JPH0555626A - Infrared visible conversion element - Google Patents

Infrared visible conversion element

Info

Publication number
JPH0555626A
JPH0555626A JP23575291A JP23575291A JPH0555626A JP H0555626 A JPH0555626 A JP H0555626A JP 23575291 A JP23575291 A JP 23575291A JP 23575291 A JP23575291 A JP 23575291A JP H0555626 A JPH0555626 A JP H0555626A
Authority
JP
Japan
Prior art keywords
infrared
substrate
visible conversion
conversion element
visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23575291A
Other languages
Japanese (ja)
Other versions
JP2750553B2 (en
Inventor
Yasuaki Tamura
保暁 田村
Junichi Owaki
純一 大脇
Atsushi Shibukawa
篤 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23575291A priority Critical patent/JP2750553B2/en
Publication of JPH0555626A publication Critical patent/JPH0555626A/en
Application granted granted Critical
Publication of JP2750553B2 publication Critical patent/JP2750553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an infrared visible conversion element which is high in infrared visible conversion efficiency and high in resolution. CONSTITUTION:A silicon substrate 1 is used as a substrate. As a fluorescent body to be formed on the substrate 1, a fluorescent layer 2 is formed wherein a fluorescent matrix is an infrared stimulable phosphor body with two kinds including europium and samarium or at least two kinds including cerium and samarium added while the fluorescent matrix is one of calcium sulfide, strontium sulfide, calcium selenide and strontium selenide or their mixed crystal. Therefore since the fluorescent layer 2 has excellent smoothness and is extremely low in light scattering, resolution is high. In addition, the fluorescent layer 2 on the silicon substrate 1 is a polycrystal film or a single crystal film oriented in a substrate orientation, so that extremely little defect occurs in the film and infrared visible conversion efficiency of the fluorescent body is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外可視変換素子に関
し、特に分解能,赤外可視変換効率とも高く、シリコン
により可視域の波長を除去し赤外光のみを透過,変換す
ることによりSN比の高い変換画像を得ることを可能と
した赤外可視変換素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared-visible conversion element, which has a high resolution and a high infrared-visible conversion efficiency, and has a SN ratio obtained by removing wavelengths in the visible range with silicon and transmitting and converting only infrared light. The present invention relates to an infrared-visible conversion element that makes it possible to obtain a converted image with high resolution.

【0002】[0002]

【従来の技術】赤外輝尽蛍光体とは、あらかじめ短波長
の光、あるいはX線,放射線等を照射した後、赤外光を
照射すると可視域の発光を発生するという蛍光体であ
る。アルカリ土類金属の硫化物あるいはセレン化物にユ
ーロピウム(Eu)とサマリウム(Sm)あるいはセリ
ウム(Ce)とサマリウム(Sm)などの2種類以上の
希土類を添加した蛍光体が最も赤外可視変換効率の高い
蛍光体として良く知られている。
2. Description of the Related Art An infrared stimulable phosphor is a phosphor that emits light in the visible region when it is irradiated with infrared light after being irradiated with light having a short wavelength, X-rays, or radiation. A phosphor obtained by adding two or more kinds of rare earths such as europium (Eu) and samarium (Sm) or cerium (Ce) and samarium (Sm) to a sulfide or selenide of an alkaline earth metal has the highest infrared-visible conversion efficiency. Well known as a high phosphor.

【0003】ところで、従来よりこの赤外輝尽蛍光体を
用いた赤外可視変換素子はガラスなどの基板上に粉末蛍
光体をバインダー等と混合し塗布したものや、1対のポ
リマーフィルム間にバインダーに分散した蛍光体粉末を
挟み込んだ構造をしており、半導体レーザ光の検出,光
学系の調整などに利用されている。
By the way, conventionally, an infrared-visible conversion element using this infrared stimulable phosphor is obtained by mixing a powder phosphor with a binder or the like and coating it on a substrate such as glass or between a pair of polymer films. It has a structure in which phosphor powder dispersed in a binder is sandwiched, and is used for detecting semiconductor laser light, adjusting the optical system, and the like.

【0004】近年、半導体レーザを用いた光通信技術
や、光情報処理技術が発展し、半導体レーザから放射さ
れる赤外光を従来よりも高精度に検出する必要性や、レ
ーザ光のモードパターンなど2次元での光情報を検査す
る必要性が拡大してきている。
In recent years, optical communication technology using a semiconductor laser and optical information processing technology have been developed, and it is necessary to detect infrared light emitted from a semiconductor laser with higher accuracy than before, and a mode pattern of laser light. There is an increasing need for inspecting optical information in two dimensions.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来構造の素
子では粉末蛍光体を用いているため、蛍光体粒子による
光の散乱が生じ解像度が低いという欠点があり、高い精
度で光学軸を調整することや、半導体レーザ光のモード
パターンを検査することは不可能であった。そこで、本
発明者らは素子の高解像度化を図ることを目的とし、真
空蒸着法や、スパッタリング法,CVD法等の薄膜形成
技術を用いて、蛍光体を薄膜化し光散乱の低減を図って
きた。しかし、基板としてガラス等の非晶質基板上に形
成した場合、薄膜は微結晶(以下結晶子と呼ぶ)の集合
体である多結晶膜となるため、やはり光の散乱が生じ充
分に解像度を向上することは困難であった。
However, since the powder phosphor is used in the element having the conventional structure, there is a drawback that light is scattered by the phosphor particles and the resolution is low, and the optical axis is adjusted with high accuracy. In fact, it was impossible to inspect the mode pattern of the semiconductor laser light. Therefore, the present inventors have aimed to increase the resolution of the device, and have thinned the phosphor to reduce the light scattering by using a thin film forming technique such as a vacuum deposition method, a sputtering method, and a CVD method. It was However, when the substrate is formed on an amorphous substrate such as glass, the thin film becomes a polycrystalline film that is an aggregate of microcrystals (hereinafter referred to as crystallites), and thus light scattering also occurs and resolution is sufficiently high. It was difficult to improve.

