JPS61216244A - Manufacture of sintered nickel substrate of alkaline storage battery - Google Patents

Manufacture of sintered nickel substrate of alkaline storage battery

Info

Publication number
JPS61216244A
JPS61216244A JP60057263A JP5726385A JPS61216244A JP S61216244 A JPS61216244 A JP S61216244A JP 60057263 A JP60057263 A JP 60057263A JP 5726385 A JP5726385 A JP 5726385A JP S61216244 A JPS61216244 A JP S61216244A
Authority
JP
Japan
Prior art keywords
nickel
sintered
plates
slurry
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60057263A
Other languages
Japanese (ja)
Other versions
JPH0555985B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60057263A priority Critical patent/JPS61216244A/en
Publication of JPS61216244A publication Critical patent/JPS61216244A/en
Publication of JPH0555985B2 publication Critical patent/JPH0555985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To restrain the nickel corrosion during the impregnation procedure of active materials, so as to prevent the decrease of mechanical strength of the pole plates and to make, free of occurrence, variation or decrease of the utility factor of active materials, by producing passive membrane composed of very thin oxide layers uniformly on the surface of sintered nickel plates. CONSTITUTION:Nickel powder is kneaded with organic water-soluble macromolecule and water to produce nickel slurry, and after the slurry is applied to porous electro- collectors and dried, the nickel powder is sintered in an atmosphere containing more than ten times equivalent weight of water vapor for carbon content contained in the nickel to produce sintered nickel plates. Further, the sintered nickel plates are heat-treated in an atmosphere containing oxygen at 160-300 deg.C, and the passive membrane composed of nickel oxide layers is produced on the surface of the sintered nickel plates. By this, passive membrane composed of very thin uniform oxide layers can be produced on the surface of the sintered nickel plates, and so the nickel corrosion during the impregnation procedure of active materials can be restrained, and thus the decrease of mechanical strength of pole plates can be prevented, and the pole plates having no or little decrease of utility factor of active materials can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケルーカドミウム蓄電池などのアルカリ蓄
電池に用いるニッケル焼結基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a nickel sintered substrate for use in alkaline storage batteries such as nickel-cadmium storage batteries.

従来の技術 従来、アルカリ蓄電池用焼結基板は、水に水溶性有機高
分子、例えばメチルセルロースあるいはカルボキシメチ
ルセルロ−ス を溶解した結着剤溶液とニッケル粉末、例えばカーボニ
ルニッケル粉末とを混練してニッケルスラリーとなし、
このニッケルスラリーを多孔性集電体、例えばニッケル
メッキした穿孔鋼板などに塗布.乾燥した後、還元雰囲
気中で焼結することにより製造されていた。このような
ニッケル焼結体は活性が高いため、後の活物質含浸工程
の際、酸性の活物質溶液によってイの一部が腐食される
Conventional technology Conventionally, sintered substrates for alkaline storage batteries have been made by kneading nickel powder, such as carbonyl nickel powder, with a binder solution in which a water-soluble organic polymer, such as methylcellulose or carboxymethylcellulose, is dissolved in water. slurry and pear,
This nickel slurry is applied to a porous current collector, such as a nickel-plated perforated steel plate. It was manufactured by drying and then sintering in a reducing atmosphere. Since such a nickel sintered body has high activity, a portion of the nickel body is corroded by the acidic active material solution during the subsequent active material impregnation step.

つまり正極用含浸液、例えば硝酸ニッケル溶液や負極用
含浸液、例えば硝酸カドミウム溶液などによってニッケ
ル焼結体の腐食が起こる。そのため極板の機械的強度が
低下することになる。さらにカドミウム負極板において
は、ニッケル焼結体の腐食生成物である水酸化ニッケル
が活物質である水酸化カドミウム中に混入して、高温で
長期のトリクル充電を受けると団−(支)合金が生成し
、その次の放電において末期の電圧が低下するどい・う
放電が二段階となる現象(以後、二段放電と呼ぶ)の原
因となっていた。
In other words, the nickel sintered body is corroded by the impregnating liquid for the positive electrode, such as a nickel nitrate solution, and the impregnating liquid for the negative electrode, such as a cadmium nitrate solution. Therefore, the mechanical strength of the electrode plate decreases. Furthermore, in cadmium negative electrode plates, nickel hydroxide, which is a corrosion product of the nickel sintered body, mixes into the active material cadmium hydroxide, and when subjected to long-term trickle charging at high temperatures, the aggregate (support) alloy is formed. This has caused a two-stage phenomenon (hereinafter referred to as two-stage discharge) in which the voltage at the end of the next discharge decreases.

