JPH0595132A - Infrared visible conversion device and manufacturing method - Google Patents

Infrared visible conversion device and manufacturing method

Info

Publication number
JPH0595132A
JPH0595132A JP3255095A JP25509591A JPH0595132A JP H0595132 A JPH0595132 A JP H0595132A JP 3255095 A JP3255095 A JP 3255095A JP 25509591 A JP25509591 A JP 25509591A JP H0595132 A JPH0595132 A JP H0595132A
Authority
JP
Japan
Prior art keywords
infrared
substrate
visible conversion
phosphor
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3255095A
Other languages
Japanese (ja)
Inventor
Yasuaki Tamura
保暁 田村
Junichi Owaki
純一 大脇
Atsushi Shibukawa
篤 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3255095A priority Critical patent/JPH0595132A/en
Publication of JPH0595132A publication Critical patent/JPH0595132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide device that produces a conversion image with good resolution, a high S/N, and high infrared visible conversion efficiency, by using as a material infrared stimulated phosphor, consisting of a single or mixed crystal made of CaS, SrS, CaSe, and SrSe as a phosphor base material with the GaAs substrate. CONSTITUTION:An infrared stimulated phosphor layer 2 is formed on a GaAs substrate 1 in an infrared visible conversion device. In the infrared stimulated phosphor material, at least two elements Ce and Sm or at least two elements Ce and Sm, are added to the phosphor base material. In this case, a single or mixed crystal made of CaS, SrS, CaSe, and SrSe is used as the phosphor base material. While the substrate 1 is heated at temperatures above 300 deg.C and with gas partial pressure over 1X10-<8>Torr by a conducted H2S or H2Se gas, the infrared stimulated phosphor layer 2 is formed after a surface treatment step for the substrate 1 is carried out in a device manufacturing step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外可視変換素子及びそ
の製造方法に係り、特に、分解能、赤外可視変換効率と
もに高く、かつ、S/N 比の高い変換画像を得ることので
きる赤外可視変換素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared-visible conversion element and a method for manufacturing the same, and more particularly, to a red image which has a high resolution and a high infrared-visible conversion efficiency and which can obtain a converted image with a high S / N ratio. The present invention relates to an outer-visible conversion element and a manufacturing method thereof.

【0002】[0002]

【従来の技術】赤外輝尽蛍光体は、予め短波長の光ある
いはX線、放射線等を照射した後赤外光を照射した時に
可視域の発光を発生する螢光体であり、アルカリ土類金
属の硫化物あるいはセレン化物にユーロピウム(Eu)とサ
マリウム(Sm)あるいはセリウム(Ce)と Sm など2種類以
上の希土類元素を添加した蛍光体が最も赤外可視変換効
率の高い蛍光体として良く知られている。
An infrared stimulable phosphor is a fluorescent substance which emits light in the visible range when irradiated with infrared light after being irradiated with light of short wavelength, X-rays, radiation or the like in advance. A phosphor obtained by adding two or more kinds of rare earth elements such as europium (Eu) and samarium (Sm) or cerium (Ce) and Sm to a sulfide or selenide of a group of metals may be the phosphor with the highest infrared-visible conversion efficiency. Are known.

【0003】このような赤外輝尽蛍光体を用いた赤外可
視変換素子は、蛍光体粉末をバインダーなどと混合して
ガラスなどの基板上に塗布したものや、バインダーに分
散させた蛍光体粉末を一対のポリマーフィルム間に挾み
込んだ構造のもので、半導体レーザ光の検出、光学系の
調整などに利用されている。
An infrared-visible conversion element using such an infrared stimulable phosphor is prepared by mixing phosphor powder with a binder or the like and coating it on a substrate such as glass, or a phosphor dispersed in the binder. It has a structure in which powder is sandwiched between a pair of polymer films and is used for detecting semiconductor laser light, adjusting optical systems, and the like.

【0004】近年、半導体レーザーを用いた光通信技術
や光情報処理技術が発展し、半導体レーザーから放出さ
れる赤外光を従来よりも高精度に検出する必要性やレー
ザー光のモードパターンなど二次元での光情報を検査す
る必要性が拡大してきている。しかし、従来構造の素子
では、粉末蛍光体を用いているため、蛍光体粒子による
光の散乱が生じて解像度が低くなるという欠点があり、
光学軸を高い精度で調整することや、半導体レーザー光
のモードパターンを検査することが不可能であった。
In recent years, optical communication technology and optical information processing technology using a semiconductor laser have been developed, and it is necessary to detect infrared light emitted from the semiconductor laser with higher accuracy than before and a mode pattern of the laser light. The need to inspect optical information in dimensions is growing. However, in the device having the conventional structure, since the powder phosphor is used, there is a drawback that the light is scattered by the phosphor particles and the resolution is lowered,
It was impossible to adjust the optical axis with high accuracy and inspect the mode pattern of the semiconductor laser light.

【0005】そこで、本発明者等は、素子の高解像度化
を図ることを目的として、真空蒸着法やスパッタリング
法、CVD 法等の薄膜形成技術を用いて蛍光体を薄膜化し
光散乱の低減を図ることを試みた。しかし、基板として
ガラス等の非晶質基板を用いて薄膜を形成した場合、薄
膜は微結晶(以下、結晶子と称する)の集合体である多結
晶膜となるため、やはり光の散乱が生じ、解像度を十分
に向上させることは困難であった。
Therefore, the present inventors have reduced the light scattering by thinning the phosphor by using a thin film forming technique such as a vacuum vapor deposition method, a sputtering method or a CVD method for the purpose of achieving high resolution of the device. I tried to achieve it. However, when a thin film is formed using an amorphous substrate such as glass as the substrate, the thin film becomes a polycrystalline film that is an aggregate of microcrystals (hereinafter referred to as crystallites), and thus light scattering also occurs. , It was difficult to improve the resolution sufficiently.

【0006】また、透明基板上に赤外輝尽蛍光体層を形
成した赤外可視変換素子を用いて赤外像を可視化して観
察しようとする場合、観察方向と反対の側から赤外光を
入射して蛍光体層上に結像させ像を観察する透過法と、
観察方向側から赤外光を入射して蛍光体層上に結像させ
像を観察する反射法とがあるが、透過法、反射法いずれ
の場合も観察方向と反対の側から赤外可視変換素子を通
して可視光が透過してノイズとして働くため、赤外可視
変換画像観察時の S/N 比が著しく低下するという欠点
があった。
When an infrared image is visualized by using an infrared-visible conversion element in which an infrared stimulable phosphor layer is formed on a transparent substrate, the infrared light is observed from the side opposite to the observation direction. And a transmission method for forming an image on the phosphor layer and observing the image,
There is a reflection method in which infrared light is incident from the observation direction side to form an image on the phosphor layer to observe the image, but in both the transmission method and the reflection method, infrared-visible conversion is performed from the side opposite to the observation direction. Visible light passes through the device and acts as noise, which has the drawback of significantly reducing the S / N ratio when observing infrared-visible converted images.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように、従
来技術は、種々の努力にも拘らず、多くの課題を残して
いた。
As described above, the prior art has left many problems despite various efforts.