【0006】また、透明基板上に赤外輝尽蛍光体層を形
成した赤外可視変換素子を用いて、赤外像を可視化して
観察しようとする場合、観察方向と反対側から赤外光を
入射し蛍光体層上に結像させ像を観察する透過法と、観
察方向側から赤外光を入射し蛍光体層上に結像させ像を
観察する反射法があるが、透過法,反射法いずれも観察
方向と反対側から赤外可視変換素子を通して可視光が透
過し、ノイズとして働くため赤外可視変換画像観察時の
S/Nが著しく低下するという欠点があった。
When an infrared image is visualized by using an infrared-visible conversion element in which an infrared stimulable phosphor layer is formed on a transparent substrate, the infrared light is emitted from the side opposite to the observation direction. There are a transmission method of irradiating a laser beam and forming an image on the phosphor layer to observe an image, and a reflection method of injecting infrared light from the observation direction side to form an image on the phosphor layer and observing the image. In each of the reflection methods, visible light is transmitted through the infrared-visible conversion element from the side opposite to the observation direction and acts as noise, so that there is a drawback that the S / N at the time of observing the infrared-visible converted image is significantly reduced.

【0007】本発明は以上の点に鑑み、上記のような問
題点を解決するためになされたものであり、その目的
は、赤外可視変換効率が高く、かつ解像度が高い赤外可
視変換素子を提供することにある。
In view of the above points, the present invention has been made to solve the above problems, and an object thereof is an infrared-visible conversion element having high infrared-visible conversion efficiency and high resolution. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、シリコン基板上に赤外輝尽蛍光体層を形成
した赤外可視変換素子において、赤外輝尽蛍光体層が少
なくとも、蛍光体母体にユーロピウムとサマリウムの2
種、あるいは少なくともセリウムとサマリウムの2種を
添加した単結晶もしくは基板面方位に配向した多結晶赤
外輝尽蛍光体であり、かつ蛍光体母体が硫化カルシウ
ム,硫化ストロンチウム,セレン化カルシウム,セレン
化ストロンチウムのうちの1種あるいはそれらの混晶で
あることを特徴とするものである。
In order to achieve the above object, the present invention provides an infrared-visible conversion device comprising an infrared stimulable phosphor layer formed on a silicon substrate, wherein the infrared stimulable phosphor layer is at least , 2 of europium and samarium as a phosphor matrix
Or a polycrystalline infrared photostimulable phosphor in which at least two kinds of cerium and samarium are added and oriented in the plane direction of the substrate, and the phosphor matrix is calcium sulfide, strontium sulfide, calcium selenide, selenide One of strontium or a mixed crystal thereof is characterized.

【0009】[0009]

【作用】したがって本発明においては、基板としてシリ
コンを用いることにより、基板上に形成する蛍光体層の
成長方向を制御し、平滑な蛍光体層を形成できるので、
解像度の高い赤外可視変換素子が得られる。また、赤外
光観察の際に不要な可視光をシリコンにより除去するこ
とによって、高いS/Nで赤外可視変換画像の観察が可
能になる。これについて、図1,図2を参照して詳述す
る。
Therefore, in the present invention, by using silicon as the substrate, the growth direction of the phosphor layer formed on the substrate can be controlled and a smooth phosphor layer can be formed.
An infrared-visible conversion element with high resolution can be obtained. Further, by removing unnecessary visible light with silicon at the time of observing infrared light, it becomes possible to observe an infrared-visible converted image with a high S / N. This will be described in detail with reference to FIGS.

【0010】本発明の赤外可視変換素子は、基本的には
図1に示すようにシリコン基板1上に前述した蛍光体層
2が形成された構造を有している。シリコンは現在知ら
れている単結晶の中でも最も欠陥が少なく、結晶性が良
好であることが知られている。このため、シリコン基板
上に蛍光体を形成した場合、基板全体にわたって均質で
欠陥の少ない蛍光体薄膜が形成できる。図2は、シリコ
ンと蛍光体母体であるCaS,CaSe,SrS,Sr
Seとの格子定数の関係を示す図である。図2から明ら
かなように、蛍光体母体とシリコンとの格子定数の差は
5%以上で一般に単結晶成長が困難である。
The infrared-visible conversion device of the present invention basically has a structure in which the above-mentioned phosphor layer 2 is formed on a silicon substrate 1 as shown in FIG. It is known that silicon has the fewest defects among the currently known single crystals and has good crystallinity. Therefore, when the phosphor is formed on the silicon substrate, a phosphor thin film that is homogeneous and has few defects can be formed over the entire substrate. FIG. 2 shows silicon and phosphor bases CaS, CaSe, SrS, Sr.
It is a figure which shows the relationship of a lattice constant with Se. As is clear from FIG. 2, the difference in lattice constant between the phosphor matrix and silicon is 5% or more, and it is generally difficult to grow a single crystal.

