to 5, the average corrosion amount is approximately 2.3 times, and the standard deviation is approximately
It is 2.8 times as large, indicating that the amount of corrosion and its variation are smaller when nonionic methylcellulose is used, and the reproducibility is better.

また極板の機械的強度については試料F、Gで
比較した。通常の焼結後に熱処理しない試料Gで
は不良率が2.1%であつたのに対し、水蒸気添加
の焼結後に熱処理を行なつた試料Fでは0%であ
つた。焼結時に水蒸気を添加した試料Fでは活物
質の含浸工程において極板の骨格であるニツケル
焼結体の腐食が抑えられており、極板の機械的強
度は明らかに改善されている。なお、カドミウム
負極板についても同様の傾向であつた。
In addition, the mechanical strength of the electrode plates was compared between samples F and G. The defect rate was 2.1% for sample G, which was not heat-treated after normal sintering, whereas it was 0% for sample F, which was heat-treated after sintering with the addition of water vapor. In sample F, in which water vapor was added during sintering, corrosion of the nickel sintered body, which is the framework of the electrode plate, was suppressed during the active material impregnation process, and the mechanical strength of the electrode plate was clearly improved. Note that the same tendency was observed for the cadmium negative electrode plate.

発明の効果 以上述べたように本発明製造法によれば、ニツ
ケル焼結体表面に極く薄い均一な酸化物層よりな
る不働態膜を形成することができ、またこれによ
つて活物質の含浸工程でのニツケルの腐食を抑え
て極板強度の低下を防ぎ、且つ活物質利用率の低
下がほとんどない極板を得ることができる。また
特にカドミウム負極板では水酸化ニツケルの生成
を抑制することによつてNi−Cd合金に基づく二
段放電の現象を防ぐことができる。さらにニツケ
ルスラリー調製用の水溶性有機高分子として非イ
オン性の化合物を用い、本発明による方法でニツ
ケル焼結体の表面に酸化物層よりなる不働態膜を
形成させた場合、その厚みは再現性の良いものと
なる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, a passive film consisting of an extremely thin and uniform oxide layer can be formed on the surface of a nickel sintered body, and this also allows the active material to It is possible to suppress the corrosion of nickel during the impregnation process, prevent a decrease in the strength of the electrode plate, and obtain an electrode plate with almost no decrease in the utilization rate of the active material. Furthermore, especially in the case of a cadmium negative electrode plate, the phenomenon of two-stage discharge due to the Ni-Cd alloy can be prevented by suppressing the formation of nickel hydroxide. Furthermore, when a nonionic compound is used as a water-soluble organic polymer for preparing nickel slurry and a passive film consisting of an oxide layer is formed on the surface of a nickel sintered body using the method according to the present invention, the thickness of the passive film can be reproduced. It becomes a sexual thing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結工程での添加水蒸気量によるニツ
ケル中の炭素の減少度合を示す図、第2図及び第
3図は本発明製造法等によつて得られたニツケル
焼結基板を用いて作製したカドミウム負極板の充
放電3サイクル目の放電時の活物質利用率及び活
物質含浸工程後のニツケルの腐食量を比較した
図、第4図は本発明製造法等によつて得られたニ
ツケル焼結基板を用いて作製したカドミウム負極
板の高温トリクル充電後の放電曲線を比較した図
である。
Figure 1 is a diagram showing the degree of reduction of carbon in nickel depending on the amount of water vapor added in the sintering process, and Figures 2 and 3 are diagrams showing the degree of reduction of carbon in nickel depending on the amount of water vapor added in the sintering process. Figure 4 is a diagram comparing the active material utilization rate during the third charging/discharging cycle of the fabricated cadmium negative electrode plate and the amount of corrosion of nickel after the active material impregnation step, which was obtained by the manufacturing method of the present invention, etc. FIG. 3 is a diagram comparing discharge curves of cadmium negative electrode plates produced using a nickel sintered substrate after high-temperature trickle charging.

Claims (1)

【特許請求の範囲】 1 ニツケル粉末を水溶性有機高分子及び水と混
練してニツケルスラリーとなし、該ニツケルスラ
リーを多孔性集電体に塗布、乾燥した後、ニツケ
ルに混入している炭素の10倍当量以上の水蒸気を
含む還元雰囲気中でニツケル粉末を焼結してニツ
ケル焼結体とし、さらに該ニツケル焼結体を160
〜300℃の酸素を含む雰囲気中で熱処理して、ニ
ツケル焼結体の表面にニツケル酸化物層よりなる
不働態膜を形成することを特徴とするアルカリ蓄
電池用ニツケル焼結基板の製造法。 2 ニツケルスラリーの調製に用いる水溶性有機
高分子が非イオン性である特許請求の範囲第1項
記載のアルカリ蓄電池用ニツケル焼結基板の製造
法。
[Scope of Claims] 1 Nickel powder is kneaded with a water-soluble organic polymer and water to form a nickel slurry, and the nickel slurry is applied to a porous current collector and after drying, the carbon mixed in the nickel is removed. Nickel powder is sintered into a nickel sintered body in a reducing atmosphere containing more than 10 times the equivalent of water vapor, and the nickel sintered body is further heated to 160%
A method for producing a nickel sintered substrate for an alkaline storage battery, which comprises heat-treating the nickel sintered body in an atmosphere containing oxygen at ~300°C to form a passive film made of a nickel oxide layer on the surface of the nickel sintered body. 2. The method for producing a nickel sintered substrate for an alkaline storage battery according to claim 1, wherein the water-soluble organic polymer used for preparing the nickel slurry is nonionic.
JP60057263A 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery Granted JPS61216244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057263A JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057263A JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS61216244A JPS61216244A (en) 1986-09-25
JPH0555985B2 true JPH0555985B2 (en) 1993-08-18

Family

ID=13050635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057263A Granted JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61216244A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117066A (en) * 1982-12-23 1984-07-06 Shin Kobe Electric Mach Co Ltd Production method of cadmium electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117066A (en) * 1982-12-23 1984-07-06 Shin Kobe Electric Mach Co Ltd Production method of cadmium electrode

Also Published As

Publication number Publication date
JPS61216244A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
DK174510B1 (en) A method of activating a hydrogen storage electrode as well as such an electrode
US10862109B2 (en) Carbonaceous materials for lead acid batteries
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
CN107732234B (en) Er and Zr metal ion mixed doped ternary cathode material and preparation method thereof
CN110993887A (en) Preparation method of metal oxide coated lithium ion battery anode
JPH0258744B2 (en)
JPH04253164A (en) Tape for fuel battery, electrode for fuel battery, method for sintering this kind of electrode and fuel battery having this kind of electrode
CN117239102A (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
JP3079098B2 (en) Method for producing positive electrode for molten carbonate fuel cell
CN109904428B (en) Preparation method of iron selenide/carbon composite material
JP2962957B2 (en) Method for producing paste-type nickel plate for storage battery, storage battery and conductive material
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPH0555985B2 (en)
CN110803720B (en) Multi-element coated modified single crystal ternary cathode material and preparation method thereof
CN109841819B (en) Iron selenide/carbon composite material and application thereof
CN113675381A (en) Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
JPH0261095B2 (en)
JP4475720B2 (en) Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
CN114583103B (en) Ternary positive electrode material with double oxide surface coating, preparation method of ternary positive electrode material, positive electrode plate and lithium ion battery
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
US3533842A (en) Process for impregnating sintered nickel plaques
US3354001A (en) Method for increasing the porosity of a predominately nickel-containing porous electrode
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
US2900431A (en) Method for manufacture of drycharged battery plates
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term