【0008】本発明の目的は、上記従来技術の有してい
た課題を解決して、分解能、赤外可視変換効率ともに高
く、かつ、S/N 比の高い変換画像を得ることのできる赤
外可視変換素子及びその製造方法を提供することにあ
る。
An object of the present invention is to solve the problems of the above-mentioned prior art and to obtain a converted image having a high resolution and a high infrared-visible conversion efficiency and a high S / N ratio. It is to provide a visible light conversion element and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的は、ガリウムヒ
素(GaAs)基板上に赤外輝尽蛍光体層を形成してなる赤外
可視変換素子において、上記赤外輝尽蛍光体が、蛍光体
母体に少なくとも Euと Sm との2種の元素、あるい
は、少なくとも Ce と Sm との2種の元素を添加した赤
外輝尽蛍光体であり、かつ、上記蛍光体母体が硫化カル
シウム(CaS)、硫化ストロンチウム(SrS)、セレン化カル
シウム(CaSe)、セレン化ストロンチウム(SrSe)の中の何
れか1種あるいはそれらの混晶である赤外可視変換素子
とすること、および、GaAs 基板上に赤外輝尽蛍光体層
を形成してなる赤外可視変換素子の製造において、上記
基板を300℃以上に加熱しつつ、基板位置におけるガス
分圧が1×10~8Torr以上となるように硫化水素(H2S)ガ
スあるいはセレン化水素(H2Se)ガスを導入して該基板の
表面処理を行った後赤外輝尽蛍光体層を形成する方法を
用いることによって達成することができる。
Means for Solving the Problems The above-mentioned object is to provide an infrared-visible conversion device comprising an infrared stimulable phosphor layer formed on a gallium arsenide (GaAs) substrate, wherein the infrared stimulable phosphor is An infrared stimulable phosphor in which at least two kinds of elements of Eu and Sm, or at least two kinds of elements of Ce and Sm are added to the body matrix, and the above-mentioned phosphor matrix is calcium sulfide (CaS). , Strontium sulfide (SrS), calcium selenide (CaSe), strontium selenide (SrSe), or an infrared-visible conversion element that is a mixed crystal thereof, and a red color on a GaAs substrate. In the production of an infrared-visible conversion element formed by forming an external stimulable phosphor layer, the above-mentioned substrate is heated to 300 ° C. or higher, and sulfurization is performed so that the gas partial pressure at the substrate position becomes 1 × 10 to 8 Torr or higher. by introducing hydrogen (H 2 S) gas or hydrogen selenide (H 2 Se) gas It can be achieved by using a method of forming an infrared accelerated phosphorescence fluorescent layer after the surface treatment of the substrate.

【0010】[0010]

【作用】図1は本発明赤外可視変換素子の概略構成を示
す断面図で、GaAs基板1と該基板1上に形成した赤外輝
尽蛍光体層2とからなることを示す。
1 is a cross-sectional view showing a schematic structure of the infrared-visible conversion device of the present invention, showing that it comprises a GaAs substrate 1 and an infrared stimulable phosphor layer 2 formed on the substrate 1.

【0011】GaAs は現在既に半導体素子等に用いられ
ており、欠陥が少なく、結晶性の良好な単結晶が得られ
ている。このため、GaAs 基板上に蛍光体層を形成した
場合、基板全体にわたって均質で欠陥の少ない蛍光体薄
膜を形成することができる。
At present, GaAs is already used in semiconductor devices and the like, and a single crystal having few defects and good crystallinity has been obtained. Therefore, when the phosphor layer is formed on the GaAs substrate, a phosphor thin film that is homogeneous and has few defects can be formed over the entire substrate.

【0012】図2は、GaAs の格子定数と蛍光体母体で
ある CaS、SrS 、CaSe 、SrSe の格子定数との関係を示
す図である。図から明らかなように、CaS の格子定数と
GaAsの格子定数との差は小さく、赤外輝尽蛍光体の母体
として CaS を用いた場合に最も品質の高い単結晶膜が
得られる。その他の蛍光体母体材料については格子定数
の差が比較的大きいが、繰り返し実験の結果、本発明の
製造方法を用いてGaAs 基板上にCaS 、SrS 、CaSe、SrS
eの中から選ばれる何れか1種あるいはそれらの混晶か
らなる薄膜を形成した場合、その成長方向は基板面方位
によって規定され、成長方向の揃った多結晶膜あるいは
単結晶膜が得られることが明らかになった。このため、
得られた結晶膜は優れた平滑性を有しており、光散乱が
極めて小さく、従って極めて高い解像度が得られる。ま
た、成長方向の揃わない多結晶状態と比較して膜中の欠
陥が極めて少ないため、蛍光体の赤外可視変換効率も極
めて高いものとなる。
FIG. 2 is a diagram showing the relationship between the lattice constant of GaAs and the lattice constants of CaS, SrS, CaSe, and SrSe which are the phosphor matrix. As is clear from the figure, the lattice constant of CaS and
The difference from the lattice constant of GaAs is small, and the highest quality single crystal film is obtained when CaS is used as the matrix of the infrared stimulable phosphor. Although the difference in lattice constant is relatively large for other phosphor host materials, the results of repeated experiments showed that CaS, SrS, CaSe, SrS on GaAs substrates using the manufacturing method of the present invention.
When a thin film made of any one of e or a mixed crystal thereof is formed, the growth direction is defined by the substrate plane orientation, and a polycrystalline film or a single crystal film with a uniform growth direction can be obtained. Became clear. For this reason,
The obtained crystal film has excellent smoothness, light scattering is extremely small, and thus extremely high resolution can be obtained. In addition, since there are very few defects in the film as compared with a polycrystalline state in which the growth directions are not uniform, the infrared-visible conversion efficiency of the phosphor becomes extremely high.

【0013】また、GaAs の基礎吸収波長は約0.83μmで
あり、0.83μm以下の光は透過しない。このため、透過
型の本発明の赤外可視変換素子を用いた場合、赤外可視
変換に必要な赤外光のみが基板を透過し、蛍光体層に達
して可視光に変換されるため、変換画像は可視光ノイズ
に妨害されることなく、コントラスト良く観測すること
ができる。また、反射型の本発明の赤外可視変換素子を
用いた場合でも、GaAs基板が黒色であるため、変換画像
のコントラストは高く、観測しやすい。
Further, the fundamental absorption wavelength of GaAs is about 0.83 μm, and light of 0.83 μm or less is not transmitted. Therefore, when using the transmissive infrared-visible conversion element of the present invention, only infrared light necessary for infrared-visible conversion is transmitted through the substrate, and reaches the phosphor layer to be converted into visible light. The converted image can be observed with good contrast without being disturbed by visible light noise. Even when the reflective infrared conversion device of the present invention is used, since the GaAs substrate is black, the converted image has a high contrast and is easy to observe.