【0011】ところが、本発明者らは種々の実験を繰り
返し調査した結果、シリコン基板上に硫化カルシウム,
硫化ストロンチウム,セレン化カルシウム,セレン化ス
トロンチウムのうちの1種あるいはそれらの混晶である
薄膜を形成した場合、その成長方向は基板面方位に規定
され成長方向の揃った多結晶膜、あるいは単結晶膜とな
ることが明らかになった。このため、得られた蛍光体膜
は優れた平滑性を有し光散乱が極めて少なく、従って解
像度が高くなる。また、成長方向が揃わない多結晶状態
と比較して膜中の欠陥が極めて少ないため、蛍光体の赤
外可視変換変換効率も極めて高いものとなる。
However, as a result of repeated investigations of various experiments, the present inventors found that calcium sulfide,
When a thin film that is one of strontium sulfide, calcium selenide, strontium selenide, or a mixed crystal thereof is formed, its growth direction is defined by the substrate plane orientation, and a polycrystalline film with a uniform growth direction or a single crystal It turned out to be a film. For this reason, the obtained phosphor film has excellent smoothness and very little light scattering, and therefore the resolution is high. Further, since the defects in the film are extremely small as compared with the polycrystalline state in which the growth directions are not uniform, the infrared-visible conversion conversion efficiency of the phosphor is also extremely high.

【0012】また、シリコンの基礎吸収波長は約1.1
μmであり、1.1μm以下の光は透過しない。このた
め、透過型で本発明の赤外可視変換素子を用いた場合、
赤外可視変換に必要な赤外光のみが基板を透過し蛍光体
層に達し可視光に変換されるため、変換画像は可視光ノ
イズに妨害されることなく、コントラストよく観察でき
る。また、反射型で本発明の赤外可視変換素子を用いた
場合でも、シリコン基板が黒色をしているため、変換画
像のコントラストは高く観測しやすい。
The fundamental absorption wavelength of silicon is about 1.1.
μm, and light of 1.1 μm or less is not transmitted. Therefore, when the infrared-visible conversion element of the present invention is used in a transmissive type,
Only infrared light necessary for infrared-visible conversion passes through the substrate, reaches the phosphor layer, and is converted into visible light, so that the converted image can be observed with good contrast without being disturbed by visible light noise. Further, even when the infrared-visible conversion element of the present invention is used as a reflection type, since the silicon substrate is black, the contrast of the converted image is high and easy to observe.

【0013】[0013]

【実施例】以下、本発明の赤外可視変換素子について、
実施例によって更に具体的に説明する。 実施例1 図1において、基板1として面方位が(111)方向で
あるシリコン単結晶基板、蛍光体層2としてユーロピウ
ムとサマリウムを添加した硫化カルシウム蛍光体層から
構成された赤外可視変換素子について説明する。上記素
子を作製するに当たっては、まず、シリコン基板1を沸
騰した硝酸中に浸し表面酸化膜を形成したのち純水で洗
浄し、弗酸中に浸し酸化膜を除去し表面欠陥や汚れを除
去したのち再び純水で洗浄し、塩酸,過酸化水水素,純
水を3:1:1の比率で混合した混酸中に10分浸し良
質な表面酸化膜を形成した後、水洗乾燥する。この後、
分子ビームエピタキシャル装置内に設置し、10-8To
rr以下にまで排気し基板を加熱して表面酸化膜を加熱
蒸発させシリコン清浄表面を出した後、シリコン基板1
上にユーロピウムとサマリウムを添加したCaS蛍光体
膜を20μmの厚さで形成した。
EXAMPLES The infrared-visible conversion element of the present invention will be described below.
This will be described more specifically with reference to examples. Example 1 In FIG. 1, an infrared-visible conversion element constituted of a silicon single crystal substrate having a (111) plane orientation as a substrate 1 and a calcium sulfide phosphor layer containing europium and samarium as a phosphor layer 2 explain. In manufacturing the above device, first, the silicon substrate 1 was dipped in boiling nitric acid to form a surface oxide film, and then washed with pure water, and then dipped in hydrofluoric acid to remove the oxide film to remove surface defects and stains. After that, it is washed again with pure water, soaked in a mixed acid in which hydrochloric acid, hydrogen peroxide and pure water are mixed at a ratio of 3: 1: 1 for 10 minutes to form a high quality surface oxide film, and then washed with water and dried. After this,
Installed in the molecular beam epitaxy system and set at 10 -8 To
After evacuating to rr or less and heating the substrate to heat and evaporate the surface oxide film to expose a clean silicon surface, the silicon substrate 1
A CaS phosphor film having europium and samarium added thereon was formed to a thickness of 20 μm.

【0014】ここで、このCaS蛍光体層は赤外可視変
換素子を作製するために、ユーロピウム濃度が500p
pm、サマリウム濃度が150ppmとなるように、別
々の蒸発源に充填したCa金属、Eu金属、Sm金属を
それぞれ調節して加熱蒸発させ基板面に堆積させるのと
同時に、硫化水素ガスを基板に照射することによって形
成した。また、この時の基板温度は500℃、薄膜形成
速度は50nm/minとした。
The CaS phosphor layer has a europium concentration of 500 p in order to manufacture an infrared-visible conversion element.
The Ca metal, Eu metal, and Sm metal, which are filled in different evaporation sources, are adjusted so that the pm and samarium concentrations are 150 ppm, respectively, and are heated and vaporized to be deposited on the substrate surface, and at the same time, the substrate is irradiated with hydrogen sulfide gas. Formed by. The substrate temperature at this time was 500 ° C., and the thin film formation rate was 50 nm / min.