これらを解決する手段としてニッケル焼結体表面にニッ
ケル酸化物層(以下、単に酸化物層という)よりなる不
働態膜を形成し、活物質含浸工程でのニッケル焼結体の
腐食を防ぐことが提案されている。(例えば特開昭59
−96659号公報)発明が解決しようとする問題点 純粋なニッケル焼結体を酸素を含む雰囲気中で熱処理し
て、その表面に酸化物層を形成した場合、下地金属との
比容積の差によって酸化物層には圧縮応力が発生し、緻
密な不働態膜が出来る。活物質含浸工程で酸性の活物質
溶液中に前記不働態膜を形成したニッケル焼結体を浸漬
しても、ニッケルの腐食はほとんど起こらず、極板の機
械的強度は低下しない。ざらにカドミウム負極板では水
酸化ニッケルの生成が抑えられ、Ni −Cd含↑によ
る二段放電の現象を防止する効果もある。
As a means to solve these problems, it is possible to form a passive film made of a nickel oxide layer (hereinafter simply referred to as an oxide layer) on the surface of the nickel sintered body to prevent corrosion of the nickel sintered body during the active material impregnation process. Proposed. (For example, JP-A-59
-96659 Publication) Problems to be Solved by the Invention When a pure nickel sintered body is heat-treated in an oxygen-containing atmosphere to form an oxide layer on its surface, due to the difference in specific volume with the underlying metal, Compressive stress is generated in the oxide layer, forming a dense passive film. Even if the nickel sintered body with the passive film formed thereon is immersed in an acidic active material solution in the active material impregnation step, almost no corrosion of nickel occurs and the mechanical strength of the electrode plate does not decrease. Roughly speaking, the cadmium negative electrode plate suppresses the formation of nickel hydroxide, and has the effect of preventing the phenomenon of two-stage discharge due to Ni--Cd content.

しかるにその反面、不働態膜を形成したニッケル焼結基
板から作製した極板では、従来なかっ!、7活物質利用
率のバラツキや低下が起こるという新たな問題が生じ、
これらの問題点を同時に解決Jることは困デ「であった
However, on the other hand, an electrode plate made from a nickel sintered substrate with a passive film formed on it is unprecedented! , 7 A new problem arises in which the utilization rate of active materials varies and decreases.
It was difficult to solve these problems at the same time.

本発明は以上のにうな従来技術の問題点を解決すること
を目的とするものである。
The present invention aims to solve the above-mentioned problems of the prior art.

問題点を解決するための手段 本発明はニッケルスラリーを多孔性集電体に塗布、乾燥
した後、焼結二[程直前のニッケルに混入している炭素
の10倍当量以上の水蒸気を含む還元雰囲気中でニッケ
ル粉末を焼結1)、さらに該ニッケル焼結体を160〜
300℃の酸素を含む雰囲気中で熱処理1ノで、ニッケ
ル焼結体の表面に極く薄い酸化物層にりなる不働態膜を
均一に形成さUるらのである。またさらに酸化物層の厚
みを精度良く制御するために、前記ニッケルスラリー調
製に際し、水溶性有機高分子として非イオン1つの物質
を用いるものである。
Means for Solving the Problems The present invention applies a nickel slurry to a porous current collector, dries it, and then sintering it. Sinter the nickel powder in an atmosphere 1), and further heat the nickel sintered body to 160~
After the first heat treatment in an oxygen-containing atmosphere at 300° C., a passive film consisting of an extremely thin oxide layer is uniformly formed on the surface of the nickel sintered body. Furthermore, in order to precisely control the thickness of the oxide layer, one nonionic substance is used as the water-soluble organic polymer when preparing the nickel slurry.

作  用 表面に酸化物層を形成したニッケル焼結基板から作製し
た極板では、酸化物層の厚さの増加とともに極板の活物
質利用率が低下するという傾向がある。この理由として
は、ニッケルの酸化物であるNIOは元来常温付近では
絶縁体に近い半導体であり、団0層が厚くなるとその絶
縁体的性質が表われ、極板の電子祖導性を阻害すること
によると考えられる。
In an electrode plate made from a nickel sintered substrate with an oxide layer formed on its working surface, there is a tendency that the active material utilization rate of the electrode plate decreases as the thickness of the oxide layer increases. The reason for this is that NIO, which is an oxide of nickel, is originally a semiconductor close to an insulator at room temperature, and as the oxide layer becomes thicker, its insulating properties appear, inhibiting the electron conductivity of the electrode plate. This is thought to be due to the

また一般にニッケルの不働態化には数原子層以上の酸化
物層を形成する事が必要とされているが、その膜厚はお
よそ30人程度と考えられ、極く薄いものである。
Furthermore, in order to passivate nickel, it is generally necessary to form an oxide layer of several atomic layers or more, but the thickness of this film is thought to be about 30, which is extremely thin.