【0014】次に、本発明の赤外可視変換素子の製造に
おいて本発明の方法を用いた場合に結晶性が著しく改善
されることについて説明する。通常の洗浄処理を行った
後のGaAs 基板は表面が酸化膜で覆われているため、清
浄な表面を得るためには蛍光体薄膜形成に先立って500
℃以上に加熱し表面酸化膜を除去すると同時に As の脱
離を防ぐために As を供給しなければならないが、本発
明の方法を用いれば低温で酸化膜の除去ができるため A
s 供給の必要がなく、As による蛍光体の汚染を防ぐこ
とができると同時に高品質の蛍光体膜を形成することが
できる。
Next, it will be explained that the crystallinity is remarkably improved when the method of the present invention is used in the production of the infrared-visible conversion element of the present invention. The surface of the GaAs substrate after being subjected to normal cleaning treatment is covered with an oxide film.
Although As must be supplied by heating to ℃ or more to remove the surface oxide film and at the same time to prevent As desorption, the oxide film can be removed at a low temperature by using the method of the present invention.
Since it is not necessary to supply s, contamination of the phosphor by As can be prevented, and at the same time, a high quality phosphor film can be formed.

【0015】図3(a)は GaAs(111)基板上に CaS 膜を形
成したときの H2S による表面処理時の基板温度とX線
ロッキングカーブ半値幅との関係を示す図である。この
時のH2S 分圧は1×10~8Torrである。ここで、X線ロッ
キングカーブ半値幅は結晶性の良さを示す指標となるも
のであり、この数値が小さいほど結晶性が良いことを示
す。結晶性が良くなると、素子の表面平坦性が向上して
解像度が高くなり、また、欠陥も減少するために変換効
率も高くなる。図の結果から、基板温度300℃以上でX
線ロッキングカーブ半値幅は著しく低下し、本発明の方
法が結晶性向上、すなわち素子の解像度の向上、変換効
率向上に大きな効果を有していることが明らかである。
また、この効果は H2Se による表面処理後赤外輝尽蛍光
体層を形成した場合も同様であった。すなわち、図3
(b)は GaAs(111)基板上に CaS 膜を形成したときの H2S
e による表面処理時の基板温度とX線ロッキングカーブ
半値幅との関係を示した図である。この時の H2Se 分圧
は1×10~8Torrである。図の結果から、この場合も、H2
S 処理の場合と同様に、基板温度300℃以上でX線ロッ
キングカーブ半値幅は著しく低下し、本発明の方法が結
晶性向上、すなわち素子の解像度の向上、変換効率向上
に大きな効果を有していることがわかる。
FIG. 3 (a) is a diagram showing the relationship between the substrate temperature and the half-width of the X-ray rocking curve during the surface treatment with H 2 S when the CaS film is formed on the GaAs (111) substrate. The H 2 S partial pressure at this time is 1 × 10 to 8 Torr. Here, the X-ray rocking curve full width at half maximum serves as an index showing the good crystallinity, and the smaller this numerical value, the better the crystallinity. When the crystallinity is improved, the surface flatness of the device is improved, the resolution is increased, and the defects are reduced, so that the conversion efficiency is also increased. From the results shown in the figure, when the substrate temperature is 300 ° C or higher, X
The line rocking curve full width at half maximum is significantly reduced, and it is clear that the method of the present invention has a great effect on improving the crystallinity, that is, improving the resolution of the device and improving the conversion efficiency.
Further, this effect was the same when the infrared stimulable phosphor layer was formed after the surface treatment with H 2 Se. That is, FIG.
(b) H 2 S when a CaS film is formed on a GaAs (111) substrate
FIG. 6 is a diagram showing the relationship between the substrate temperature and the X-ray rocking curve half width during surface treatment with e. The H 2 Se partial pressure at this time is 1 × 10 to 8 Torr. From the results in the figure, in this case as well, H 2
Similar to the case of the S treatment, the half width of the X-ray rocking curve is remarkably reduced at the substrate temperature of 300 ° C. or higher, and the method of the present invention has a great effect on improving the crystallinity, that is, improving the resolution of the device and improving the conversion efficiency. You can see that

【0016】また、図4(a)は、GaAs(111)基板上に CaS
膜を形成したときの H2S による表面処理時のH2S 分圧
と CaS 膜のX線ロッキングカーブ半値幅との関係を示
した図である。このとき、基板表面温度は300℃とし
た。図の結果から、H2S 分圧1×10~8Torr以上でX線ロ
ッキングカーブ半値幅は著しく減少し、本発明の方法が
結晶性向上に大きな効果を有していることがわかる。ま
た、表面処理ガスをH2Seとした場合にも同様の結果が得
られた。その結果を図4(b)に示す。
Further, FIG. 4 (a) shows that CaS is formed on a GaAs (111) substrate.
FIG. 6 is a diagram showing the relationship between the H 2 S partial pressure during surface treatment with H 2 S when a film is formed and the half-width of the X-ray rocking curve of the CaS film. At this time, the substrate surface temperature was 300 ° C. From the results in the figure, it is understood that the half-width of the X-ray rocking curve is remarkably reduced at the H 2 S partial pressure of 1 × 10 to 8 Torr or more, and the method of the present invention has a great effect on the improvement of crystallinity. Similar results were obtained when the surface treatment gas was H 2 Se. The results are shown in Fig. 4 (b).

【0017】なお、本発明の方法によって基板表面処理
を施した基板表面についてオージェ電子分光法により検
査を行ったところ酸素の信号は検出されず、本発明の方
法が表面酸化膜除去に効果を有していることも明らかと
なった。
When the substrate surface treated by the method of the present invention was inspected by Auger electron spectroscopy, no oxygen signal was detected, and the method of the present invention is effective in removing the surface oxide film. It was also made clear.

【0018】[0018]

【実施例】以下、本発明の赤外可視変換素子とその製造
方法について実施例によって具体的に説明する。
EXAMPLES The infrared-visible conversion element of the present invention and the method for producing the same will be specifically described below with reference to examples.

【0019】[0019]

【実施例1】図1において基板1を面方位が(111)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したCaS 蛍光体層とした構成の赤外可視変換素子に
ついて説明する。
EXAMPLE 1 In FIG. 1, an infrared-visible conversion device having a structure in which a substrate 1 is a GaAs single crystal substrate having a plane orientation of (111) and a phosphor layer 2 is a CaS phosphor layer containing Eu and Sm. Will be described.