【0015】このようにして形成したCaS蛍光体層2
は反射電子線回折装置,X線回折装置及び透過電子顕微
鏡による検査の結果、基板とエピタキシャル成長した単
結晶膜であることが確認された。また、触針式表面粗さ
計を用いて表面粗さを測定したところ表面の凹凸は10
nm以下で非常に平滑な膜が得られた。表1は上記のよ
うにして作製した赤外可視変換素子とガラス基板上に蛍
光体層を形成して作製した赤外可視変換素子の赤外可視
変換効率と解像度を比較した表である。この結果から、
本発明の赤外可視変換素子が従来構造の赤外可視変換素
子と比較して、赤外可視変換効率が高く、かつ解像度が
高いことが明かである。また、本発明の素子はシリコン
基板を用いており、可視光によるノイズが重畳しないた
め極めてコントラストの高い画像が得られた。
The CaS phosphor layer 2 thus formed
As a result of inspection by a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, it was confirmed to be a single crystal film epitaxially grown on the substrate. Further, when the surface roughness was measured using a stylus type surface roughness meter, the surface roughness was 10
A very smooth film was obtained below nm. Table 1 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming the phosphor layer on the glass substrate. from this result,
It is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例2 図1において基板1として面方位が(111)方向であ
るシリコン単結晶基板、蛍光体層2としてユーロピウム
とサマリウムを添加した硫化カルシウム蛍光体層から構
成された赤外可視変換素子について説明する。上記素子
を作製するに当たっては、まず、シリコン基板1を沸騰
した硝酸中に浸し表面酸化膜を形成したのち純水で洗浄
し、弗酸中に浸し酸化膜を除去し表面欠陥や汚れを除去
したのち、再び純水で洗浄した後乾燥する。この後、真
空蒸着装置内に設置し、シリコン基板1上にユーロピウ
ムとサマリウムを添加したCaS蛍光体膜を20μmの
厚さで形成した。ここで、該蛍光体層は赤外可視変換素
子を作製するために、酸化ユーロピウム(Eu23)を
500ppm、酸化サマリウム(Sm23)を150p
pm添加したCaSペレットを蒸発源として電子ビーム
蒸着法により形成した。また、この時の基板温度は30
0℃、薄膜形成速度は50nm/minとした。
Example 2 In FIG. 1, an infrared-visible conversion is made up of a silicon single crystal substrate having a (111) plane orientation as a substrate 1 and a calcium sulfide phosphor layer containing europium and samarium as a phosphor layer 2. The element will be described. In manufacturing the above device, first, the silicon substrate 1 was dipped in boiling nitric acid to form a surface oxide film, and then washed with pure water, and then dipped in hydrofluoric acid to remove the oxide film to remove surface defects and stains. After that, it is washed again with pure water and dried. Then, it was installed in a vacuum vapor deposition apparatus, and a CaS phosphor film to which europium and samarium were added was formed on the silicon substrate 1 to a thickness of 20 μm. Here, in order to manufacture an infrared-visible conversion element, the phosphor layer contains europium oxide (Eu 2 O 3 ) of 500 ppm and samarium oxide (Sm 2 O 3 ) of 150 p.
The CaS pellet added with pm was used as an evaporation source to form the electron beam evaporation method. The substrate temperature at this time is 30
The temperature was 0 ° C. and the thin film formation rate was 50 nm / min.

【0018】このようにして形成したCaS蛍光体層2
は反射電子線回折装置,X線回折装置及び透過電子顕微
鏡による検査の結果、(111)方向に優先配向した多
結晶と、基板とエピタキシャル成長した単結晶との混在
膜であることが確認された。なお、ここで優先配向と
は、特定の配向をもった結晶子サイズが他の配向をもっ
た結晶子サイズと比較して大きい状態をいう。また、触
針式表面粗さ計を用いて表面粗さを測定したところ表面
の凹凸は10nm以下で非常に平滑な膜が得られた。
The CaS phosphor layer 2 thus formed
As a result of inspection by a reflection electron diffraction apparatus, an X-ray diffraction apparatus and a transmission electron microscope, it was confirmed that it was a mixed film of a polycrystal preferentially oriented in the (111) direction and a substrate and an epitaxially grown single crystal. Here, the preferential orientation means a state in which the crystallite size having a particular orientation is larger than the crystallite size having another orientation. Further, when the surface roughness was measured using a stylus type surface roughness meter, the surface irregularities were 10 nm or less, and a very smooth film was obtained.