これらのことからニッケル焼結体表面に極く薄い均一な
酸化物層を形成する方法について検討した結果、その制
御には熱処理時の温度条件とニッケル焼結体に混入して
いる不純物の除去が重要であることがわかった。
Based on these facts, we investigated a method for forming an extremely thin and uniform oxide layer on the surface of the nickel sintered body, and found that the temperature conditions during heat treatment and the removal of impurities mixed in the nickel sintered body are important for controlling the process. It turned out to be important.

酸素による純粋なニッケルの酸化速度は酸化物=5一 層中の反応成分の移動速面によって定まり、この移動速
度は高温になるに従い茗しく増大する。つまり熱処理温
度が300℃以下の低温酸化の場合、酸化速度はおそら
く電子の移動が律速であり、トンネル効果によって酸化
物層を通過する電子の数は酸化物層の厚みに対し指数的
に減少する。酸化物層の厚みと酸化時間の間には対数剤
が成立し実質的に酸化物層の厚みは数10人より厚くな
らず、薄い酸化物層を形成するのに適している。またこ
の場合、ニッケルの酸化速度は酸素分圧に依存しない。
The rate of oxidation of pure nickel by oxygen is determined by the rate of movement of the reaction components in the oxide=5 layer, and this rate of movement increases gradually as the temperature increases. In other words, in the case of low-temperature oxidation where the heat treatment temperature is 300°C or less, the oxidation rate is probably determined by the movement of electrons, and the number of electrons passing through the oxide layer due to the tunnel effect decreases exponentially with the thickness of the oxide layer. . A logarithm exists between the thickness of the oxide layer and the oxidation time, and the thickness of the oxide layer is substantially no thicker than several tens of nanometers, which is suitable for forming a thin oxide layer. Further, in this case, the oxidation rate of nickel does not depend on the oxygen partial pressure.

これに対し400℃以上の°中・高温下の酸化において
は、酸化物層の厚みと酸化時間の間には直練剤あるいは
放物練剤が成立し、低温酸化に比べて酸化物層の成長速
度は著しく大きくなる。従って、このような高温酸化は
数100Å以上の厚みの酸化物層を形成するには有利で
あるが、薄い酸化物層の形成に対してはその制御が著し
く困難であり、適していない。
On the other hand, in oxidation at medium to high temperatures of 400°C or higher, a straightening agent or parabolic agent is established between the thickness of the oxide layer and the oxidation time, and compared to low-temperature oxidation, the oxidation of the oxide layer is The growth rate increases significantly. Therefore, although such high-temperature oxidation is advantageous for forming an oxide layer with a thickness of several hundred angstroms or more, it is extremely difficult to control and is not suitable for forming a thin oxide layer.

これらのことからニッケル焼結体の表面に極く薄い酸化
物層を形成させるには、300℃以下の温度で熱処1!
I!’lべぎであるが、160℃よりも低い温度では必
要とする酸化物層を形成するのに非常に長時間を要する
ため、実用的ではなく、実際には160〜300℃での
熱処理が望ましい。
From these facts, in order to form an extremely thin oxide layer on the surface of the nickel sintered body, heat treatment at a temperature of 300°C or less is required.
I! However, since it takes a very long time to form the necessary oxide layer at temperatures lower than 160°C, it is not practical, and in reality heat treatment at 160-300°C is necessary. desirable.

次に上記で述べた酸化物層の望ましい形成を阻害するも
のとして、ニッケル焼結体に混入する不純物のうちでも
主に炭素の影響があげられる。これはニッケルスラリー
調製に用いられるカーボニルニッケル中の炭素や結着剤
としての水溶性有機高分子が焼結工程で完全に除去する
ことが出来ずにニッケル焼結体中に残留しているのであ
るが、このようなニッケル焼結体を用いた場合には、酸
素を含む雰囲気中で熱処理を行なっても、後の活物質含
浸工程でニッケルの腐食を充分に抑えることは出来ない
。その理由としては、熱処理時にニッケル焼結体の表面
では酸化物層が形成されるが、同時に炭素の酸化も起こ
り、固体の炭素が気体の炭素酸化物になる場合の体積変
化に伴なう圧力によって酸化物層が破壊され、金属のニ
ッケル面が露出することによると考えられる。
Next, among the impurities mixed into the nickel sintered body, carbon is the main factor that inhibits the desired formation of the oxide layer described above. This is because the carbon in the carbonyl nickel used to prepare the nickel slurry and the water-soluble organic polymer as a binder cannot be completely removed during the sintering process and remain in the nickel sintered body. However, when such a nickel sintered body is used, even if heat treatment is performed in an atmosphere containing oxygen, corrosion of the nickel cannot be sufficiently suppressed in the subsequent active material impregnation step. The reason for this is that an oxide layer is formed on the surface of the nickel sintered body during heat treatment, but at the same time carbon oxidation also occurs, and the pressure associated with the volume change when solid carbon becomes gaseous carbon oxide. This is thought to be due to the fact that the oxide layer is destroyed and the nickel surface of the metal is exposed.

ニッケルに混入している炭素を除去する方法どしては、
水蒸気を含んだ還元雰囲気中でニッケルの焼結を行なう
のが効果的で、その反応は(1)式によるものと考えら
れる。この場合、添加する水蒸気量は第1図に示すよう
に焼結直前のニッケルに混入している炭素量の約10倍
当m以上必要で、これによってほぼ完全に炭素が除去さ
れる。
What is the method of removing carbon mixed in nickel?
It is effective to sinter nickel in a reducing atmosphere containing water vapor, and the reaction is thought to be based on equation (1). In this case, as shown in FIG. 1, the amount of water vapor added must be about 10 times the amount of carbon mixed in the nickel immediately before sintering, so that carbon is almost completely removed.

C+H20→CO+ 112  ・・・ (1)以上述
べた2つの事柄から、つまり焼結直前のニッケルに混入
している炭素の10倍当出以上の水蒸気を含んだ還元雰
囲気中でニッケルの焼結を行なうこと、及びニッケル焼
結体の表面に酸化物層よりなる不働態膜を形成すること
を目的とする熱処理は160〜300℃で行なうという
ことを守れば、作製された極板の性能は通常、はとんど
の場合、許容できる範囲であるが、酸化物層の厚みをさ
らにn度良く制御するには、1(jliの金属イオン、
主に11!I+イオンが熱処理前のニッケル焼結体に混
入していることが問題となる。
C+H20→CO+ 112... (1) From the two things mentioned above, it is possible to sinter nickel in a reducing atmosphere containing more than 10 times as much water vapor as the carbon mixed in the nickel just before sintering. As long as the heat treatment for the purpose of forming a passive film consisting of an oxide layer on the surface of the nickel sintered body is carried out at a temperature of 160 to 300°C, the performance of the produced electrode plate will be normal. , is in an acceptable range in most cases, but for even better control of the oxide layer thickness, 1(jli metal ions,
Mainly 11! The problem is that I+ ions are mixed into the nickel sintered body before heat treatment.

ニッケル焼結体中にNa+イオン等の1価の金属イオン
が含まれていると、酸素を含む雰囲気中で熱処理した場
合、原子価制御の理論から純粋なニッケルのみの場合に
比ベニッケルの酸化速麿は小さくなる。ニッケル焼結体
中に混入する一1イオンの邑は常に一定している量では
ないと考えられるため、生成する酸化物層の厚さは再現
性の低いものとなる。Na+イオンがニッケル焼結体中
に混入する原因の1つは、ニッケルスラリー調製に用い
る水溶性有機高分子としてカルボキシメチルセルロース
のナトリウム塩やアルギン酸ナトリウムなどの金属塩形
態の物質が用いられることにある。
If a nickel sintered body contains monovalent metal ions such as Na+ ions, when heat-treated in an atmosphere containing oxygen, the oxidation rate of nickel will be lower than that of pure nickel based on the theory of valence control. Maro becomes smaller. Since it is considered that the amount of 11 ions mixed into the nickel sintered body is not always constant, the thickness of the produced oxide layer has low reproducibility. One of the reasons why Na + ions are mixed into the nickel sintered body is that a substance in the form of a metal salt such as sodium salt of carboxymethyl cellulose or sodium alginate is used as the water-soluble organic polymer used to prepare the nickel slurry.

このことからニッケルスラリー調製に用いる水溶性有機
高分子としては、メチルセルロース、ヒドロキシエチル
セルロース、ヒドロキシプロピルセルロースなどの非イ
オン性の化合物を用いるべきである。
For this reason, nonionic compounds such as methylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose should be used as the water-soluble organic polymer used in preparing the nickel slurry.

実施例 以下、本発明を実施例により詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

1、カーボニルニッケル粉末をメチルセルa −ス及び
水と混練してニッケルスラリーとなし、該ニッケルスラ
リーをニッケルメッキした穿孔鋼板に塗布、乾燥した後
、ニッケル中に混入している炭素の20(8当量の水蒸
気を含む還元雰囲気中で900℃で焼結し、ニッケル焼
結基板を作製した。次に該ニッケル焼結基板を200℃
の空気雰囲気の電気炉で各0分間(A−1)、1分間(
A−2)。
1. Knead carbonyl nickel powder with methyl cellulose and water to make nickel slurry, apply the nickel slurry to a nickel-plated perforated steel plate, dry it, and remove 20 (8 equivalents) of the carbon mixed in the nickel. A nickel sintered substrate was produced by sintering at 900°C in a reducing atmosphere containing water vapor.Next, the nickel sintered substrate was sintered at 200°C.
0 minutes (A-1) and 1 minute (A-1) in an electric furnace in an air atmosphere of
A-2).

3分間(A−3>、10分間(Δ−4)、30分間(A
−5)、  100分間(A−6)、  300分間(
A−7)熱処理を行ない、その後通常の化学含浸法によ
ってカドミウム負極板を作製し、これを試料A−1〜A
−7(本発明品)とした。
3 minutes (A-3>, 10 minutes (Δ-4), 30 minutes (A-3)
-5), 100 minutes (A-6), 300 minutes (
A-7) After heat treatment, a cadmium negative electrode plate was prepared by a normal chemical impregnation method, and this was used as samples A-1 to A.
−7 (product of the present invention).

2、上記実施例1における熱処理条件を400℃の空気
雰囲気の電気炉で各0秒間(1’3−1>、10秒間(
B−2)、20秒間(B−3)、30秒間(B−4)、
40秒Ig(B−5)、50秒間(B−6)、60秒間
(B−7)とし、実施例1と同様の方法でカドミウム負
極板を作製し、これを試料B−1〜・B−7(従来品)
とした。
2. The heat treatment conditions in Example 1 were changed to 0 seconds (1'3-1>, 10 seconds (1'3-1>) and 10 seconds (
B-2), 20 seconds (B-3), 30 seconds (B-4),
Cadmium negative electrode plates were prepared in the same manner as in Example 1 using Ig for 40 seconds (B-5), 50 seconds (B-6), and 60 seconds (B-7), and these were used for samples B-1 to B. -7 (conventional product)
And so.

3、上記実施例1におけるニッケルの焼結を水蒸気を含
まない還元雰囲気中での通常の焼結とし、その後の熱処
理を200℃×30分間とした他は実施例1と同様の方
法でカドミウム負極板を作製し、これを試料C(従来品
)とした。
3. A cadmium negative electrode was prepared in the same manner as in Example 1, except that the sintering of nickel in Example 1 was carried out as normal sintering in a reducing atmosphere that does not contain water vapor, and the subsequent heat treatment was performed at 200°C for 30 minutes. A plate was prepared and designated as Sample C (conventional product).

4、上記実施例1におけるメチルセルロースの代りにカ
ルボキシメチルセルロースを用い、熱処理条件を200
℃X30分間とした他は実施例1と同様の方法でカドミ
ウム負極板を作製し、これを試料D(従来品)とした。
4. Carboxymethylcellulose was used instead of methylcellulose in Example 1, and the heat treatment conditions were set to 200%
A cadmium negative electrode plate was prepared in the same manner as in Example 1, except that the temperature was increased for 30 minutes, and this was designated as Sample D (conventional product).

5、上記実施例1における焼結を水蒸気を含まない還元
雰囲気中での通常の焼結とし、熱処理を行なわずに通常
の化学含浸法によってカドミウム負極板を作製し、これ
を試料E(従来品)とした。
5. The sintering in Example 1 above was performed as normal sintering in a reducing atmosphere that does not contain water vapor, and a cadmium negative electrode plate was produced by a normal chemical impregnation method without heat treatment. ).

6、上記実施例1における熱処理条件を200℃×30
分間とした他は実施例1と同様の方法でニッケル正極板
を作製し、これを試料F(本発明品)とした。
6. The heat treatment conditions in Example 1 above were changed to 200°C x 30
A nickel positive electrode plate was prepared in the same manner as in Example 1, except that the heating time was 10 minutes, and this was designated as Sample F (product of the present invention).

7、上記実施例5と同様の方法でニッケル正極板を作製
し、これを試料G(従来品)とした。
7. A nickel positive electrode plate was produced in the same manner as in Example 5 above, and this was designated as Sample G (conventional product).

第2図は実施例1の水蒸気添加の焼結後に200℃で熱
処理した試料A−1〜A−7を40X 40mmの寸法
に切断した後、比重1.250 (20℃)のK OL
l溶液中で試料と同寸法のニッケル甲根2枚を対極とし
て用い、試r1の理論容量に対し、5時間率の通電電流
で充放電した場合の3サーfクル目放?l!i1!Iの
活物質利用率及び活物質含浸工程後の□ニッケル腐食量
(%)を示す。対象品としては実施例5の通常の焼結後
に熱処理せずに活物質の含浸を行なった試料Eを併記す
る。
Figure 2 shows samples A-1 to A-7 heat-treated at 200°C after sintering with addition of water vapor in Example 1, cut into 40 x 40 mm dimensions, and then cut into KOL with a specific gravity of 1.250 (20°C).
When two nickel plates of the same size as the sample are used as counter electrodes in a solution of R1, and the theoretical capacity of the test R1 is charged and discharged at a current flow rate of 5 hours, 3 circles are discharged? l! i1! The active material utilization rate of I and the amount of nickel corrosion (%) after the active material impregnation process are shown. Sample E, which was impregnated with an active material without heat treatment after normal sintering in Example 5, is also shown as a target product.

第3図は第2図と同様の試験内容で、実施例2の水蒸気
添加の焼結後に前処1!I]淘度のみを400℃とした
試)’31 B −’ 1〜B−7の結束を示づ。
Figure 3 shows the same test content as Figure 2, with pretreatment 1 after sintering with the addition of water vapor in Example 2! I] Test where only the aging temperature was 400°C) Shows the unity of '31 B-' 1 to B-7.

熱処理nFmの異なるこの2′つの図を比較した場合、
例えばニッケルの腐食量が1%以下でDつ活物質利用率
が従来品である試料Eにす2%低い72%以上である熱
処理時間の範囲は、第2図の200℃で熱処理した本発
明による場合はおよそ18分〜100分であるのに対し
、第3図の400℃で熱処理した場合には、そのような
範囲が30秒〜32秒と非常に狭く、且つ短時間である
ため、その制御は困難であることがわかる。同様のこと
は水酸化ニッケルを活物質とするニッケル正極板におい
ても認められる。
When comparing these two figures with different heat treatments nFm,
For example, the heat treatment time range in which the amount of nickel corrosion is 1% or less and the active material utilization rate is 72% or more, which is 2% lower than the conventional sample E, is the present invention heat-treated at 200°C as shown in Figure 2. In the case of heat treatment, the time is approximately 18 minutes to 100 minutes, whereas in the case of heat treatment at 400°C as shown in Figure 3, such a range is very narrow and short, 30 seconds to 32 seconds. It turns out that its control is difficult. A similar phenomenon is observed in a nickel positive electrode plate using nickel hydroxide as an active material.

第4図は焼結時の水蒸気添加の影響を調べたもので、実
施例3の通常の焼結後に200℃x30分間熱処理した
試料“Cと、実施例1の水蒸気添加の焼結後に試料Cと
同様の熱処理を行なった試料へ−5の高温トリクル充電
(充電電流30時間率、充電時間1力月、電解液温度4
5℃)後の放電曲線を示す。試料A−5については放電
曲線が二段になっておらず、第2図の結果と一致して活
物質の含浸工程でニッケルの腐食が起こっていないが、
一方、焼結時に水蒸気を添加しなかった試料Cは放電曲
線が二段になっており、ニッケルの腐食が抑えられてい
ないことがわかる′。このことから水蒸気を含んだ還元
雰囲気中でニッケルを焼結しなければ、後の熱処理にお
いて酸化物層からなる有効な不備l膜が形成できないこ
とがわかる。
Figure 4 shows the effects of water vapor addition during sintering. Sample "C" was heat-treated at 200°C for 30 minutes after normal sintering in Example 3, and Sample "C" was heat-treated at 200°C for 30 minutes after normal sintering in Example 1. -5 high temperature trickle charge (charging current 30 hours rate, charging time 1 month, electrolyte temperature 4 months)
5° C.) is shown. Regarding sample A-5, the discharge curve did not become two steps, and consistent with the results shown in Figure 2, nickel corrosion did not occur during the active material impregnation process.
On the other hand, Sample C, in which no water vapor was added during sintering, had a two-stage discharge curve, indicating that the corrosion of nickel was not suppressed. This shows that unless nickel is sintered in a reducing atmosphere containing water vapor, an effective defective film consisting of an oxide layer cannot be formed in the subsequent heat treatment.

次にニッケルスラリー調製用の水溶性有機へ分子の影響
を調べるために、実施例4のカルボキシメチルセルロー
スを用いた試料りとメチルセル口一スを用いた試II 
A −5の各100リンプルのニッケルの腐食量を調べ
たところ、試料りは試料A−5に比べ、平均腐食mで約
2.3倍、標tHQ差は約2.8倍あり、腐食量とその
バラツキは非イオン性のメチルヒルロースを用いた方が
小さく、再現性のよいことがわかる。
Next, in order to investigate the influence of molecules on water-soluble organic compounds for preparing nickel slurry, we conducted a sample sample using the carboxymethyl cellulose of Example 4 and a trial II using the methyl cell mouthpiece.
When the amount of corrosion of nickel of each 100 rimple of A-5 was investigated, the average corrosion m of the sample was about 2.3 times that of sample A-5, and the difference in standard tHQ was about 2.8 times, and the amount of corrosion was It can be seen that the variation is smaller when nonionic methylhirulose is used, and the reproducibility is better.

また極板の機械的強度については試1!1.F、Gで比
較した。通常の焼結後に熱処理しない試料Gでは不良率
が2.1%であったのに対し、水蒸気添加の焼結後に熱
処理を行なった試料1:では0%であった。焼結前に水
蒸気を添加した試rIFでは活物質の含浸工程において
極板の骨格であるニッケル焼結体の腐食が抑えられてお
り、極板の機械的強度は明らかに改善されている。なお
、カドミ・クム負極板についても同様の傾向であった。
Also, regarding the mechanical strength of the electrode plate, test 1!1. A comparison was made between F and G. The defect rate was 2.1% for Sample G, which was not heat-treated after normal sintering, whereas it was 0% for Sample 1, which was heat-treated after sintering with the addition of water vapor. In the trial rIF in which water vapor was added before sintering, corrosion of the nickel sintered body, which is the framework of the electrode plate, was suppressed during the active material impregnation process, and the mechanical strength of the electrode plate was clearly improved. Note that the same tendency was observed for the cadmium-cum negative electrode plate.

発明の効果 以上述べたように本発明製造法によれば、ニッケル焼結
体表面に極く薄い均′−な酸化物層よりなる不動WA膜
を形成することができ、またこれによって活物質の含浸
工程でのニッケルの雇食を抑えて極板強度の低下を防ぎ
、目つ活物質利用率の低下がほとんどない極板を得るこ
とができる。また特にカドミウム負極板では水酸化ニッ
ケルの生成を抑制することによってN1−Cd合金に基
づく二段放電の現象を防ぐことができる。さらにニッケ
ルスラリー調製用の水溶性有機高分子として非イオン性
の化合物を用い、本発明による方法でニッケル焼結体の
表面に酸化物層よりなる不働態膜を形成させた場合、そ
の厚みは再現性の良いものとなる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, an immobile WA film consisting of an extremely thin and uniform oxide layer can be formed on the surface of a nickel sintered body, and this also allows the active material to It is possible to suppress the loss of nickel in the impregnation process, prevent a decrease in the strength of the electrode plate, and obtain an electrode plate with almost no decrease in the utilization rate of the active material. Furthermore, especially in the case of a cadmium negative electrode plate, the phenomenon of two-stage discharge due to the N1-Cd alloy can be prevented by suppressing the formation of nickel hydroxide. Furthermore, when a nonionic compound is used as a water-soluble organic polymer for preparing nickel slurry and a passive film consisting of an oxide layer is formed on the surface of a nickel sintered body using the method according to the present invention, the thickness of the passive film can be reproduced. It becomes a sexual thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結工程での添加水蒸気量によるニッケル中の
炭素の減少度合を示す図、第2図及び第3図は本発明製
造法等によって得られたニッケル焼結基板を用いて作製
したカドミウム負極板の充放N3サイクル目の放電時の
活物質利用率及び活物質含浸工程後のニッケルの腐食量
を比較した図、第4図は本発明製造法等によって得られ
たニッケル焼結基板を用いて作製したカドミウム負極板
の高温トリクル充電後の放電曲線を比較した図である。 1)妾、**一本寮拳事Q(J<t−:(’/、)番等
wIN (だ) 壷 −声 琳 羊 宅
Figure 1 is a diagram showing the degree of reduction of carbon in nickel depending on the amount of water vapor added in the sintering process, and Figures 2 and 3 are graphs of nickel sintered substrates produced using the manufacturing method of the present invention. Figure 4 is a diagram comparing the active material utilization rate during discharge of the cadmium negative electrode plate at the third N3 cycle and the amount of nickel corrosion after the active material impregnation process. FIG. 3 is a diagram comparing the discharge curves of cadmium negative electrode plates produced using the method after high-temperature trickle charging. 1) Concubine, **Ipponryo Kenji Q (J<t-: ('/,) ban etc. wIN (da) Tsubo - voice Rin Hitsuji house