【0020】本素子の作成に当っては、まず、GaAs 基
板1を純水、トリクレン等で洗浄した後硫化アンモニウ
ム溶液中に浸して表面安定化処理を施し、再び純水で洗
浄、乾燥した後分子ビームエピタキシャル装置内に設置
して10~8Torr以下にまで排気し、基板を300℃に加熱し
つつH2S ガスをマスフローコントローラによって流量を
10sccmに調整しながら基板に照射した。このとき、基板
位置での H2S 分圧は7×10~6Torrであった。この状態
で10分間基板表面処理を施した後、基板温度を500℃に
上げ、Eu と Sm とを添加した CaS 蛍光体層2を20μm
の厚さで基板1上に形成した。ここで、該蛍光体層2の
形成は、Eu 濃度が500ppm、Sm 濃度が150ppmとなるよう
に、別々の蒸発源に充填したCa 金属、Eu 金属、Sm 金
属をそれぞれ調節して加熱蒸発させ、基板1に堆積させ
ると同時に H2S ガスを基板1に照射することによって
行った。また、このときの薄膜形成速度は50nm/minとし
た。
In the fabrication of this element, first, the GaAs substrate 1 is washed with pure water, trichlene, etc., then immersed in an ammonium sulfide solution for surface stabilization treatment, washed again with pure water and dried. It is installed in a molecular beam epitaxy system and exhausted to 10 to 8 Torr or less. While heating the substrate to 300 ° C, the flow rate of H 2 S gas is controlled by a mass flow controller.
The substrate was irradiated while adjusting to 10 sccm. At this time, the H 2 S partial pressure at the substrate position was 7 × 10 to 6 Torr. In this state, after the substrate surface treatment for 10 minutes, the substrate temperature was raised to 500 ° C and the CaS phosphor layer 2 containing Eu and Sm was added to 20 μm.
Formed on the substrate 1. Here, in the formation of the phosphor layer 2, Ca metal, Eu metal, and Sm metal, which are filled in different evaporation sources, are adjusted and heated and evaporated so that the Eu concentration is 500 ppm and the Sm concentration is 150 ppm. It was carried out by irradiating the substrate 1 with H 2 S gas at the same time as depositing it on the substrate 1. The thin film formation rate at this time was 50 nm / min.

【0021】以上のようにして形成した CaS 蛍光体層
2を反射電子線回折装置、X線回折装置及び透過電子顕
微鏡を用いて検査した結果、基板1にエピタキシャル成
長した単結晶膜であることが確認された。また、触針式
表面粗さ計を用いて表面粗さを測定したところ、表面の
凹凸は10nm以下で極めて平滑な膜であることであること
が確認された。
The CaS phosphor layer 2 formed as described above was inspected by using a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope. As a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate 1. Was done. Further, when the surface roughness was measured using a stylus type surface roughness meter, it was confirmed that the surface roughness was 10 nm or less and that the film was an extremely smooth film.

【0022】表1は、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度とを比較して示した表である。この結果から、本発
明の赤外可視変換素子が従来構成の赤外可視変換素子と
比較して、赤外可視変換効率が高く、かつ、解像度が高
いことがわかる。また、本発明の素子は GaAs 基板を用
いており、可視光によるノイズが重畳しないため、コン
トラストの極めて高い画像が得られた。
Table 1 shows the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. It is the table shown in comparison. From this result, it is understood that the infrared-visible conversion element of the present invention has a higher infrared-visible conversion efficiency and a higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【実施例2】図1において基板1を面方位が(111)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したCaS 蛍光体層とした構成の赤外可視変換素子に
ついて説明する。
Example 2 In FIG. 1, an infrared-visible conversion device having a structure in which the substrate 1 is a GaAs single crystal substrate whose plane orientation is the (111) direction and the phosphor layer 2 is a CaS phosphor layer to which Eu and Sm are added. Will be described.

【0025】本素子の作成に当っては、まず、GaAs 基
板1を洗浄した後真空蒸着装置内に設置し、10~6Torr以
下にまで排気し、基板1を300℃に加熱しつつ H2S ガス
をマスフローコントローラーによって流量を10sccmに調
整しながら基板1上に照射した。このとき、基板位置で
の H2S 分圧は2×10~5Torrであった。この状態で10分
間基板処理を施した後、GaAs 基板1上に Eu と Sm と
を添加した CaS 蛍光体膜2を20μmの厚さで形成した。
この場合、蛍光体膜2の形成は、酸化ユーロピウム(Eu2
O3)を500ppm、酸化サマリウム(Sm2O3)を150ppm添加した
CaS ペレットを蒸発源とする電子ビーム蒸着法によっ
て行った。また、このときの基板温度は300℃、薄膜形
成速度は50nm/minとした。
[0025] The hitting the preparation of this element, first, placed in a vacuum deposition apparatus after cleaning the GaAs substrate 1, was evacuated to less than 10 ~ 6 Torr, H 2 while heating the substrate 1 to 300 ° C. The substrate 1 was irradiated with S 2 gas while adjusting the flow rate to 10 sccm by a mass flow controller. At this time, the H 2 S partial pressure at the substrate position was 2 × 10 to 5 Torr. In this state, substrate treatment was performed for 10 minutes, and then a CaS phosphor film 2 containing Eu and Sm was formed on the GaAs substrate 1 to a thickness of 20 μm.
In this case, the phosphor film 2 is formed by europium oxide (Eu 2
O 3 ) was added at 500 ppm and samarium oxide (Sm 2 O 3 ) was added at 150 ppm.
The electron beam evaporation method was carried out using CaS pellets as the evaporation source. At this time, the substrate temperature was 300 ° C. and the thin film formation rate was 50 nm / min.

【0026】以上のようにして形成した CaS 蛍光体膜
2について反射電子線回折装置、X線回折装置及び透過
電子顕微鏡を用いて検査した結果、(111)方向に優先配
向した多結晶と基板1にエピタキシャル成長した単結晶
との混在膜であることが確認された。ここで、優先配向
とは、特定の配向を有する結晶子サイズが他の配向を有
する結晶子サイズと比較して大きい状態をいう。なお、
膜の表面粗さを触針式表面粗さ計を用いて測定したとこ
ろ、表面の凹凸は10nm以下で、極めて平滑な面が得られ
ていることが確認された。
The CaS phosphor film 2 formed as described above was inspected using a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope. As a result, the polycrystal and the substrate 1 preferentially oriented in the (111) direction were obtained. It was confirmed that it was a mixed film with a single crystal epitaxially grown. Here, the preferential orientation means a state in which the crystallite size having a specific orientation is larger than the crystallite size having another orientation. In addition,
When the surface roughness of the film was measured using a stylus type surface roughness meter, it was confirmed that the unevenness of the surface was 10 nm or less, and an extremely smooth surface was obtained.