【0019】表2は上記のようにして作製した赤外可視
変換素子とガラス基板上に蛍光体層を形成して作製した
赤外可視変換素子の赤外可視変換効率と解像度を比較し
た表である。この結果から、本発明の赤外可視変換素子
が従来構造の赤外可視変換素子と比較して、赤外可視変
換効率が高く、かつ解像度が高いことが明かである。ま
た、本発明の素子はシリコン基板を用いており、可視光
によるノイズが重畳しないため極めてコントラストの高
い画像が得られた。
Table 2 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming a phosphor layer on a glass substrate. is there. From this result, it is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例3 図1において基板1として面方位が(100)方向であ
るシリコン単結晶基板、蛍光体層2としてユーロピウム
とサマリウムを添加した硫化カルシウム蛍光体層から構
成された赤外可視変換素子について説明する。上記素子
を作製するに当たっては、まず、シリコン基板1を純
水、酸で洗浄し、真空蒸着装置内に設置し、シリコン基
板1上にユーロピウムとサマリウムを添加したCaS蛍
光体膜を10μmの厚さで形成した。ここで、このCa
S蛍光体層は赤外可視変換素子を作製するために、酸化
ユーロピウム(Eu23)を500ppm、酸化サマリ
ウム(Sm23)を150ppm添加したCaSペレッ
トを蒸発源として電子ビーム蒸着法により形成した。ま
た、この時の基板温度は800℃、薄膜形成速度は50
nm/minとした。
Example 3 In FIG. 1, an infrared-visible conversion is made up of a substrate 1 as a silicon single crystal substrate having a plane orientation of (100) direction and a phosphor layer 2 composed of a calcium sulfide phosphor layer to which europium and samarium are added. The element will be described. In manufacturing the above-mentioned device, first, the silicon substrate 1 is washed with pure water and acid, placed in a vacuum vapor deposition apparatus, and a CaS phosphor film having europium and samarium added to the silicon substrate 1 with a thickness of 10 μm. Formed by. Where this Ca
For S phosphor layer to produce an infrared visible conversion element, 500 ppm of europium oxide (Eu 2 O 3), by an electron beam evaporation method samarium oxide (Sm 2 O 3) a CaS pellet as the evaporation source in which 150ppm added Formed. At this time, the substrate temperature is 800 ° C. and the thin film formation rate is 50
nm / min.

【0022】このようにして形成したCaS蛍光体層2
は反射電子線回折装置,X線回折装置及び透過電子顕微
鏡による検査の結果、基板とエピタキシャル成長した単
結晶膜であることが確認された。また、触針式表面粗さ
計を用いて表面粗さを測定したところ表面の凹凸は10
nm以下で非常に平滑な膜が得られた。
The CaS phosphor layer 2 thus formed
As a result of inspection by a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, it was confirmed to be a single crystal film epitaxially grown on the substrate. Further, when the surface roughness was measured using a stylus type surface roughness meter, the surface roughness was 10
A very smooth film was obtained below nm.

【0023】表3は上記のようにして作製した赤外可視
変換素子とガラス基板上に蛍光体層を形成して作製した
赤外可視変換素子の赤外可視変換効率と解像度を比較し
た表である。この結果から、本発明の赤外可視変換素子
が従来構造の赤外可視変換素子と比較して、赤外可視変
換効率が高く、かつ解像度が高いことが明かである。ま
た、本発明の素子はシリコン基板を用いており、可視光
によるノイズが重畳しないため極めてコントラストの高
い画像が得られた。
Table 3 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming a phosphor layer on a glass substrate. is there. From this result, it is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0024】[0024]

【表3】 [Table 3]

【0025】実施例4 図1において基板1として面方位が(111)方向であ
るシリコン単結晶基板、蛍光体層2としてユーロピウム
とサマリウムを添加した硫化ストロンチウム蛍光体層か
ら構成された赤外可視変換素子について説明する。上記
素子を作製するに当たっては、まず、シリコン基板1を
純水、酸で洗浄し、分子ビームエピタキシャル装置内に
設置し、シリコン基板1上にユーロピウムとサマリウム
を添加したSrS蛍光体膜を10μmの厚さで形成し
た。ここで、このSrS蛍光体層は赤外可視変換素子を
作製するために、ユーロピウム濃度が500ppm、サ
マリウム濃度が150ppmとなるように、別々の蒸発
源に充填したSr金属,Eu金属,Sm金属をそれぞれ
調節して加熱蒸発させ基板面に堆積させるのと同時に硫
化水素ガスを基板に照射することによって形成した。ま
た、この時の基板温度は500℃、薄膜形成速度は50
nm/minとした。
Example 4 In FIG. 1, an infrared-visible conversion is made up of a silicon single crystal substrate having a (111) plane orientation as a substrate 1 and a strontium sulfide phosphor layer doped with europium and samarium as a phosphor layer 2. The element will be described. In manufacturing the above device, first, the silicon substrate 1 is washed with pure water and an acid, placed in a molecular beam epitaxial apparatus, and a SrS phosphor film having europium and samarium added thereto is formed on the silicon substrate 1 to a thickness of 10 μm. Formed by Here, in order to manufacture an infrared-visible conversion element, this SrS phosphor layer contains Sr metal, Eu metal, and Sm metal filled in different evaporation sources so that the europium concentration is 500 ppm and the samarium concentration is 150 ppm. It was formed by irradiating the substrate with hydrogen sulfide gas at the same time as adjusting and heating and evaporating it to deposit on the surface of the substrate. At this time, the substrate temperature is 500 ° C. and the thin film formation rate is 50
nm / min.

【0026】このようにして形成したSrS蛍光体層2
は反射電子線回折装置,X線回折装置及び透過電子顕微
鏡による検査の結果、基板とエピタキシャル成長した単
結晶膜であることが確認された。また、触針式表面粗さ
計を用いて表面粗さを測定したところ表面の凹凸は10
nm以下で非常に平滑な膜が得られた。
The SrS phosphor layer 2 thus formed
As a result of inspection by a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, it was confirmed to be a single crystal film epitaxially grown on the substrate. Further, when the surface roughness was measured using a stylus type surface roughness meter, the surface roughness was 10
A very smooth film was obtained below nm.