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケル粉末を水溶性有機高分子及び水と混練し
てニッケルスラリーとなし、該ニッケルスラリーを多孔
性集電体に塗布、乾燥した後、ニッケルに混入している
炭素の10倍当量以上の水蒸気を含む還元雰囲気中でニ
ッケル粉末を焼結してニッケル焼結体とし、さらに該ニ
ッケル焼結体を160〜300℃の酸素を含む雰囲気中
で熱処理して、ニッケル焼結体の表面にニッケル酸化物
層よりなる不働態膜を形成することを特徴とするアルカ
リ蓄電池用ニッケル焼結基板の製造法。
(1) Knead nickel powder with a water-soluble organic polymer and water to make a nickel slurry, apply the nickel slurry to a porous current collector, dry it, and then apply the nickel slurry to a porous current collector that has an equivalent amount of at least 10 times the amount of carbon mixed in the nickel. The nickel powder is sintered in a reducing atmosphere containing water vapor to form a nickel sintered body, and the nickel sintered body is further heat-treated in an atmosphere containing oxygen at 160 to 300°C to form a surface of the nickel sintered body. A method for producing a sintered nickel substrate for an alkaline storage battery, which comprises forming a passive film made of a nickel oxide layer.
(2)ニッケルスラリーの調製に用いる水溶性有機高分
子が非イオン性である特許請求の範囲第(1)項記載の
アルカリ蓄電池用ニッケル焼結基板の製造法。
(2) The method for producing a nickel sintered substrate for an alkaline storage battery according to claim (1), wherein the water-soluble organic polymer used for preparing the nickel slurry is nonionic.
JP60057263A 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery Granted JPS61216244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60057263A JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60057263A JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS61216244A true JPS61216244A (en) 1986-09-25
JPH0555985B2 JPH0555985B2 (en) 1993-08-18

Family

ID=13050635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60057263A Granted JPS61216244A (en) 1985-03-20 1985-03-20 Manufacture of sintered nickel substrate of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61216244A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117066A (en) * 1982-12-23 1984-07-06 Shin Kobe Electric Mach Co Ltd Production method of cadmium electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117066A (en) * 1982-12-23 1984-07-06 Shin Kobe Electric Mach Co Ltd Production method of cadmium electrode

Also Published As

Publication number Publication date
JPH0555985B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
CN112271277B (en) Negative electrode material containing metal element gradient doping and application thereof
US10862109B2 (en) Carbonaceous materials for lead acid batteries
CN109742391B (en) High-nickel lithium ion battery, battery positive electrode material and preparation method thereof
CN106784763A (en) A kind of porous oxide wraps up the preparation method of battery silicium cathode material
CN109920957B (en) Intercalation material of lithium-sulfur battery
CN117239102A (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
CN114122392B (en) High-capacity quick-charging graphite composite material and preparation method thereof
CN115566169A (en) Silica composite material, negative pole piece, lithium ion battery and preparation method thereof
TW202400512A (en) Particles of silicon-carbon composite material and method of manufacturing the same
JPS61216244A (en) Manufacture of sintered nickel substrate of alkaline storage battery
CN115196682A (en) Method for improving cycle life of lithium manganate
EP3809491B1 (en) Electrode for lithium ion secondary batteries and lithium ion secondary battery
CN112225251B (en) Shell layer limited niobium pentoxide nanocrystalline hollow carbon sphere, preparation method and application
CN114512710A (en) Coated sulfide solid electrolyte material and preparation method and application thereof
JPH06196167A (en) Paste type nickel plate for storage battery, storage battery and electrically conductive material
CN110732314B (en) Composite porous carbon for sulfur fixation and preparation method thereof
CN113675381A (en) Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
CN111029545A (en) Nano lithium aluminate coated nickel-based multi-element positive electrode material and preparation method thereof
CN114824227B (en) Double-layer coated positive electrode composite material and preparation method and application thereof
CN114583103B (en) Ternary positive electrode material with double oxide surface coating, preparation method of ternary positive electrode material, positive electrode plate and lithium ion battery
JP4475720B2 (en) Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
CN116936781B (en) Sodium ion battery positive electrode material, coating modification method thereof and sodium ion battery
CN117219764A (en) Positive electrode material of lithium ion battery and preparation method thereof
CN116207231A (en) Lithium ion battery silicon-carbon anode material with inner-outer multistage core-shell structure and preparation method thereof
CN117913253A (en) Battery negative electrode composite material and preparation method and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term