【0027】表2に、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度を比較した結果を示す。この結果から、本発明構成
の赤外可視変換素子が従来構造の赤外可視変換素子と比
較して、赤外可視変換効率が高く、かつ、解像度が高い
ことがわかる。また、本発明の素子は GaAs 基板を用い
ており、可視光によるノイズが重畳しないため、コント
ラストの極めて高い画像が得られた。
Table 2 compares the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. The result is shown. From this result, it is understood that the infrared-visible conversion element having the configuration of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【実施例3】図1において基板1を面方位が(100)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したCaS 蛍光体層とした構成の赤外可視変換素子に
ついて説明する。
Example 3 In FIG. 1, an infrared-visible conversion device having a structure in which the substrate 1 is a GaAs single crystal substrate having a plane orientation of (100) direction and the phosphor layer 2 is a CaS phosphor layer to which Eu and Sm are added. Will be described.

【0030】本素子の作成に当っては、まず、GaAs 基
板1を純水、酸等で洗浄した後真空蒸着装置内に設置
し、10~6Torr以下にまで排気し、基板1を300℃に加熱
しつつH2S ガスをマスフローコントローラーによって流
量を10sccmに調整しながら基板に照射した。このとき、
基板位置での H2S 分圧は2×10~5Torrであった。この
状態で10分間基板表面処理を施した後、基板1上に Eu
と Sm とを添加した CaS蛍光体膜2を20μmの厚
さで形成した。ここで、蛍光体層2の形成は、Eu2O3を5
00ppm、Sm2O3 を150ppm添加したCaS ペレットを蒸発源
とする電子ビーム蒸着法によって行った。また、薄膜形
成速度は500nm/minとした。
In the fabrication of this element, first, the GaAs substrate 1 is washed with pure water, acid, etc., then placed in a vacuum vapor deposition apparatus, and the substrate 1 is evacuated to 10 to 6 Torr or less, and the substrate 1 is heated to 300 ° C. The substrate was irradiated with H 2 S gas while being heated to 10 nm while adjusting the flow rate to 10 sccm by a mass flow controller. At this time,
The H 2 S partial pressure at the substrate position was 2 × 10 to 5 Torr. In this state, after the substrate surface treatment for 10 minutes, Eu on the substrate 1
A CaS phosphor film 2 containing Sm and Sm was formed to a thickness of 20 μm. Here, the phosphor layer 2 is formed by adding 5% of Eu 2 O 3 .
The electron beam evaporation method was carried out by using CaS pellets added with 00 ppm and Sm 2 O 3 of 150 ppm as an evaporation source. The thin film formation rate was 500 nm / min.

【0031】以上のようにして形成した CaS 蛍光体膜
2について、反射電子線回折装置、X線回折装置及び透
過電子顕微鏡を用いて検査を行った結果、基板にエピタ
キシャル成長した単結晶膜であることが確認された。ま
た、表面粗さを触針式表面粗さ計を用いて測定したとこ
ろ、表面の凹凸は10nm以下で、極めて平滑な膜であるこ
とが確認された。
The CaS phosphor film 2 formed as described above was inspected by using a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, and it was found that it was a single crystal film epitaxially grown on the substrate. Was confirmed. Further, the surface roughness was measured using a stylus type surface roughness meter, and it was confirmed that the surface roughness was 10 nm or less, and the film was extremely smooth.

【0032】表3に、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度とを比較した結果を示す。この結果から、本発明の
赤外可視変換素子が従来構造の赤外可視変換素子と比較
して、赤外可視変換効率が高く、かつ、解像度が高いこ
とがわかる。また、本発明の素子は GaAs 基板を用いて
おり、可視光によるノイズが重畳しないため、コントラ
ストの極めて高い画像が得られた。
Table 3 shows the infrared-visible conversion efficiency and the resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. The result of comparison is shown. From these results, it is understood that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional structure. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【実施例4】図1において基板1を面方位が(111)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したSrS 蛍光体層とした構成の赤外可視変換素子に
ついて説明する。
Example 4 In FIG. 1, an infrared-visible conversion device having a structure in which the substrate 1 is a GaAs single crystal substrate having a (111) plane orientation and the phosphor layer 2 is an SrS phosphor layer containing Eu and Sm. Will be described.

【0035】本素子の作成に当っては、まず、GaAs 基
板1を純水、酸で洗浄した後分子ビームエピタキシャル
装置内に設置して10~8Torr以下にまで排気し、基板を30
0℃に加熱しつつ H2S ガスをマスフローコントローラに
よって流量を10sccmに調整しながら基板に照射した。こ
のとき、基板位置での H2S 分圧は7×10~6Torrであっ
た。この状態で10分間基板表面処理を施した後、基板温
度を500℃に上げ、Eu と Sm とを添加したSrS 蛍光体層
2を10μmの厚さで基板1上に形成した。ここで、該蛍
光体層2の形成は、Eu 濃度が500ppm、Sm 濃度が150ppm
となるように、別々の蒸発源に充填した Sr 金属、Eu
金属、Sm 金属をそれぞれ調節して加熱蒸発させ、基板
1に堆積させると同時に H2S ガスを基板1に照射する
ことによって行った。また、このときの薄膜形成速度は
50nm/minとした。
In the fabrication of this element, first, the GaAs substrate 1 was washed with pure water and an acid, then placed in a molecular beam epitaxial apparatus and evacuated to 10 to 8 Torr or less, and the substrate 30
The substrate was irradiated with H 2 S gas while being heated to 0 ° C. while adjusting the flow rate to 10 sccm by a mass flow controller. At this time, the H 2 S partial pressure at the substrate position was 7 × 10 to 6 Torr. After the substrate surface treatment was performed for 10 minutes in this state, the substrate temperature was raised to 500 ° C. and the SrS phosphor layer 2 containing Eu and Sm was formed on the substrate 1 to a thickness of 10 μm. Here, the phosphor layer 2 is formed such that the Eu concentration is 500 ppm and the Sm concentration is 150 ppm.
Sr metal, Eu, filled in separate evaporation sources so that
The metal and the Sm metal were individually adjusted and evaporated by heating, and deposited on the substrate 1, and at the same time, the substrate 1 was irradiated with H 2 S gas. The thin film formation rate at this time is
It was set to 50 nm / min.

【0036】以上のようにして形成した SrS 蛍光体層
2を反射電子線回折装置、X線回折装置及び透過電子顕
微鏡を用いて検査した結果、基板1にエピタキシャル成
長した単結晶膜であることが確認された。また、触針式
表面粗さ計を用いて表面粗さを測定したところ、表面の
凹凸は10nm以下で極めて平滑な膜であることであること
が確認された。
The SrS phosphor layer 2 formed as described above was inspected by using a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, and as a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate 1. Was done. Further, when the surface roughness was measured using a stylus type surface roughness meter, it was confirmed that the surface roughness was 10 nm or less and that the film was an extremely smooth film.

【0037】表4は、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度とを比較して示した表である。この結果から、本発
明の赤外可視変換素子が従来構成の赤外可視変換素子と
比較して、赤外可視変換効率が高く、かつ、解像度が高
いことがわかる。また、本発明の素子は GaAs 基板を用
いており、可視光によるノイズが重畳しないため、コン
トラストの極めて高い画像が得られた。
Table 4 shows the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. It is the table shown in comparison. From this result, it is understood that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional configuration. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【実施例5】図1において基板1を面方位が(111)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したCaSe 蛍光体層とした構成の赤外可視変換素子
について説明する。
Fifth Embodiment In FIG. 1, an infrared-visible conversion device having a structure in which the substrate 1 is a GaAs single crystal substrate whose plane orientation is the (111) direction and the phosphor layer 2 is a CaSe phosphor layer to which Eu and Sm are added. Will be described.

【0040】本素子の作成に当っては、まず、GaAs 基
板1を純水、酸で洗浄した後分子ビームエピタキシャル
装置内に設置して10~8Torr以下にまで排気し、基板を30
0℃に加熱しつつ H2S ガスをマスフローコントローラに
よって流量を10sccmに調整しながら基板に照射した。こ
のとき、基板位置での H2S 分圧は7×10~6Torrであっ
た。この状態で10分間基板表面処理を施した後、基板温
度を500℃に上げ、Eu と Sm とを添加したCaSe 蛍光体
層2を20μmの厚さで基板1上に形成した。ここで、該
蛍光体層2の形成は、Eu 濃度が300ppm、Sm 濃度が150p
pmとなるように、別々の蒸発源に充填した Ca 金属、Eu
金属、Sm 金属をそれぞれ調節して加熱蒸発させ、基板
1に堆積させると同時に H2Se ガスを基板1に照射する
ことによって行った。また、このときの基板温度は500
℃、薄膜形成速度は50nm/minとした。
In the fabrication of this element, first, the GaAs substrate 1 was washed with pure water and an acid, then placed in a molecular beam epitaxial apparatus and evacuated to 10 to 8 Torr or less, and the substrate was set to 30
The substrate was irradiated with H 2 S gas while being heated to 0 ° C. while adjusting the flow rate to 10 sccm by a mass flow controller. At this time, the H 2 S partial pressure at the substrate position was 7 × 10 to 6 Torr. After the substrate surface treatment was performed for 10 minutes in this state, the substrate temperature was raised to 500 ° C., and the CaSe phosphor layer 2 containing Eu and Sm was formed on the substrate 1 to a thickness of 20 μm. Here, the phosphor layer 2 is formed such that the Eu concentration is 300 ppm and the Sm concentration is 150 p.
Ca metal, Eu, filled in different evaporation sources so that
It was performed by adjusting the metal and the Sm metal, heating and evaporating them, depositing them on the substrate 1, and irradiating the substrate 1 with H 2 Se gas at the same time. Also, the substrate temperature at this time is 500
The temperature and the thin film formation rate were 50 nm / min.

【0041】以上のようにして形成した CaSe 蛍光体層
2を反射電子線回折装置、X線回折装置及び透過電子顕
微鏡を用いて検査した結果、基板1にエピタキシャル成
長した単結晶膜であることが確認された。また、触針式
表面粗さ計を用いて表面粗さを測定したところ、表面の
凹凸は10nm以下で極めて平滑な膜であることであること
が確認された。
The CaSe phosphor layer 2 formed as described above was inspected by using a reflection electron diffraction apparatus, an X-ray diffraction apparatus and a transmission electron microscope, and as a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate 1. Was done. Further, when the surface roughness was measured using a stylus type surface roughness meter, it was confirmed that the surface roughness was 10 nm or less and that the film was an extremely smooth film.

【0042】表5は、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度とを比較して示した表である。この結果から、本発
明の赤外可視変換素子が従来構成の赤外可視変換素子と
比較して、赤外可視変換効率が高く、かつ、解像度が高
いことがわかる。また、本発明の素子は GaAs 基板を用
いており、可視光によるノイズが重畳しないため、コン
トラストの極めて高い画像が得られた。
Table 5 shows the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. It is the table shown in comparison. From this result, it is understood that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional configuration. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【実施例6】図1において基板1を面方位が(111)方向
である GaAs 単結晶基板、蛍光体層2を Eu と Sm とを
添加したSrSe 蛍光体層とした構成の赤外可視変換素子
について説明する。
[Embodiment 6] An infrared-visible conversion device having a structure in which the substrate 1 in FIG. 1 is a GaAs single crystal substrate whose plane orientation is the (111) direction, and the phosphor layer 2 is an SrSe phosphor layer to which Eu and Sm are added. Will be described.

【0045】本素子の作成に当っては、まず、GaAs 基
板1を純水、酸で洗浄した後分子ビームエピタキシャル
装置内に設置して10~8Torr以下にまで排気し、基板を30
0℃に加熱しつつ H2Se ガスをマスフローコントローラ
によって流量を10sccmに調整しながら基板に照射した。
このとき、基板位置での H2Se 分圧は7×10~6Torrであ
った。この状態で10分間基板表面処理を施した後、基板
温度を500℃に上げ、Eu と Sm とを添加した SrSe 蛍光
体層2を10μmの厚さで基板1上に形成した。ここで、
該蛍光体層2の形成は、Eu 濃度が500ppm、Sm濃度が150
ppmとなるように、別々の蒸発源に充填した Sr 金属、E
u 金属、Sm 金属をそれぞれ調節して加熱蒸発させ、基
板1に堆積させると同時に H2Se ガスを基板1に照射す
ることによって行った。また、このときの薄膜形成速度
は50nm/minとした。
In the fabrication of this element, first, the GaAs substrate 1 was washed with pure water and an acid, then placed in a molecular beam epitaxial apparatus, and the substrate was evacuated to 10 to 8 Torr or less.
The substrate was irradiated with H 2 Se gas while being heated to 0 ° C. while adjusting the flow rate to 10 sccm by a mass flow controller.
At this time, the H 2 Se partial pressure at the substrate position was 7 × 10 to 6 Torr. After the substrate surface treatment was performed for 10 minutes in this state, the substrate temperature was raised to 500 ° C. and the SrSe phosphor layer 2 to which Eu and Sm were added was formed on the substrate 1 to a thickness of 10 μm. here,
The phosphor layer 2 is formed such that the Eu concentration is 500 ppm and the Sm concentration is 150 ppm.
Sr metal, E, charged in separate evaporation sources to ppm
u metal and Sm metal were adjusted and evaporated by heating, respectively, and deposited on the substrate 1, and at the same time, the substrate 1 was irradiated with H 2 Se gas. The thin film formation rate at this time was 50 nm / min.

【0046】以上のようにして形成した SrSe 蛍光体層
2を反射電子線回折装置、X線回折装置及び透過電子顕
微鏡を用いて検査した結果、基板1にエピタキシャル成
長した単結晶膜であることが確認された。また、触針式
表面粗さ計を用いて表面粗さを測定したところ、表面の
凹凸は10nm以下で極めて平滑な膜であることであること
が確認された。
The SrSe phosphor layer 2 formed as described above was inspected using a reflection electron beam diffractometer, an X-ray diffractometer and a transmission electron microscope, and as a result, it was confirmed that it was a single crystal film epitaxially grown on the substrate 1. Was done. In addition, when the surface roughness was measured using a stylus type surface roughness meter, it was confirmed that the unevenness on the surface was 10 nm or less and was an extremely smooth film.

【0047】表6は、上記のようにして作成した赤外可
視変換素子とガラス基板上に蛍光体層を形成して作成し
た赤外可視変換素子とについて、赤外可視変換効率と解
像度とを比較して示した表である。この結果から、本発
明の赤外可視変換素子が従来構成の赤外可視変換素子と
比較して、赤外可視変換効率が高く、かつ、解像度が高
いことがわかる。また、本発明の素子は GaAs 基板を用
いており、可視光によるノイズが重畳しないため、コン
トラストの極めて高い画像が得られた。
Table 6 shows the infrared-visible conversion efficiency and resolution of the infrared-visible conversion element prepared as described above and the infrared-visible conversion element prepared by forming the phosphor layer on the glass substrate. It is the table shown in comparison. From this result, it is understood that the infrared-visible conversion element of the present invention has higher infrared-visible conversion efficiency and higher resolution than the infrared-visible conversion element having the conventional configuration. Further, since the device of the present invention uses the GaAs substrate and noise due to visible light is not superimposed, an image with extremely high contrast was obtained.

【0048】[0048]

【表6】 [Table 6]

【0049】なお、以上の実施例においては、蛍光体層
として Eu とSm とを共に添加したCaS 或いは SrS 或い
はCaSe或いは SrSe を用い、蛍光体層形成方法として電
子ビーム蒸着法、分子ビームエピタキシャル法を用い、
また、素子構成として基板上に蛍光体層のみを設けた2
層構造のものについて説明したが、蛍光体母体として C
aS、SrS、CaSe、SrSe の混晶を用い、添加物として Ce
と Sm とを用い、蛍光体層形成方法としてスパッタ法、
MOCVD法、CVD法などの各種薄膜形成法を用いた場合に
も、解像度が高く、赤外可視変換効率の高い赤外可視変
換素子を実現することができた。また、素子構成として
反射防止を目的とする層や蛍光体の保護を目的とする層
などをさらに加えて形成した多層構造の素子でも解像
度、赤外可視変換効率の高い赤外可視変換素子を実現す
ることができた。
In the above examples, CaS, SrS, CaSe or SrSe to which both Eu and Sm have been added are used as the phosphor layer, and the electron beam evaporation method and the molecular beam epitaxial method are used as the phosphor layer forming method. Used,
In addition, as the element structure, only the phosphor layer is provided on the substrate 2
The layer structure was explained, but as the phosphor matrix, C
A mixed crystal of aS, SrS, CaSe, and SrSe is used, and Ce is used as an additive.
And Sm, a sputtering method as a phosphor layer forming method,
Even when various thin film forming methods such as the MOCVD method and the CVD method were used, an infrared-visible conversion element having high resolution and high infrared-visible conversion efficiency could be realized. In addition, an infrared-visible conversion element with high resolution and infrared-visible conversion efficiency can be realized even with a multilayer structure element formed by further adding a layer for the purpose of antireflection or a layer for the purpose of protecting the phosphor as the element structure. We were able to.

【0050】[0050]

【発明の効果】以上述べてきたように、赤外可視変換素
子を本発明構成の赤外可視変換素子とすること、すなわ
ち、基板として GaAs を用い、蛍光体として蛍光体母体
に Euと Sm との2種あるいは Ce と Sm との2種を添
加した赤外輝尽蛍光体であり、該蛍光体母体が CaS、Sr
S、CaSe、SrSeの中の何れか1種あるいはそれらの混晶
である赤外輝尽蛍光体を用いた赤外可視変換素子とする
こと、によって、従来技術の有していた課題を解決し
て、赤外可視変換効率が高く、かつ、解像度が高い赤外
可視変換素子を提供することができた。
As described above, the infrared-visible conversion element is the infrared-visible conversion element of the present invention, that is, GaAs is used as the substrate, and Eu and Sm are used as the phosphor matrix in the phosphor. Is an infrared stimulable phosphor to which two kinds of Ce or Sm are added, and the phosphor matrix is CaS, Sr.
By using any one of S, CaSe, and SrSe, or an infrared-visible conversion element that uses an infrared stimulable phosphor that is a mixed crystal thereof, the problems that the conventional technology has are solved. As a result, an infrared-visible conversion element having high infrared-visible conversion efficiency and high resolution could be provided.

【0051】また、赤外可視変換素子の製造方法を本発
明の製造方法とすること、すなわち、基板を300℃以上
に加熱しつつ、基板位置におけるガス分圧が1×10~8To
rrとなるように H2S ガスあるいは H2Se ガスを導入し
て基板の表面処理を行った後、赤外輝尽蛍光体層を形成
する方法とすることによって、赤外可視変換効率が高
く、かつ、解像度の高い赤外可視変換素子を得ることが
できる製造方法を提供することができた。
Further, the manufacturing method of the infrared-visible conversion element is the manufacturing method of the present invention, that is, the gas partial pressure at the substrate position is 1 × 10 8 to 8 To while heating the substrate to 300 ° C. or higher.
By introducing H 2 S gas or H 2 Se gas to the surface of the substrate so as to obtain rr and then forming the infrared stimulable phosphor layer, the infrared-visible conversion efficiency is high. In addition, it was possible to provide a manufacturing method capable of obtaining an infrared-visible conversion element having high resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明赤外可視変換素子の基本的構成を示す断
面図。
FIG. 1 is a sectional view showing a basic configuration of an infrared-visible conversion element of the present invention.

【図2】基板 GaAs の格子定数と蛍光体母体 CaS、Sr
S、CaSe、SrSe との格子定数の関係を示す図。
[Fig.2] Substrate GaAs lattice constant and phosphor matrix CaS, Sr
The figure which shows the relationship of lattice constant with S, CaSe, and SrSe.

【図3】(a) はH2S による基板表面処理時の基板温度と
X線ロッキングカーブ半値幅との関係を、(b) は H2Se
による基板表面処理時の基板温度とX線ロッキングカー
ブ半値幅との関係を示す図。
FIG. 3 (a) shows the relationship between the substrate temperature and the half width of the X-ray rocking curve during the surface treatment of the substrate with H 2 S, and FIG. 3 (b) shows H 2 Se.
The figure which shows the relationship between the substrate temperature and the X-ray rocking curve half value width at the time of substrate surface treatment by.

【図4】(a) は基板温度を300℃とし、H2S 分圧を変え
て CaS 膜を形成した場合のH2S 分圧と生成 CaS 膜のX
線ロッキングカーブ半値幅との関係を、(b) は基板温度
を300℃とし、H2Se 分圧を変えて CaSe 膜を形成した場
合の H2Se 分圧と生成 CaSe 膜のX線ロッキングカーブ
半値幅との関係を示す図。
[Fig. 4] (a) shows the H 2 S partial pressure and the X of the produced CaS film when the substrate temperature is 300 ° C and the H 2 S partial pressure is changed to form the CaS film.
The relationship between the line rocking curve half width, (b) is a substrate temperature of 300 ° C., X-ray rocking curve of the H 2 Se partial pressure generating CaSe film in the case of forming the CaSe film by changing the H 2 Se partial pressure The figure which shows the relationship with a half value width.

【符号の説明】[Explanation of symbols]

1… GaAs 基板、2…赤外輝尽蛍光体層。 1 ... GaAs substrate, 2 ... Infrared stimulated phosphor layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガリウムヒ素基板上に赤外輝尽蛍光体層を
形成してなる赤外可視変換素子において、上記赤外輝尽
蛍光体が、蛍光体母体に少なくともユーロピウムとサマ
リウムとの2種、あるいは、少なくともセリウムとサマ
リウムとの2種を添加した赤外輝尽蛍光体であり、か
つ、上記蛍光体母体が硫化カルシウム、硫化ストロンチ
ウム、セレン化カルシウム、セレン化ストロンチウムの
中のいずれか1種あるいはそれらの混晶であることを特
徴とする赤外可視変換素子。
1. An infrared-visible conversion device comprising an gallium arsenide substrate on which an infrared stimulable phosphor layer is formed, wherein the infrared stimulable phosphor has at least two types of phosphor matrix, europium and samarium. Alternatively, it is an infrared stimulable phosphor to which at least two kinds of cerium and samarium are added, and the phosphor matrix is any one of calcium sulfide, strontium sulfide, calcium selenide, and strontium selenide. Alternatively, an infrared-visible conversion element characterized by being a mixed crystal thereof.
【請求項2】ガリウムヒ素基板上に赤外輝尽蛍光体層を
形成してなる赤外可視変換素子の製造において、上記基
板を300℃以上に加熱しつつ、基板位置におけるガス分
圧が1×10~8Torr以上となるように硫化水素ガスあるい
はセレン化水素ガスを導入して該基板の表面処理を行っ
た後赤外輝尽蛍光体層を形成することを特徴とする赤外
可視変換素子の製造方法。
2. In the manufacture of an infrared-visible conversion element comprising an infrared stimulable phosphor layer formed on a gallium arsenide substrate, the gas partial pressure at the substrate position is 1 while heating the substrate to 300 ° C. or higher. An infrared-visible conversion characterized by forming an infrared stimulable phosphor layer after surface treatment of the substrate by introducing hydrogen sulfide gas or hydrogen selenide gas to a value of × 10 to 8 Torr or more. Manufacturing method of device.
JP3255095A 1991-10-02 1991-10-02 Infrared visible conversion device and manufacturing method Pending JPH0595132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255095A JPH0595132A (en) 1991-10-02 1991-10-02 Infrared visible conversion device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255095A JPH0595132A (en) 1991-10-02 1991-10-02 Infrared visible conversion device and manufacturing method

Publications (1)

Publication Number Publication Date
JPH0595132A true JPH0595132A (en) 1993-04-16

Family

ID=17274048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255095A Pending JPH0595132A (en) 1991-10-02 1991-10-02 Infrared visible conversion device and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0595132A (en)

Similar Documents

Publication Publication Date Title
US6589362B2 (en) Zinc oxide semiconductor member formed on silicon substrate
US20120183809A1 (en) Production Method of a Layered Body
Matsui et al. Characteristics of polarity-controlled ZnO films fabricated using the homoepitaxy technique
Mahajan et al. The characterization of highly‐zinc‐doped InP crystals
Osherov et al. Microstructure and morphology evolution in chemically deposited semiconductor films: 4. From isolated nanoparticles to monocrystalline PbS thin films on GaAs (100) substrates
US5997638A (en) Localized lattice-mismatch-accomodation dislocation network epitaxy
Wang et al. Effect of ZnO buffer layer on the quality of GaN films deposited by pulsed laser ablation
Talik et al. XPS characterisation of neodymium gallate wafers
JP2750553B2 (en) Infrared-visible conversion element
Sekiguchi et al. Structure analysis of SrTiO3 (111) polar surfaces
JPH0595132A (en) Infrared visible conversion device and manufacturing method
US4935382A (en) Method of making a semiconductor-insulator-semiconductor structure
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
Hirai et al. Crystalline properties of BP epitaxially grown on Si substrates using B2H6-PH3-H2 system
US5628834A (en) Surfactant-enhanced epitaxy
Sartel et al. Growth studies and optical properties of Zn1− xCdxO films grown by metal-organic chemical-vapor deposition
JPH04358134A (en) Infrared-visible transforming element
Nara et al. Synchrotron radiation‐assisted silicon homoepitaxy at 100° C using Si2H6/H2 mixture
Ercoli et al. F-aggregate centres in KCl films
Oyama et al. X-ray multi-crystal diffractometry analysis of heavily Te-doped GaAs grown by intermittent injection of TEGa/AsH3 in ultra high vacuum
JPH05243153A (en) Growth of semiconductor thin film
Norton et al. Spatially selective photochemical vapor deposition of GaAs on synthetic fused silica
Dhere Study of the CdS/CdTe interface and its relevance to solar cell properties
Zubkins et al. Deposition and photoluminescence of zinc gallium oxide thin films with varied stoichiometry made by reactive magnetron co-sputtering
Chen et al. ZnO thin film deposition on sapphire substrates by chemical vapor deposition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081004

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091004

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111004

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10