【0027】表4は上記のようにして作製した赤外可視
変換素子とガラス基板上に蛍光体層を形成して作製した
赤外可視変換素子の赤外可視変換効率と解像度を比較し
た表である。この結果から、本発明の赤外可視変換素子
が従来構造の赤外可視変換素子と比較して、赤外可視変
換効率が高く、かつ解像度が高いことが明かである。ま
た、本発明の素子はシリコン基板を用いており、可視光
によるノイズが重畳しないため極めてコントラストの高
い画像が得られた。
Table 4 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming a phosphor layer on a glass substrate. is there. From this result, it is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例5 図1において基板1として面方位が(111)方向であ
るシリコン単結晶基板、蛍光体層2としてユーロピウム
とサマリウムを添加したセレン化カルシウム蛍光体層か
ら構成された赤外可視変換素子について説明する。上記
素子を作製するに当たっては、まず、シリコン基板1を
純水、酸で洗浄し、分子ビームエピタキシャル装置内に
設置し、シリコン基板1上にユーロピウムとサマリウム
を添加したCaSe蛍光体膜を10μmの厚さで形成し
た。ここで、このCaSe蛍光体層は赤外可視変換素子
を作製するために、ユーロピウム濃度が300ppm、
サマリウム濃度が150ppmとなるように、別々の蒸
発源に充填したCa金属,Eu金属,Sm金属をそれぞ
れ調節して加熱蒸発させ基板面に堆積させるのと同時に
セレン化水素ガスを基板に照射することによって形成し
た。また、この時の基板温度は500℃、薄膜形成速度
は50nm/minとした。
Example 5 In FIG. 1, an infrared-visible layer composed of a silicon single crystal substrate having a (111) plane orientation as a substrate 1 and a calcium selenide phosphor layer containing europium and samarium as a phosphor layer 2 was used. The conversion element will be described. In manufacturing the above device, first, the silicon substrate 1 is washed with pure water and an acid, placed in a molecular beam epitaxial apparatus, and a CaSe phosphor film having europium and samarium added thereto is formed on the silicon substrate 1 to a thickness of 10 μm. Formed by Here, the CaSe phosphor layer has a europium concentration of 300 ppm in order to produce an infrared-visible conversion element,
To irradiate the substrate with hydrogen selenide gas at the same time as Ca metal, Eu metal, and Sm metal, which are filled in different evaporation sources, are adjusted to be heated and evaporated so that the samarium concentration becomes 150 ppm and vaporized on the substrate surface. Formed by. The substrate temperature at this time was 500 ° C., and the thin film formation rate was 50 nm / min.

【0030】このようにして形成したCaSe蛍光体層
2は反射電子線回折装置,X線回折装置及び透過電子顕
微鏡による検査の結果、基板とエピタキシャル成長した
単結晶膜であることが確認された。また、触針式表面粗
さ計を用いて表面粗さを測定したところ表面の凹凸は1
0nm以下で非常に平滑な膜が得られた。
The CaSe phosphor layer 2 thus formed was inspected by a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, and as a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate. Moreover, when the surface roughness was measured using a stylus type surface roughness meter, the unevenness on the surface was 1
A very smooth film was obtained at 0 nm or less.

【0031】表5は上記のようにして作製した赤外可視
変換素子とガラス基板上に蛍光体層を形成して作製した
赤外可視変換素子の赤外可視変換効率と解像度を比較し
た表である。この結果から、本発明の赤外可視変換素子
が従来構造の赤外可視変換素子と比較して、赤外可視変
換効率が高く、かつ解像度が高いことが明かである。ま
た、本発明の素子はシリコン基板を用いており、可視光
によるノイズが重畳しないため極めてコントラストの高
い画像が得られた。
Table 5 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming a phosphor layer on a glass substrate. is there. From this result, it is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0032】[0032]

【表5】 [Table 5]

【0033】実施例6 図1において基板1として面方位が(111)方向であ
るシリコン単結晶基板、蛍光体層2としてユーロピウム
とサマリウムを添加したセレン化ストロンチウム蛍光体
層から構成された赤外可視変換素子について説明する。
上記素子を作製するに当たっては、まず、シリコン基板
1を純水、酸で洗浄し、分子ビームエピタキシャル装置
内に設置し、シリコン基板1上にユーロピウムとサマリ
ウムを添加したSrSe蛍光体膜を10μmの厚さで形
成した。ここで、このSrSe蛍光体層は赤外可視変換
素子を作製するために、ユーロピウム濃度が500pp
m、サマリウム濃度が150ppmとなるように、別々
の蒸発源に充填したSr金属,Eu金属,Sm金属をそ
れぞれ調節して加熱蒸発させ基板面に堆積させるのと同
時にセレン化水素ガスを基板に照射することによって形
成した。また、この時の基板温度は500℃、薄膜形成
速度は50nm/minとした。
Example 6 In FIG. 1, an infrared-visible layer composed of a silicon single crystal substrate having a (111) plane orientation as a substrate 1 and a strontium selenide phosphor layer doped with europium and samarium as a phosphor layer 2 The conversion element will be described.
In manufacturing the above device, first, the silicon substrate 1 is washed with pure water and an acid, placed in a molecular beam epitaxial apparatus, and a SrSe phosphor film having europium and samarium added thereto is formed on the silicon substrate 1 to a thickness of 10 μm. Formed by Here, the SrSe phosphor layer has a europium concentration of 500 pp in order to manufacture an infrared-visible conversion element.
m and samarium concentration of 150 ppm, Sr metal, Eu metal and Sm metal filled in different evaporation sources are respectively adjusted and heated and evaporated to deposit on the substrate surface, and at the same time, the substrate is irradiated with hydrogen selenide gas. Formed by. The substrate temperature at this time was 500 ° C., and the thin film formation rate was 50 nm / min.

