JPH0555568A - Thin organic film transistor - Google Patents

Thin organic film transistor

Info

Publication number
JPH0555568A
JPH0555568A JP3215748A JP21574891A JPH0555568A JP H0555568 A JPH0555568 A JP H0555568A JP 3215748 A JP3215748 A JP 3215748A JP 21574891 A JP21574891 A JP 21574891A JP H0555568 A JPH0555568 A JP H0555568A
Authority
JP
Japan
Prior art keywords
thin film
transistor
polycyclic aromatic
aromatic compound
condensed polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3215748A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3215748A priority Critical patent/JPH0555568A/en
Publication of JPH0555568A publication Critical patent/JPH0555568A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide an organic transistor having a film quality which has easy manufacture, and excellent surface properties and smoothness and excellent electric characteristics. CONSTITUTION:A thin organic film transistor which uses a doped condensed polycyclic aromatic compound thin film having 4-13 condensed benzene rings, is provided. The transistor utilizes semiconductor characteristics of a condensed polycyclic aromatic compound doped with acceptor or donor molecule. The transistor is easily manufactured and provided with excellent electric characteristics different from a semiconductor element of normally inorganic/ organic materials. Since the temperature of a substrate can be kept equal to the ambient temperature during the manufacture of the transistor, the transistor can be formed on various types of substrates. Further, since the film quality has excellent surface properties and smoothness, it is industrially useful.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランジスタに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor.

【0002】[0002]

【従来の技術】これまでSi、ガリウムひ素などの無機
材料を用いた半導体トランジスタが知られている。これ
らのトランジスタは半導体のp−n接合、MIS(金属
−絶縁体−半導体)構造を用いたものであり、それによ
り整流、増幅などの特性を示すものである。有機材料を
用いたトランジスタは考案されているが、通常有機薄膜
の薄膜形成が困難であるためトランジスタ作製が難しか
った。
2. Description of the Related Art Up to now, a semiconductor transistor using an inorganic material such as Si or gallium arsenide has been known. These transistors use a semiconductor pn junction and a MIS (metal-insulator-semiconductor) structure, and exhibit characteristics such as rectification and amplification. Although a transistor using an organic material has been devised, it is usually difficult to form an organic thin film, which makes it difficult to manufacture a transistor.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、作製
が容易で優れた特性を有する有機薄膜トランジスタを提
供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an organic thin film transistor which is easy to manufacture and has excellent characteristics.

【0004】[0004]

【課題を解決するための手段】本発明者は、薄膜形成能
の優れた有機薄膜を用いたトランジスタを得るべく鋭意
検討を重ねた結果、有機半導体である芳香族化合物の良
質の薄膜を用いた有機薄膜トランジスタを見いだし、本
発明を成すに至った。すなわち本発明は、ドーピングを
施した縮合ベンゼン環の数が4以上13以下である縮合
多環芳香族化合物薄膜を用いることを特徴とする有機薄
膜トランジスタである。本発明のトランジスタは縮合多
環芳香族化合物の薄膜が半導体的特性を有し、この電気
的特性を用いるものである。
The present inventor has conducted extensive studies to obtain a transistor using an organic thin film having an excellent thin film forming ability, and as a result, used a good quality thin film of an aromatic compound which is an organic semiconductor. The present invention has been accomplished by finding out an organic thin film transistor. That is, the present invention is an organic thin film transistor characterized by using a condensed polycyclic aromatic compound thin film in which the number of condensed condensed benzene rings is 4 or more and 13 or less. In the transistor of the present invention, the thin film of the condensed polycyclic aromatic compound has semiconductor characteristics, and this electrical characteristic is used.

【0005】本発明に用いる縮合多環芳香族化合物につ
いて説明する。本発明に用いる縮合多環芳香族化合物
は、その縮合したベンゼン環の数が4以上13以下の化
合物またはそれらの混合物である。このような化合物と
して例えば、ナフタセン、ペンタセン、ヘキサセン、ヘ
プタセン、ジベンゾペンタセン、テトラベンゾペンタセ
ン、ピレン、ジベンゾピレン、クリセン、ペリレン、コ
ロネン、テリレン、オバレン、クオテリレン、サーカム
アントラセンなどを挙げることができる。これらの化合
物の炭素の一部をN、S、Oなどの原子、カルボニル基
などの官能基に置換した誘導体も本発明に用いることが
できる。この誘導体としてトリフェノジオキサジン、ト
リフェノジチアジン、ヘキサセン−6,15−キノンな
どを挙げることができる。
The condensed polycyclic aromatic compound used in the present invention will be described. The condensed polycyclic aromatic compound used in the present invention is a compound having 4 to 13 condensed benzene rings or a mixture thereof. Examples of such compounds include naphthacene, pentacene, hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, pyrene, dibenzopyrene, chrysene, perylene, coronene, terylene, ovalene, quaterrylene, and circumanthracene. Derivatives obtained by substituting a part of carbon atoms of these compounds with atoms such as N, S and O and functional groups such as carbonyl groups can also be used in the present invention. Examples of this derivative include triphenodioxazine, triphenodithiazine, and hexacene-6,15-quinone.

【0006】つぎに、前記のドーピングが施された縮合
多環芳香族化合物薄膜について説明する。本発明のドー
ピングとは電子授与性分子(アクセクター)または電子
供与性分子(ドナー)をドーパントとして該薄膜に導入
することを意味する。従って,ドーピングが施された薄
膜は、前記の縮合多環芳香族化合物とドーパントを含有
する薄膜である。本発明に用いるドーパントとしてアク
セプター、ドナーのいずれも使用可能である。このアク
セプターとしてCl2、Br2、I2、ICl、ICl
3、IBr、IFなどのハロゲン、PF5、AsF5、
SbF5、BF3、BC13、BBr3、SO3などの
ルイス酸、HF、HC1、HNO3、H2S- O4、H
ClO4、FSO3H、ClSO3H、CF3SO3H
などのプロトン酸、酢酸、蟻酸、アミノ酸などの有機
酸、FeCl3、FeOCl、TiCl4、ZrCl
4、HfCl4、NbF5、NbCl5、TaCl5、
MoCl5、WF5、WCl6、UF6、LnCl3
(Ln=La、Ce、Nd、Pr、などのランタノイド
とY)などの遷移金属化合物、Cl- , Br- , I- ,
ClO4- 、PF6- 、AsF5- 、SbF6- 、BF
- 、スルホン酸アニオンなどの電解質アニオンなどを
挙げることができる。またドナーとしては、Li、N
a、K、Rb、Csなどのアルカリ金属、Ca、Sr、
Baなどのアルカリ土類金属、Y、La、Ce、Pr、
Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Y
bなどの希土類金属、アンモニウムイオン、R4P+、
R4As+、R3S+、アセチルコリンなどをあげるこ
とができる。これらのドーパントを縮合多環芳香族化合
物薄膜に導入するドーピングについて説明する。このド
ーピングの方法として予め縮合多環芳香族化合物の薄膜
を作製しておき、ドーパントを後で導入する方法、縮合
多環芳香族化合物薄膜作製時にドーパントを導入する方
法のいずれも使用可能である。前者の方法のドーピング
として、ガス状態のドーパントを用いる気相ドーピン
グ、溶液あるいは液体のドーパントを該薄膜に接触させ
てドーピングする液相ドーピング、個体状態のドーパン
トを該薄膜に接触させてドーパントを拡散ドーピングす
る固相ドーピングの方法をあげることができる。また液
相ドーピングにおいては電解を施すことによってドーピ
ングの効率を調整することができる。後者の方法では、
たとえば真空蒸着法を用いる場合、縮合多環芳香族化合
物とともにドーパントを共蒸着することによりドーパン
トを縮合多環芳香族化合物薄膜に導入することができ
る。またスパッタリング法で薄膜を作製する場合、縮合
多環芳香族化合物とドーパントの二元ターゲットを用い
てスパッタリングして薄膜中にドーパントを導入させる
ことができる。
Next, the condensed polycyclic aromatic compound thin film to which the above-mentioned doping is applied will be described. The doping of the present invention means introducing an electron-donating molecule (axesector) or an electron-donating molecule (donor) into the thin film as a dopant. Therefore, the doped thin film is a thin film containing the condensed polycyclic aromatic compound and the dopant. As the dopant used in the present invention, either an acceptor or a donor can be used. As the acceptor, Cl2, Br2, I2, ICl, ICl
3, halogen such as IBr, IF, PF5, AsF5,
Lewis acids such as SbF5, BF3, BC13, BBr3, SO3, HF, HC1, HNO3, H2S - O4, H
ClO4, FSO3H, ClSO3H, CF3SO3H
Protic acid such as, acetic acid, formic acid, organic acid such as amino acid, FeCl3, FeOCl, TiCl4, ZrCl
4, HfCl4, NbF5, NbCl5, TaCl5,
MoCl5, WF5, WCl6, UF6, LnCl3
(Ln = La, Ce, Nd, Pr, and other lanthanoids and Y), transition metal compounds such as Cl , Br , I ,
ClO4 , PF6 , AsF5 , SbF6 , BF
4 -, etc. electrolyte anions such as sulfonate anion can be exemplified. Further, as a donor, Li, N
Alkali metals such as a, K, Rb, Cs, Ca, Sr,
Alkaline earth metals such as Ba, Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Y
rare earth metal such as b, ammonium ion, R4P +,
R4As +, R3S +, acetylcholine and the like can be mentioned. Doping for introducing these dopants into the condensed polycyclic aromatic compound thin film will be described. As a method for this doping, either a method of previously forming a condensed polycyclic aromatic compound thin film and then introducing a dopant, or a method of introducing a dopant at the time of preparing the condensed polycyclic aromatic compound thin film can be used. As the doping of the former method, gas phase doping using a dopant in a gas state, liquid phase doping in which a solution or liquid dopant is brought into contact with the thin film to dope, and dopant in a solid state is brought into contact with the thin film to diffuse-dope the dopant The solid-state doping method may be mentioned. In liquid phase doping, the efficiency of doping can be adjusted by applying electrolysis. In the latter method,
For example, when using a vacuum evaporation method, a dopant can be introduce | transduced into a condensed polycyclic aromatic compound thin film by co-evaporating a dopant with a condensed polycyclic aromatic compound. Further, when a thin film is formed by a sputtering method, it is possible to introduce a dopant into the thin film by sputtering using a binary target of a condensed polycyclic aromatic compound and a dopant.

【0007】縮合多環芳香族化合物薄膜の形成方法とし
て、たとえば真空蒸着法、MBE法、CVD法、スパッ
タリング法などの乾式薄膜形成法を採用することができ
る。この縮合多環芳香族化合物薄膜は、基板温度が常温
でも優れた平滑性、表面性を有する。また、該化合物の
溶液をもちいてスプレーコート法、スピンコート法、ブ
レードコート法、デイップコート法などで薄膜を形成さ
せることができる。
As a method for forming the condensed polycyclic aromatic compound thin film, for example, a dry thin film forming method such as a vacuum vapor deposition method, an MBE method, a CVD method and a sputtering method can be adopted. This condensed polycyclic aromatic compound thin film has excellent smoothness and surface properties even when the substrate temperature is room temperature. Further, a thin film can be formed by using a solution of the compound by a spray coating method, a spin coating method, a blade coating method, a dip coating method or the like.

【0008】本発明のトランジスタの構造について説明
する。この構造例として電界効果型、バイポーラ型をあ
げることができる。電界効果型トランジスタ(FET)
の構成例として間隔をおいて2つの金属あるいは半導体
材料の電極(ドレインとソース)を基板上に形成してお
き、その上はドーピングされた縮合多環芳香族化合物薄
膜を作製する。さらにこの上に絶縁体薄膜を形成した上
に金属あるいは半導体の電極(ゲート)を取り付けるこ
とによりFETが作製できる。別の構成として、ゲート
電極を基板上に形成した基板上に絶縁体薄膜、ドーピン
グした縮合多環芳香族薄膜の順で形成し、その上に間隔
をおいてドレインとソース電極を取り付ける構成でFE
Tを作製することができる。バイポーラ型の構成例とし
てp型半導体−n型半導体−p型半導体の構成、n型半
導体−p型半導体−n型半導体の構成が適用できる。ド
ーピングした縮合多環芳香族化合物薄膜はこのp−型半
導体またはn−型半導体として用いる。電子授与性分子
をドーパントとしてドーピングした縮合多環芳香族化合
物薄膜はp型半導体になりやすく、電子供与性分子をド
ーパントとしてドーピングした縮合多環芳香族化合物薄
膜はn型半導体になりやすい性質を有する。本発明のバ
イポーラ型トランジスタでは構成される前記のp型半導
体あるいはn型半導体のうち少なくとも1つの半導体に
ドーピングされた縮合多環芳香族化合物薄膜を含有する
ものである。このバイポーラトランジスタの構成例とし
ては、たとえばp型半導体、n型半導体、p型半導体を
順次積層する方法で構成する場合、縮合多環芳香族化合
物薄膜を形成させた後、ドーパントを前記のドーピング
により拡散してp型あるいはn型の半導体を作製してバ
イポーラ型を構成することもできる。このバイポーラ型
トランジスタの半導体の一部、FET型トランジスタの
基板に縮合多環芳香族化合物以外の半導体を用いること
ができる。
The structure of the transistor of the present invention will be described. Examples of this structure include a field effect type and a bipolar type. Field effect transistor (FET)
As an example of the configuration of the above, two metal or semiconductor material electrodes (drain and source) are formed on a substrate at intervals, and a doped fused polycyclic aromatic compound thin film is formed on the electrodes. Further, an FET can be manufactured by forming an insulating thin film on this and attaching a metal or semiconductor electrode (gate). As another structure, a gate electrode is formed on a substrate, an insulator thin film and a doped condensed polycyclic aromatic thin film are formed in this order on a substrate, and a drain and a source electrode are attached on the FE with a space therebetween.
T can be produced. As a bipolar type configuration example, a p-type semiconductor-n-type semiconductor-p-type semiconductor configuration or an n-type semiconductor-p-type semiconductor-n-type semiconductor configuration can be applied. The doped condensed polycyclic aromatic compound thin film is used as this p-type semiconductor or n-type semiconductor. A condensed polycyclic aromatic compound thin film doped with an electron-donating molecule as a dopant is likely to be a p-type semiconductor, and a condensed polycyclic aromatic compound thin film doped with an electron-donating molecule as a dopant is likely to be an n-type semiconductor. .. The bipolar transistor of the present invention contains a condensed polycyclic aromatic compound thin film doped in at least one of the p-type semiconductors and the n-type semiconductors. As an example of the structure of this bipolar transistor, for example, when the p-type semiconductor, the n-type semiconductor, and the p-type semiconductor are sequentially laminated, a condensed polycyclic aromatic compound thin film is formed, and then the dopant is formed by the above-mentioned doping. It is also possible to form a p-type or n-type semiconductor by diffusion to form a bipolar type. A semiconductor other than the condensed polycyclic aromatic compound can be used for a part of the semiconductor of the bipolar transistor and the substrate of the FET transistor.

【0009】ここで用いる縮合多環芳香族化合物以外の
半導体として無機半導体、有機半導体のいずれも使用可
能である。ここの具体例として、無機半導体では、たと
えばシリコン、ガリウムひ素、ガリウムアルミニウムひ
素、ガリウム燐、インジウムひ素、インジウムアンチモ
ン、炭素系半導体、酸化すず、酸化インジウム、酸化チ
タン、酸化鉛、窒化ガリウム、窒化アルミニウム、Y−
Ba−Cu−O系、Bi−Sr−Ca−Cu−O系など
の複合酸化物、有機半導体としてポリアセチレン、ポリ
アリレンビニレン、ポリチオフェン、ポリアニリン、ポ
リピロール、ポリチエニレンビニレン、ポリビニルカル
バゾール、ポリフエニレンスルフィド、ポリビニレンス
ルフィド、ポリフエニレンなどの共役系高分子とこれら
の高分子にアクセプター分子またはドナー分子を導入し
た導電性高分子、テトラチアフルバレン(TTF)−テ
トラシアノキノジメタン(TCNQ)錯体、ビスエチレ
ンテトラチアフルバレン(BEDTTTF)−過塩素酸
錯体、BEDTTTF−ヨウ素錯体、TCNQ−ヨウ素
錯体、などの有機分子錯体を挙げることができる。
As the semiconductor other than the fused polycyclic aromatic compound used here, either an inorganic semiconductor or an organic semiconductor can be used. Examples of inorganic semiconductors include silicon, gallium arsenide, gallium aluminum arsenide, gallium phosphide, indium arsenide, indium antimony, carbon-based semiconductors, tin oxide, indium oxide, titanium oxide, lead oxide, gallium nitride, and aluminum nitride. , Y-
Ba-Cu-O-based, Bi-Sr-Ca-Cu-O-based composite oxides, polyacetylene, polyarylene vinylene, polythiophene, polyaniline, polypyrrole, polythienylene vinylene, polyvinylcarbazole, polyphenylene as organic semiconductors Conjugated polymers such as sulfide, polyvinylene sulfide, and polyphenylene, and conductive polymers in which acceptor or donor molecules are introduced into these polymers, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis Examples thereof include organic molecular complexes such as ethylene tetrathiafulvalene (BEDTTTF) -perchloric acid complex, BEDTTTF-iodine complex, and TCNQ-iodine complex.

【0010】また電気的特性検出、他の素子への接合の
ために電極を設けることができる。この電極の作製法と
しては、真空蒸着法、MBE法、スパッタ法、スプレー
コート法、CVD法など前記の縮合多環芳香族化合物の
薄膜形成法が利用できる。また、この電極作製を縮合多
環芳香族化合物の薄膜作製より前に行うこともできる。
この電極材料として、金、銀、銅、アルミニウム、イン
ジウム、ルビジウム、カリウム、マグネシウム、鉄など
の金属、前記の縮合多環芳香族化合物以外の半導体、な
らびにドーピングされた縮合多環芳香族化合物を用いる
ことができる。
Further, electrodes can be provided for detecting electrical characteristics and for joining to other elements. As a method for producing this electrode, the above-mentioned condensed polycyclic aromatic compound thin film forming method such as a vacuum vapor deposition method, an MBE method, a sputtering method, a spray coating method and a CVD method can be used. Further, this electrode preparation can be performed before the preparation of the condensed polycyclic aromatic compound thin film.
As the electrode material, metals such as gold, silver, copper, aluminum, indium, rubidium, potassium, magnesium and iron, semiconductors other than the condensed polycyclic aromatic compounds described above, and doped condensed polycyclic aromatic compounds are used. be able to.

【0011】このようにして作製したトランジスタは、
整流特性、増幅特性を示す。本発明のトランジスタは従
来の無機材料のトランジスタに比べ作製温度が比較的低
いこと、基板材料の限定が小さいなど容易に作製できる
特長を有する。また将来分子素子として応用することも
可能と思われ工業上有用である。
The transistor thus manufactured is
Shows rectification and amplification characteristics. The transistor of the present invention has characteristics that it can be easily manufactured, such as a relatively low manufacturing temperature and a small limitation on the substrate material as compared with the conventional inorganic material transistor. It is also industrially useful because it can be applied as a molecular device in the future.

【0012】[0012]

【実施例】次に実施例および参考例によって本発明をさ
らに詳細に説明する。
The present invention will be described in more detail with reference to Examples and Reference Examples.

【0013】[0013]

【実施例1】50μm間隔の金電極を取り付けた石英基
板上にペンタセン薄膜を2000オングストロームの膜
厚で真空蒸着法で形成させた。該薄膜上に絶縁層として
窒化シリコンを1000オングストロームの膜厚で設け
た上に金薄膜を300オングストロームの膜厚で積層し
て電極とした。ついでヨウ素ガスをペンタセン薄膜に接
触させてドーピングを行いペンタセン薄膜にヨウ素を導
入した。この構成で基板側の電極をドレイン、ソース、
表面電極をゲートとして電界効果型トランジスタを作製
した。このトランジスタの電気的特性を電流−電圧曲線
測定より評価した(ヒューレートパッカード製半導体パ
ラメータアナライザー、4145Bを使用した)。ゲー
ト電極に一定電圧を印可しながらドレイン、ソース両電
極間の印可電圧を−10から10Vで繰り返し走査して
ドレインとソース間の電流を検出してI−V曲線を測定
した。ゲート電圧は0V、−5V、5Vで変化させて測
定した。その結果、明瞭な飽和電流が観測でき、ゲート
電圧により飽和電流変化が認められ増幅特性が確認でき
た。
Example 1 A pentacene thin film having a thickness of 2000 angstrom was formed by a vacuum deposition method on a quartz substrate on which gold electrodes having a spacing of 50 μm were attached. Silicon nitride was provided as an insulating layer on the thin film to a thickness of 1000 Å, and a gold thin film was stacked to a thickness of 300 Å to form an electrode. Then, iodine gas was brought into contact with the pentacene thin film for doping to introduce iodine into the pentacene thin film. With this configuration, the electrodes on the substrate side are drain, source,
A field effect transistor was manufactured using the surface electrode as a gate. The electrical characteristics of this transistor were evaluated by measuring a current-voltage curve (using a semiconductor parameter analyzer 4145B manufactured by Hurate Packard). The IV voltage was measured by repeatedly scanning the applied voltage between the drain and source electrodes at -10 to 10 V while applying a constant voltage to the gate electrode and detecting the current between the drain and source. The gate voltage was measured at 0V, -5V and 5V. As a result, a clear saturation current was observed, and a change in saturation current was observed depending on the gate voltage, and the amplification characteristics were confirmed.

【0014】[0014]

【実施例2】金電極を部分的に設けた石英基板上に絶縁
層としてアントラセン薄膜を膜厚2000オングストロ
ームで形成させた後ペンタセン薄膜を膜厚1300オン
グストロームで作製した。ついでペンタセン薄膜上に5
0μmの間隔を置いて2つの金電極を蒸着した。ここ
で、基板側の電極をゲート電極、表面の2つの電極をド
レイン、ソース電極として電界効果型トランジスタを構
成した。ついで該薄膜をガラス容器に取り付け、Rb金
属塊を容器の底に置いた後減圧に保持した。ついで該容
器内部を減圧に保持しながら全体を150℃で加熱して
ペンタセン薄膜にRbを導入してドーピングした。実施
例1の電気的特性評価と同様にして、一定のゲート電圧
でドレイン、ソース間の電圧を変化させてドレイン−ソ
ース間の電流を測定した。その結果電流−電圧曲線の電
流飽和が認められ、ゲート電圧変化によって電流値が変
化する増幅特性が認められた。
Example 2 An anthracene thin film was formed as an insulating layer in a thickness of 2000 angstroms on a quartz substrate partially provided with a gold electrode, and then a pentacene thin film was formed in a thickness of 1300 angstroms. Then 5 on the pentacene thin film
Two gold electrodes were deposited with a spacing of 0 μm. Here, a field-effect transistor was formed by using the electrode on the substrate side as the gate electrode, the two electrodes on the surface as the drain and source electrodes. The thin film was then attached to a glass container and the Rb metal mass was placed on the bottom of the container and then held under vacuum. Then, while keeping the inside of the container under reduced pressure, the whole was heated at 150 ° C. to introduce Rb into the pentacene thin film for doping. Similarly to the electrical characteristic evaluation of Example 1, the drain-source voltage was changed at a constant gate voltage and the drain-source current was measured. As a result, current saturation of the current-voltage curve was recognized, and an amplification characteristic in which the current value changed with the change of the gate voltage was recognized.

【0015】[0015]

【実施例3】電導度20S/cmのn−型シリコン基板
上に酸化シリコン薄膜を膜厚1000オングストローム
で形成させて絶縁膜を作製した。この基板上にペンタセ
ンを膜厚2000オングストロームで真空蒸着した。さ
らに100μmの間隔で金薄膜(300オングストロー
ム膜厚)を形成させて電極とした。ついでペンタセン薄
膜をガラス容器に取り付け、ガラス容器の底にカリウム
金属塊を入れ減圧(10-6Torr)に保持した。この
ガラス容器を減圧に保持しながら、容器を170℃に加
熱してカリウム金属塊から発生する蒸気でペンタセン薄
膜にカリウムのドーピングを行った。ここでシリコン基
板をゲートとして、表面の電極をドレイン、ソースとし
て電界効果型トランジスタを作製した。実施例1と同様
にしてゲート電圧一定のもと、ドレイン−ソース両電極
間のI−V曲線を測定した。その結果、ドレイン−ソー
ス間の電圧増加とともに電流値が飽和した。またゲート
電圧を5Vから−5Vに変化させることによって、ドレ
イン−ソース間電流が増加することがわかった。
Example 3 A silicon oxide thin film was formed on an n-type silicon substrate having an electric conductivity of 20 S / cm to a film thickness of 1000 angstrom to form an insulating film. Pentacene was vacuum-deposited on this substrate at a film thickness of 2000 angstrom. Further, gold thin films (300 angstrom film thickness) were formed at intervals of 100 μm to form electrodes. Then, the pentacene thin film was attached to a glass container, and a potassium metal block was put in the bottom of the glass container and kept under reduced pressure (10 −6 Torr). While maintaining this glass container under reduced pressure, the container was heated to 170 ° C. to dope potassium into the pentacene thin film with vapor generated from a lump of potassium metal. Here, a field effect transistor was manufactured using the silicon substrate as the gate, the surface electrode as the drain, and the source. In the same manner as in Example 1, under a constant gate voltage, an IV curve between the drain and source electrodes was measured. As a result, the current value was saturated as the voltage between the drain and the source increased. It was also found that the drain-source current increases by changing the gate voltage from 5V to -5V.

【0016】[0016]

【実施例4】あらかじめ2000μmの間隔で金薄膜
(500オングストロームの膜厚)を部分的に形成させ
た石英ガラス基板上の一部にジベンゾペンタセン薄膜を
真空蒸着法で膜厚2000オングストロームで作製し
た。このジベンゾペンタセン薄膜にヨウ素蒸気を接触さ
せてジベンゾペンタセン薄膜にヨウ素をドーピングし
た。ついで金薄膜のない石英基板上に形成させたジベン
ゾペンタセンの上にルビジウム金属の線(直径100μ
m)を置き減圧下(10-5Torr)50℃に加熱して
ルビジウムをジベンゾペンタセン薄膜内部に拡散させ
た。下部の2つの電極とルビジウム金属塊を電極として
バイポーラートランジスタを構成した。下部電極の一つ
(コレクタ)の電位が一定の条件でルビジウム金属(ベ
ース)ともう一つの下部電極(エミッタ)間の電圧電流
曲線を測定した。その結果電流−電圧曲線の電流値が電
圧増加によって急激に増加することがわかった。また、
コレクタ電位の変化(0Vから−10V)によってエミ
ッターベース間の電流が増加した。
Example 4 A dibenzopentacene thin film was formed in a thickness of 2000 angstrom by a vacuum deposition method on a part of a quartz glass substrate on which a gold thin film (500 angstrom thickness) was partially formed in advance at intervals of 2000 μm. The dibenzopentacene thin film was brought into contact with iodine vapor to dope the dibenzopentacene thin film with iodine. Then, a wire of rubidium metal (diameter 100 μm was formed on the dibenzopentacene formed on the quartz substrate without the gold thin film.
m) was placed and heated under reduced pressure (10 −5 Torr) to 50 ° C. to diffuse rubidium into the dibenzopentacene thin film. A bipolar transistor was constructed using the lower two electrodes and the rubidium metal block as electrodes. The voltage-current curve between the rubidium metal (base) and the other lower electrode (emitter) was measured under the condition that the potential of one of the lower electrodes (collector) was constant. As a result, it was found that the current value of the current-voltage curve sharply increased with increasing voltage. Also,
A change in collector potential (0 V to −10 V) increased the current between the emitter and the base.

【0017】[0017]

【発明の効果】本発明のトランジスタは通常の無機材
料、有機材料の半導体素子と異なり作製が容易でありか
つ優れた増幅機能を示す。該トランジスタの製造におい
て基板温度が通常常温で行えるため種々の基板上にダイ
オードが形成可能である。また、膜質として表面性・平
滑性などに優れるため工業上有用である。
EFFECTS OF THE INVENTION The transistor of the present invention is easy to manufacture and has an excellent amplifying function unlike ordinary semiconductor elements made of inorganic materials and organic materials. In the manufacture of the transistor, the substrate temperature is usually room temperature, so that diodes can be formed on various substrates. Further, it is industrially useful because it has excellent surface properties and smoothness as a film quality.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ドーピングが施された縮合ベンゼン環の
数が4以上13以下である縮合多環芳香族化合物薄膜を
用いることを特徴とする有機薄膜トランジスタ
1. An organic thin film transistor characterized by using a condensed polycyclic aromatic compound thin film having a number of condensed condensed benzene rings of 4 or more and 13 or less.
JP3215748A 1991-08-28 1991-08-28 Thin organic film transistor Withdrawn JPH0555568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215748A JPH0555568A (en) 1991-08-28 1991-08-28 Thin organic film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215748A JPH0555568A (en) 1991-08-28 1991-08-28 Thin organic film transistor

Publications (1)

Publication Number Publication Date
JPH0555568A true JPH0555568A (en) 1993-03-05

Family

ID=16677564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215748A Withdrawn JPH0555568A (en) 1991-08-28 1991-08-28 Thin organic film transistor

Country Status (1)

Country Link
JP (1) JPH0555568A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
US6747287B1 (en) 2001-10-18 2004-06-08 Nec Corporation Organic thin film transistor
US6784452B2 (en) 2001-10-05 2004-08-31 Nec Corporation Organic thin film transistor
JP2006028055A (en) * 2004-06-17 2006-02-02 Konica Minolta Holdings Inc Organic semiconductor material, organic transistor, field-effect transistor and switching element
JP2006520101A (en) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic array production method
US7166859B2 (en) 2003-11-17 2007-01-23 Fuji Xerox Co., Ltd. Organic semiconductor transistor element, semiconductor device using the same, and process for producing the semiconductor device
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
US7361594B2 (en) 2003-11-19 2008-04-22 Seiko Epson Corporation Method of manufacturing a thin film transistor, thin film transistor, thin film transistor circuit, electronic device, and electronic apparatus
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7378683B2 (en) 2004-04-15 2008-05-27 Nec Corporation Transistor using organic material having a bridged cyclic hydrocarbon lactone structure and process for producing the same
US7425474B2 (en) 2004-02-20 2008-09-16 Seiko Epson Corporation Method of manufacturing thin film transistor, method of manufacturing electro-optical device thin film transistor, and electro-optical device
US7435989B2 (en) 2005-09-06 2008-10-14 Canon Kabushiki Kaisha Semiconductor device with layer containing polysiloxane compound
US7491967B2 (en) 2004-03-10 2009-02-17 Canon Kabushiki Kaisha Field effect transistor, method of producing the same, and method of producing laminated member
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
EP2085401A1 (en) 2008-01-22 2009-08-05 Ricoh Company, Ltd. Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
US7576208B2 (en) 2003-11-28 2009-08-18 Merck Patent Gmbh Organic semiconductor layers
US7586117B2 (en) 2004-03-24 2009-09-08 Canon Kabushiki Kaisha Field effect transistor and method of producing same
US7695999B2 (en) 2005-09-06 2010-04-13 Canon Kabushiki Kaisha Production method of semiconductor device
US7816674B2 (en) 2006-09-19 2010-10-19 Ricoh Company, Ltd. Organic thin-film transistor
US7928221B2 (en) 2006-12-27 2011-04-19 Canon Kabushiki Kaisha Compound and method of producing organic semiconductor device
US7960716B2 (en) 2004-03-10 2011-06-14 Canon Kabushiki Kaisha Field effect transistor and method of producing the same
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US8217391B2 (en) 2009-03-24 2012-07-10 Fuji Xerox Co., Ltd. Organic semiconductor transistor, method of producing the same, and electronic device
US8263972B2 (en) 2009-04-30 2012-09-11 Fuji Xerox Co. Ltd. Organic electroluminescent device and display medium
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
US8440713B2 (en) 2008-04-17 2013-05-14 Ricoh Company, Ltd. [1]benzothieno[3,2-B][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
US8487298B2 (en) 2009-03-23 2013-07-16 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US8575365B2 (en) 2010-06-15 2013-11-05 Ricoh Company, Ltd. Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
US8575599B2 (en) 2008-08-08 2013-11-05 Idemitsu Kosan Co., Ltd. Compound for organic thin film transistor and organic thin film transistor using the same
US8680296B2 (en) 2009-09-11 2014-03-25 Ricoh Company, Ltd. Leaving substituent-containing compound, products produced using the same, and methods for producing the products
US8716703B2 (en) 2011-12-26 2014-05-06 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US8766243B2 (en) 2009-11-05 2014-07-01 Idemitsu Kosan Co., Ltd. Heterocycle-containing asymmetric aromatic compound, compound for organic thin film transistor, and organic thin film transistor using the same
US8785915B2 (en) 2008-08-29 2014-07-22 Idemitsu Kosan Co., Ltd. Compound for organic thin film transistor and organic thin film transistor using the same
US8901540B2 (en) 2008-08-29 2014-12-02 Idemitsu Kosan Co., Ltd. Fused ring compounds useful in organic thin-film transistors
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
US9133211B2 (en) 2009-07-22 2015-09-15 Ricoh Company, Ltd. Dithienobenzodithiophene semiconductive material and electronic device using the same
US10011684B2 (en) 2007-09-13 2018-07-03 Ricoh Company, Ltd. Arylamine polymer, method for producing the same, ink composition, film, electronic device, organic thin-film transistor, and display device

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016599A1 (en) * 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
KR100552866B1 (en) * 2001-08-09 2006-02-20 아사히 가세이 가부시키가이샤 Organic semiconductor element
US7061010B2 (en) 2001-08-09 2006-06-13 Asahi Kasei Kabushiki Kaisha Organic semiconductor element
US6784452B2 (en) 2001-10-05 2004-08-31 Nec Corporation Organic thin film transistor
US6747287B1 (en) 2001-10-18 2004-06-08 Nec Corporation Organic thin film transistor
JP2006520101A (en) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic array production method
US7166859B2 (en) 2003-11-17 2007-01-23 Fuji Xerox Co., Ltd. Organic semiconductor transistor element, semiconductor device using the same, and process for producing the semiconductor device
US7361594B2 (en) 2003-11-19 2008-04-22 Seiko Epson Corporation Method of manufacturing a thin film transistor, thin film transistor, thin film transistor circuit, electronic device, and electronic apparatus
US7807993B2 (en) 2003-11-28 2010-10-05 Merck Patent Gmbh Organic pentacene semiconducting layers
US7842942B2 (en) 2003-11-28 2010-11-30 Merck Patent Gmbh Organic semiconducting layers
US7576208B2 (en) 2003-11-28 2009-08-18 Merck Patent Gmbh Organic semiconductor layers
US8119804B2 (en) 2003-11-28 2012-02-21 Merck Patent Gmbh Organic semiconducting layers
US7425474B2 (en) 2004-02-20 2008-09-16 Seiko Epson Corporation Method of manufacturing thin film transistor, method of manufacturing electro-optical device thin film transistor, and electro-optical device
US7960716B2 (en) 2004-03-10 2011-06-14 Canon Kabushiki Kaisha Field effect transistor and method of producing the same
US8021915B2 (en) 2004-03-10 2011-09-20 Canon Kabushiki Kaisha Field effect transistor, method of producing the same, and method of producing laminated member
US7491967B2 (en) 2004-03-10 2009-02-17 Canon Kabushiki Kaisha Field effect transistor, method of producing the same, and method of producing laminated member
US7791069B2 (en) 2004-03-24 2010-09-07 Canon Kabushiki Kaisha Field effect transistor and method of producing same
US7586117B2 (en) 2004-03-24 2009-09-08 Canon Kabushiki Kaisha Field effect transistor and method of producing same
US7378683B2 (en) 2004-04-15 2008-05-27 Nec Corporation Transistor using organic material having a bridged cyclic hydrocarbon lactone structure and process for producing the same
JP2006028055A (en) * 2004-06-17 2006-02-02 Konica Minolta Holdings Inc Organic semiconductor material, organic transistor, field-effect transistor and switching element
US7695999B2 (en) 2005-09-06 2010-04-13 Canon Kabushiki Kaisha Production method of semiconductor device
US7435989B2 (en) 2005-09-06 2008-10-14 Canon Kabushiki Kaisha Semiconductor device with layer containing polysiloxane compound
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7816674B2 (en) 2006-09-19 2010-10-19 Ricoh Company, Ltd. Organic thin-film transistor
US8217389B2 (en) 2006-10-12 2012-07-10 Idemitsu Kosan, Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
US8022401B2 (en) 2006-11-14 2011-09-20 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8148720B2 (en) 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8203139B2 (en) 2006-11-24 2012-06-19 Idemitsu Kosan Co., Ltd Organic thin film transistor and organic thin film light-emitting transistor using an organic semiconductor layer having an aromatic hydrocarbon group or an aromatic heterocyclic group in the center thereof
US8330147B2 (en) 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
US8207525B2 (en) 2006-12-04 2012-06-26 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor
US7928221B2 (en) 2006-12-27 2011-04-19 Canon Kabushiki Kaisha Compound and method of producing organic semiconductor device
US8658459B2 (en) 2006-12-27 2014-02-25 Canon Kabushiki Kaisha Compound and method of producing organic semiconductor device
US10011684B2 (en) 2007-09-13 2018-07-03 Ricoh Company, Ltd. Arylamine polymer, method for producing the same, ink composition, film, electronic device, organic thin-film transistor, and display device
US8525156B2 (en) 2007-09-26 2013-09-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor having an amorphous channel control layer with specified inozation potential
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US8193304B2 (en) 2008-01-22 2012-06-05 Ricoh Company Limited Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
EP2085401A1 (en) 2008-01-22 2009-08-05 Ricoh Company, Ltd. Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
US8440713B2 (en) 2008-04-17 2013-05-14 Ricoh Company, Ltd. [1]benzothieno[3,2-B][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
US8575599B2 (en) 2008-08-08 2013-11-05 Idemitsu Kosan Co., Ltd. Compound for organic thin film transistor and organic thin film transistor using the same
US8785915B2 (en) 2008-08-29 2014-07-22 Idemitsu Kosan Co., Ltd. Compound for organic thin film transistor and organic thin film transistor using the same
US8901540B2 (en) 2008-08-29 2014-12-02 Idemitsu Kosan Co., Ltd. Fused ring compounds useful in organic thin-film transistors
US8487298B2 (en) 2009-03-23 2013-07-16 Fuji Xerox Co., Ltd. Organic semiconductor transistor
US8217391B2 (en) 2009-03-24 2012-07-10 Fuji Xerox Co., Ltd. Organic semiconductor transistor, method of producing the same, and electronic device
US8263972B2 (en) 2009-04-30 2012-09-11 Fuji Xerox Co. Ltd. Organic electroluminescent device and display medium
US9133211B2 (en) 2009-07-22 2015-09-15 Ricoh Company, Ltd. Dithienobenzodithiophene semiconductive material and electronic device using the same
US8680296B2 (en) 2009-09-11 2014-03-25 Ricoh Company, Ltd. Leaving substituent-containing compound, products produced using the same, and methods for producing the products
US9123896B2 (en) 2009-09-11 2015-09-01 Ricoh Company, Ltd. Organic electronic device containing an organic semiconductor material film which contains a leaving substituent-containing compound
US9224959B2 (en) 2009-09-11 2015-12-29 Ricoh Company, Ltd. Method for producing a pi-electron conjugated compound
EP2975017A1 (en) 2009-09-11 2016-01-20 Ricoh Company, Ltd. Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
US8766243B2 (en) 2009-11-05 2014-07-01 Idemitsu Kosan Co., Ltd. Heterocycle-containing asymmetric aromatic compound, compound for organic thin film transistor, and organic thin film transistor using the same
US9011729B2 (en) 2010-04-22 2015-04-21 Idemitsu Kosan Co., Ltd. Organic thin-film transistor
US8952181B2 (en) 2010-06-15 2015-02-10 Ricoh Company, Ltd. Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
US8575365B2 (en) 2010-06-15 2013-11-05 Ricoh Company, Ltd. Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
US8716703B2 (en) 2011-12-26 2014-05-06 Fuji Xerox Co., Ltd. Organic semiconductor transistor

Similar Documents

Publication Publication Date Title
JPH0555568A (en) Thin organic film transistor
Brown et al. Organic n-type field-effect transistor
Tsumura et al. Polythiophene field-effect transistor: Its characteristics and operation mechanism
Yang et al. Deep-level defect characteristics in pentacene organic thin films
JP4812079B2 (en) Organic semiconductor diode
US20060099782A1 (en) Method for forming an interface between germanium and other materials
US20120104362A1 (en) Formation of ordered thin films of organics on metal oxide surfaces
JPH05110069A (en) Manufacture of field effect transistor
Abthagir et al. Junction properties of metal/polypyrrole Schottky barriers
Mativenga et al. Ambient Air Stability of Hybrid Perovskite Thin‐Film Transistors by Ambient Air Processing
Ball et al. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability
Garnier Thin film transistors based on molecular semiconductors
Erdogan et al. Modification of barrier diode with cationic dye for high power applications
Fichou et al. Semiconducting conjugated oligomers for molecular electronics
Li et al. Fine-tuning contact via complexation for high-performance organic solar cells
Gullu et al. Electrical characteristics of organic heterojunction with an alternating benzotriazole and fluorene containing copolymer
JP2002026336A (en) Device equipped with bipolar semiconductor film
Friend Conjugated polymer semiconductor devices: characterisation of charged and neutral excitations
JP4429584B2 (en) Vertical field effect transistor
US4873556A (en) Hetero-junction device
Turut et al. Metallic polythiophene/inorganic semiconductor Schottky diodes
EP0298628A2 (en) Field effect transistors
JP4704629B2 (en) Thin film transistor and manufacturing method thereof
Wei et al. Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor
KR101455600B1 (en) Organic thin film transistor and method for preparing thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112