【0034】このようにして形成したSrSe蛍光体層
2は反射電子線回折装置,X線回折装置及び透過電子顕
微鏡による検査の結果、基板とエピタキシャル成長した
単結晶膜であることが確認された。また、触針式表面粗
さ計を用いて表面粗さを測定したところ表面の凹凸は1
0nm以下で非常に平滑な膜が得られた。
The SrSe phosphor layer 2 thus formed was examined by a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, and as a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate. Moreover, when the surface roughness was measured using a stylus type surface roughness meter, the unevenness on the surface was 1
A very smooth film was obtained at 0 nm or less.

【0035】表6は上記のようにして作製した赤外可視
変換素子とガラス基板上に蛍光体層を形成して作製した
赤外可視変換素子の赤外可視変換効率と解像度を比較し
た表である。この結果から、本発明の赤外可視変換素子
が従来構造の赤外可視変換素子と比較して、赤外可視変
換効率が高く、かつ解像度が高いことが明かである。ま
た、本発明の素子はシリコン基板を用いており、可視光
によるノイズが重畳しないため極めてコントラストの高
い画像が得られた。
Table 6 is a table comparing the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element manufactured as described above and the infrared-visible conversion element manufactured by forming a phosphor layer on the glass substrate. is there. From this result, it is clear that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses a silicon substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0036】[0036]

【表6】 [Table 6]

【0037】なお、上記実施例においては、蛍光体層と
しては、ユーロピウムとサマリウムを共に添加した硫化
カルシウムあるいは硫化ストロンチウムあるいはセレン
化カルシウムあるいはセレン化ストロンチウムを用い、
蛍光体層形成方法としては電子ビーム蒸着法,分子ビー
ムエピタキシャル法を用い、また素子構成としては基板
上に蛍光体層のみを設けた2層構造のものであるが、本
発明においては、これに限定されるものではなく、蛍光
体としてはCaS,SrS,CaSe,SrSe及びそ
れらの混合物,添加物としてはセリウムとサマリウムを
添加した場合や、蛍光体層形成方法としてはスパッタ
法,MOCVD法,CVD法などの各種薄膜形成法を用
いた場合でも解像度が高く赤外可視変換効率の高い赤外
可視変換素子が実現できる。
In the above embodiment, calcium sulfide, strontium sulfide, calcium selenide, or strontium selenide added with both europium and samarium is used as the phosphor layer.
An electron beam vapor deposition method and a molecular beam epitaxial method are used as the phosphor layer forming method, and the element structure has a two-layer structure in which only the phosphor layer is provided on the substrate. The phosphors are not limited, and CaS, SrS, CaSe, SrSe and mixtures thereof are used as phosphors, cerium and samarium are added as additives, and sputtering methods, MOCVD methods, and CVD are used as phosphor layer forming methods. Even when various thin film forming methods such as a method are used, an infrared-visible conversion element having high resolution and high infrared-visible conversion efficiency can be realized.

【0038】また、素子構成としては反射防止を目的と
する層や、蛍光体の保護を目的とするための層などを更
に加えて形成した多層構造の素子でも解像度が高く赤外
可視変換効率の高い赤外可視変換素子が実現できる。
Further, as the element structure, even an element having a multilayer structure formed by further adding a layer for the purpose of antireflection and a layer for the purpose of protecting the phosphor has a high resolution and a high infrared-visible conversion efficiency. A high infrared-visible conversion element can be realized.

【0039】[0039]

【発明の効果】以上説明したように本発明の赤外可視変
換素子は、基板としてシリコンを用い、蛍光体として蛍
光体母体にユーロピウムとサマリウムの2種、あるいは
少なくともセリウムとサマリウムの2種を添加した赤外
輝尽蛍光体であり、かつ該蛍光体母体が硫化カルシウ
ム,硫化ストロンチウム,セレン化カルシウム,セレン
化ストロンチウムのうちの1種あるいはそれらの混晶を
用いた蛍光体層を形成したことにより、この蛍光体層は
優れた平滑性を有し光散乱が極めて少なくなるので、解
像度が高くなる。
As described above, in the infrared-visible conversion device of the present invention, silicon is used as the substrate, and two kinds of europium and samarium, or at least two kinds of cerium and samarium are added to the phosphor matrix as the phosphor. And a phosphor layer formed by using one of calcium sulfide, strontium sulfide, calcium selenide, strontium selenide, or a mixed crystal thereof, which is an infrared-stimulated phosphor. Since this phosphor layer has excellent smoothness and light scattering is extremely reduced, the resolution becomes high.

【0040】また、シリコン基板上の蛍光体層は基板面
方位に配向した多結晶膜または単結晶膜となるので、膜
中の欠陥が極めて少なくなり蛍光体の赤外可視変換効率
も高くなる。さらには、赤外光観察の際に不要な可視光
をシリコンによって除去できるので、コントラストよく
観察できる。その結果、赤外可視変換効率が高く、かつ
解像度が高い赤外可視変換素子を実現することができ
た。
Further, since the phosphor layer on the silicon substrate is a polycrystalline film or a single crystal film oriented in the substrate plane direction, defects in the film are extremely reduced and the infrared-visible conversion efficiency of the phosphor is increased. Furthermore, since unnecessary visible light can be removed by silicon when observing infrared light, it is possible to observe with good contrast. As a result, an infrared-visible conversion element having high infrared-visible conversion efficiency and high resolution could be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外可視変換素子の基本的構成を示す
断面図である。
FIG. 1 is a sectional view showing a basic configuration of an infrared-visible conversion element of the present invention.

【図2】シリコンと蛍光体であるCaS,CaSe,S
rS,SrSeとの格子定数の関係を示す図である。
FIG. 2 Silicon and phosphors CaS, CaSe, S
It is a figure which shows the relationship of the lattice constant with rS and SrSe.

【符号の説明】[Explanation of symbols]

1 基板 2 赤外輝尽蛍光体からなる層 1 substrate 2 layer consisting of infrared stimulable phosphor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に赤外輝尽蛍光体層を形
成した赤外可視変換素子において、前記赤外輝尽蛍光体
層は少なくとも、蛍光体母体にユーロピウムとサマリウ
ムの2種、あるいは少なくともセリウムとサマリウムの
2種を添加した単結晶もしくは基板面方位に配向した多
結晶赤外輝尽蛍光体であり、かつ該蛍光体母体が硫化カ
ルシウム,硫化ストロンチウム,セレン化カルシウム,
セレン化ストロンチウムのうちの1種あるいはそれらの
混晶であることを特徴とする赤外可視変換素子。
1. An infrared-visible conversion device comprising an infrared stimulable phosphor layer formed on a silicon substrate, wherein the infrared stimulable phosphor layer has at least two kinds of europium and samarium as a phosphor matrix, or at least one. It is a single-crystal or polycrystalline infrared-stimulated phosphor having two kinds of cerium and samarium and oriented in the plane direction of the substrate, and the phosphor matrix is calcium sulfide, strontium sulfide, calcium selenide,
An infrared-visible conversion element, which is one of strontium selenide or a mixed crystal thereof.
JP23575291A 1991-08-23 1991-08-23 Infrared-visible conversion element Expired - Fee Related JP2750553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23575291A JP2750553B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23575291A JP2750553B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion element

Publications (2)

Publication Number Publication Date
JPH0555626A true JPH0555626A (en) 1993-03-05
JP2750553B2 JP2750553B2 (en) 1998-05-13

Family

ID=16990708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23575291A Expired - Fee Related JP2750553B2 (en) 1991-08-23 1991-08-23 Infrared-visible conversion element

Country Status (1)

Country Link
JP (1) JP2750553B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538814A (en) * 2005-04-23 2008-11-06 シノギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Image conversion device having heatable conversion layer
CN104178171A (en) * 2013-05-23 2014-12-03 海洋王照明科技股份有限公司 Doped calcium selenide up-conversion luminescent fluorescent powder and preparing method thereof
CN111699419A (en) * 2018-02-19 2020-09-22 日本碍子株式会社 Optical member and lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538814A (en) * 2005-04-23 2008-11-06 シノギー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Image conversion device having heatable conversion layer
JP4863177B2 (en) * 2005-04-23 2012-01-25 シノギー・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Image conversion device having heatable conversion layer
CN104178171A (en) * 2013-05-23 2014-12-03 海洋王照明科技股份有限公司 Doped calcium selenide up-conversion luminescent fluorescent powder and preparing method thereof
CN111699419A (en) * 2018-02-19 2020-09-22 日本碍子株式会社 Optical member and lighting device

Also Published As

Publication number Publication date
JP2750553B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
de Kock Microdefects in dislocation-free silicon crystals
US4945254A (en) Method and apparatus for monitoring surface layer growth
Wagner et al. Study of the filamentary growth of silicon crystals from the vapor
Maissel et al. An introduction to thin films
Stringfellow et al. Dislocations in GaAs17− x P x
Moodie et al. MgO morphology and the thermal transformation of Mg (OH) 2
US5997638A (en) Localized lattice-mismatch-accomodation dislocation network epitaxy
Moriya Observation of micro-defects in as-grown and heat treated Si crystals by infrared laser scattering tomography
JP2750553B2 (en) Infrared-visible conversion element
Dakhel Optical constants of evaporated gadolinium oxide
Tzou et al. TEM study of the structure and chemistry of a diamond/silicon interface
TW200933754A (en) Zno-based thin film and semiconductor element
JP6985824B2 (en) Manufacturing method of scintillator plate, radiation image pickup device and scintillator plate
Hirai et al. Crystalline properties of BP epitaxially grown on Si substrates using B2H6-PH3-H2 system
JPH0595132A (en) Infrared visible conversion device and manufacturing method
JPH04358134A (en) Infrared-visible transforming element
Dhere et al. Characterization of intermixing at the CdS/CdTe interface in CSS deposited CdTe
Hoff et al. Ion implanted, outdiffusion produced diamond thin films
Nara et al. Synchrotron radiation‐assisted silicon homoepitaxy at 100° C using Si2H6/H2 mixture
Leo et al. Optimization of the structural and optical properties of ZnS epilayers grown on (100) GaAs by MOVPE
Norton et al. Spatially selective photochemical vapor deposition of GaAs on synthetic fused silica
JP2723734B2 (en) Single crystal for collimator
JPH0588229A (en) Production of infrared visible conversion element
Skaggs et al. Unsupported Single‐Crystal Films of Germanium
Ishitani et al. Preparation and characterization of organic superlattice thin films grown on hydrogenated silicon single‐crystal substrates

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees