JPH0555372A - Manufacture of oxide superconductor chip - Google Patents

Manufacture of oxide superconductor chip

Info

Publication number
JPH0555372A
JPH0555372A JP3237408A JP23740891A JPH0555372A JP H0555372 A JPH0555372 A JP H0555372A JP 3237408 A JP3237408 A JP 3237408A JP 23740891 A JP23740891 A JP 23740891A JP H0555372 A JPH0555372 A JP H0555372A
Authority
JP
Japan
Prior art keywords
substrate
oxide superconducting
superconducting film
oxide
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3237408A
Other languages
Japanese (ja)
Inventor
Osamu Toyama
修 遠山
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3237408A priority Critical patent/JPH0555372A/en
Publication of JPH0555372A publication Critical patent/JPH0555372A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Dicing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a method of manufacturing an oxide superconductor chip where an oxide superconductive film is prevented from deteriorating due to moisture and which is excellent in cut accuracy. CONSTITUTION:An oxide superconductor chip 4 is manufactured through a method composed of a first process where dividing cuts 2 are provided to a substrate 1, a second process where an oxide superconductive film 3 is provided to the other side of the substrate 1 opposite to the side where the cuts 2 are provided, a third process where the superconductive film 3 provided onto the substrate 1 is patterned into a circuit pattern which constitutes element units 31, and a fourth process where the substrate 1 where the circuit pattern has been formed is divided into element units by breaking it along the separating lines 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導膜の水分
劣化を防止した、カット精度に優れる酸化物超電導体チ
ップの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting chip which prevents deterioration of water content in an oxide superconducting film and is excellent in cutting accuracy.

【0002】[0002]

【従来の技術】従来、複数の素子単位を構成する回路パ
ターンを形成した半導体ウエハを、ダイヤモンドソー等
からなるカッターにて素子単位に分断する半導体チップ
の製造方法が知られていた。かかる方法は、手作業等に
よるカッティングでは形成が困難な小さいチップでも容
易に、かつ効率的に形成できる利点があるが、その分断
時に水を供給してカッターの冷却や切削屑の除去等を行
う必要がある。
2. Description of the Related Art Conventionally, there has been known a method of manufacturing a semiconductor chip in which a semiconductor wafer on which a circuit pattern forming a plurality of element units is formed is divided into element units by a cutter such as a diamond saw. This method has the advantage that even small chips, which are difficult to form by cutting by hand or the like, can be easily and efficiently formed, but at the time of cutting, water is supplied to cool the cutter and remove cutting chips. There is a need.

【0003】しかしながら、前記の方法を酸化物超電導
体チップの製造に適用した場合、分断時に供給する水に
より酸化物超電導膜が劣化する問題点があった。
However, when the above method is applied to the production of oxide superconductor chips, there is a problem that the oxide superconducting film is deteriorated by the water supplied at the time of cutting.

【0004】[0004]

【発明が解決しようとする課題】本発明は、酸化物超電
導膜の水分劣化を防止した、カット精度に優れる酸化物
超電導体チップの製造方法の開発を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to develop a method for producing an oxide superconducting chip which is excellent in cutting accuracy and which prevents moisture deterioration of the oxide superconducting film.

【0005】[0005]

【課題を解決するための手段】本発明は、基板に分断用
の切れ目を入れる工程、切れ目を入れた基板の他面に酸
化物超電導膜を設ける工程、基板上に設けた酸化物超電
導膜をパターンニングして複数の素子単位を構成する回
路パターンを形成する工程、回路パターンを形成した基
板をその分断用の切れ目を介しブレーキングして素子単
位に分断する工程からなることを特徴とする酸化物超電
導体チップの製造方法を提供するものである。
According to the present invention, there is provided a step of making a cut for dividing a substrate, a step of providing an oxide superconducting film on the other surface of the substrate having the cut, and an oxide superconducting film provided on the substrate. Oxidation, which comprises a step of patterning to form a circuit pattern that constitutes a plurality of element units, and a step of breaking the substrate on which the circuit pattern is formed into element units by breaking it through a cut for cutting Provided is a method for manufacturing a superconductor chip.

【0006】[0006]

【作用】基板に予め分断用の切れ目を入れ、それに酸化
物超電導膜を設けて回路パターン化し、そののち素子単
位に分断する上記の方法により、酸化物超電導膜の付設
工程以後、酸化物超電導体チップを得るまでに水分が関
与することを回避でき、酸化物超電導膜が水分で劣化す
ることを防止できる。
The oxide superconducting film is attached after the step of attaching the oxide superconducting film by the above-mentioned method in which the substrate is preliminarily provided with a cutting cut, an oxide superconducting film is provided on the substrate to form a circuit pattern, and then the device is divided into units. It is possible to avoid the involvement of water until the chip is obtained, and it is possible to prevent the oxide superconducting film from being deteriorated by water.

【0007】[0007]

【実施例】本発明においては、図1に例示の如く、まず
基板1にダイヤモンドソーの如き適宜なカッターを用い
て、分断用の切れ目2を入れる。その際、冷却水や洗浄
水等を供給することができる。設ける切れ目は、目的と
する素子単位、すなわち酸化物超電導体チップの寸法に
応じたものとされる。切れ目の深さは、ブレーキング性
等に応じて適宜に決定されるが、一般には基板厚さの5
0〜95%とされる。基板としては、MgOやSrTiO3
等のセラミックなどからなる適宜なものを用いてよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as shown in FIG. 1, first, a cut 2 for cutting is made on a substrate 1 by using an appropriate cutter such as a diamond saw. At that time, cooling water, cleaning water, or the like can be supplied. The discontinuity to be provided depends on the intended element unit, that is, the size of the oxide superconductor chip. The depth of the cut is appropriately determined depending on the braking property and the like, but is generally 5 times the substrate thickness.
It is set to 0 to 95%. As a substrate, MgO or SrTiO 3
An appropriate material such as ceramics may be used.

【0008】切れ目を入れた基板には、その他面に図2
に例示の如く、酸化物超電導膜3が設けられる。基板上
への酸化物超電導膜の付設は、例えばスパッタリング
法、レーザースパッタリング法、イオンビームスパッタ
リング法、MBE法、MOCVD法、ゾル・ゲル法、噴
霧熱分解法などの任意な方式で行ってよい。設ける酸化
物超電導膜の厚さは任意であるが、通例500μm以下
である。
On the other side of the notched substrate, as shown in FIG.
The oxide superconducting film 3 is provided as illustrated in FIG. The oxide superconducting film may be attached on the substrate by any method such as a sputtering method, a laser sputtering method, an ion beam sputtering method, an MBE method, a MOCVD method, a sol-gel method, and a spray pyrolysis method. The thickness of the oxide superconducting film provided is arbitrary, but is usually 500 μm or less.

【0009】酸化物超電導膜の種類も任意である。その
例としては、YBa2Cu3yやYBa2Cu4yの如きY系
酸化物超電導体、Ba1-xxBiO3の如きBa系酸化物超
電導体、Nd2-xCexCuOyの如きNd系酸化物超電導
体、Bi2Sr2CaCu2y、Bi2-xPbxSr2Ca2Cu3y
の如きBi系酸化物超電導体、その他La系酸化物超電導
体、Tl系酸化物超電導体、Pb系酸化物超電導体などか
らなるものがあげられる。
The type of oxide superconducting film is also arbitrary. Examples thereof include Y-based oxide superconductors such as YBa 2 Cu 3 O y and YBa 2 Cu 4 O y , Ba - based oxide superconductors such as Ba 1-x K x BiO 3 , Nd 2-x Ce x. Nd-based oxide superconductors such as CuO y , Bi 2 Sr 2 CaCu 2 O y , Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y
Examples thereof include Bi-based oxide superconductors, La-based oxide superconductors, Tl-based oxide superconductors, Pb-based oxide superconductors, and the like.

【0010】また、前記のY等の成分を他の希土類元素
で置換したものや、Ba等の成分を他のアルカリ土類金
属で置換したもの、あるいはO成分をFなどで置換した
ものなどもあげられる。さらに、ピンニングセンターを
含有させたものなどもあげられる。
Further, the above-mentioned components such as Y are substituted with other rare earth elements, the components such as Ba are substituted with other alkaline earth metals, and the O components are substituted with F and the like. can give. Furthermore, the thing containing the pinning center etc. is mentioned.

【0011】基板上に設けられた酸化物超電導膜は、次
に図3に例示の如く、複数の素子単位31を構成する回
路パターンにパターンニングされる。パターンニングは
例えば、フォトリソグラフィー方式などにより酸化物超
電導膜の上にレジスト等からなる被覆パターンを設けた
のち、酸化物超電導膜の露出部分をエッチング処理する
方法などにより行うことができる。
Next, the oxide superconducting film provided on the substrate is patterned into a circuit pattern forming a plurality of element units 31, as illustrated in FIG. The patterning can be performed, for example, by providing a coating pattern made of a resist or the like on the oxide superconducting film by a photolithography method and then etching the exposed portion of the oxide superconducting film.

【0012】酸化物超電導膜のエッチング処理は例え
ば、塩素ガス、アルゴンガス、水素ガス等の適宜なエッ
チャントを用いたリアクティブイオンエッチング方式、
イオンビームエッチング方式、レーザービームエッチン
グ方式、ECRプラズマエッチング方式などにより行う
ことができる。
The oxide superconducting film is etched by, for example, a reactive ion etching method using an appropriate etchant such as chlorine gas, argon gas, hydrogen gas,
It can be performed by an ion beam etching method, a laser beam etching method, an ECR plasma etching method, or the like.

【0013】形成する酸化物超電導膜の回路パターン
は、ダイオードやトランジスタ、あるいはセンサーなど
の、目的とする超電導応用デバイスにより決定される。
本発明においては、かかる超電導応用デバイスとしての
素子単位が基板上に複数形成された回路パターンとされ
る。
The circuit pattern of the oxide superconducting film to be formed is determined by the intended superconducting application device such as a diode, a transistor, or a sensor.
In the present invention, a circuit pattern in which a plurality of element units as such a superconducting application device are formed on a substrate.

【0014】なおエッチング処理後、酸化物超電導膜の
回路パターン上に残存するレジスト層等は、例えば酸素
ガスを用いたリアクティブイオンエッチング方式などの
2アッシング方式などにより除去することができる。
After the etching treatment, the resist layer or the like remaining on the circuit pattern of the oxide superconducting film can be removed by an O 2 ashing method such as a reactive ion etching method using oxygen gas.

【0015】回路パターンを形成した基板は、次に図4
に例示の如く、その分断用の切れ目2を利用してブレー
キングし、素子単位4に分断される。ブレーキングは、
例えば押圧ローラ等を押し付ける方式など、適宜に行っ
てよい。
The substrate on which the circuit pattern has been formed is next shown in FIG.
As illustrated in FIG. 2, the breaking 2 for breaking is used to perform braking, and the element unit 4 is divided. Braking is
For example, a method of pressing a pressing roller or the like may be appropriately performed.

【0016】ちなみに、厚さ1mmのMgO基板にダイヤ
モンドソーにて深さ0.8mmの切れ目を、水冷下に縦横
5mmの間隔で入れたのち、その基板の裏面上にゾル・ゲ
ル法で厚さ約4μmのYBa2Cu3y系酸化物超電導膜を
形成した、
By the way, 0.8 mm deep cuts were made in a 1 mm thick MgO substrate with a diamond saw at intervals of 5 mm in length and width under water cooling, and the thickness was then applied to the back surface of the substrate by the sol-gel method. A YBa 2 Cu 3 O y based oxide superconducting film of about 4 μm was formed,

【0017】前記YBa2Cu3y系酸化物超電導膜の形
成は、80℃に加温したプロピオン酸1000mlに、酢
酸イットリウム0.07モル、酢酸バリウム0.14モ
ル、酢酸銅0.21モルを溶解冷却させて得た溶液を、
スピンコート方式により基板上に展開して厚さ約5μm
の展開層を形成し、その展開層を自然乾燥1時間後、
0.1Torr、150℃で1時間乾燥させたのち480℃
で1時間熱分解処理し(大気中)、ついで先の熱分解層
の上に新たな展開層を形成して熱分解する操作を9回繰
り返して合計10層の熱分解層からなる重畳層を形成し
たのち、それを酸素雰囲気下、900℃で2時間焼結処
理し、ついで400℃で5時間酸素アニールすることに
より行った。
The YBa 2 Cu 3 O y type oxide superconducting film is formed by adding 1000 ml of propionic acid heated at 80 ° C. to 0.07 mol of yttrium acetate, 0.14 mol of barium acetate and 0.21 mol of copper acetate. The solution obtained by dissolving and cooling
Approximately 5 μm thick when developed on a substrate by spin coating
Of the developed layer, and after the natural drying for 1 hour,
After drying at 0.1 Torr and 150 ℃ for 1 hour, 480 ℃
Pyrolysis treatment for 1 hour (in air), then forming a new development layer on the previous pyrolysis layer and pyrolyzing it 9 times to form a superposed layer consisting of 10 pyrolysis layers in total. After the formation, it was performed by sintering it at 900 ° C. for 2 hours in an oxygen atmosphere, and then performing oxygen annealing at 400 ° C. for 5 hours.

【0018】次に、前記YBa2Cu3y系酸化物超電導
膜の上にフォトリソグラフィー方式でレジストパターン
を形成後、平行平板型リアクティブイオンエッチング装
置を用いて、5/106Torr以下の真空下に塩素ガ
スと水素ガスによりエッチング処理して酸化物超電導膜
の回路パターンを形成し、次いで酸素ガスによりその回
路パターン上のレジストを除去した。
Next, after forming a resist pattern on the YBa 2 Cu 3 O y type oxide superconducting film by a photolithography method, a parallel plate type reactive ion etching apparatus is used to obtain a resist pattern of 5/10 6 Torr or less. A circuit pattern of the oxide superconducting film was formed by etching with chlorine gas and hydrogen gas under vacuum, and then the resist on the circuit pattern was removed with oxygen gas.

【0019】次に前記で得た、複数の素子単位からなる
回路パターンを有するMgO基板を押圧ローラを押し付
けるブレーキング方式により素子単位に分断して5mm角
の酸化物超電導体チップを得た。
Next, the MgO substrate having a circuit pattern consisting of a plurality of element units obtained above was divided into element units by a breaking method in which a pressing roller was pressed to obtain a 5 mm square oxide superconductor chip.

【0020】前記において、得られた酸化物超電導体チ
ップにおける酸化物超電導膜(デバイス回路パターン)
の臨界温度は83Kで、臨界電流密度は7400A/cm
2(77.3K)であった。なお、パターンニング前にお
ける酸化物超電導膜の臨界温度は83Kで、臨界電流密
度は7400A/cm2(77.3K)であった。
In the above, the oxide superconducting film (device circuit pattern) in the obtained oxide superconducting chip
Has a critical temperature of 83K and a critical current density of 7400A / cm
2 (77.3K). The critical temperature of the oxide superconducting film before patterning was 83K, and the critical current density was 7400A / cm 2 (77.3K).

【0021】一方、比較のために、基板のダイシング工
程を回路パターン形成後としたほかは、すなわち酸化物
超電導膜の回路パターン形成後に基板を水冷下に切れ目
を入れて分断したほかは前記の実施例に準じて酸化物超
電導体チップを得た。得られた酸化物超電導体チップに
おける酸化物超電導膜の臨界温度は60Kであった。
On the other hand, for comparison, except that the dicing step of the substrate was performed after the circuit pattern was formed, that is, the substrate was cut under water cooling to be divided after the circuit pattern of the oxide superconducting film was formed, and the above-described execution was performed. An oxide superconductor chip was obtained according to the example. The critical temperature of the oxide superconducting film in the obtained oxide superconductor chip was 60K.

【0022】なお前記において、臨界温度は0.1A/c
m2の電流密度下、液体窒素で冷却しながら4端子法で電
気抵抗の温度変化を測定し、電圧端子間の発生電圧が0
となったときの温度である。
In the above, the critical temperature is 0.1 A / c.
The temperature change of the electrical resistance was measured by the 4-terminal method while cooling with liquid nitrogen under a current density of m 2 , and the generated voltage between the voltage terminals was 0.
Is the temperature at which

【0023】また臨界電流密度は、パワーリードと共に
液体窒素で冷却しながら徐々に電流値を上げて、4端子
法により電圧端子間の電圧の印加電流による変化を測定
し、X−Yレコーダにおいて1μv/cmの電圧が出現し
たときの電流値を超電導体の断面積で除した値である。
For the critical current density, the current value is gradually increased while cooling with liquid nitrogen along with the power lead, and the change in the voltage between the voltage terminals due to the applied current is measured by the 4-terminal method. It is the value obtained by dividing the current value when a voltage of / cm appears by the cross-sectional area of the superconductor.

【0024】本発明による酸化物超電導体チップの製造
方法は、例えばダイオードやトランジスタ、あるいはセ
ンサーなどの超電導を応用したデバイス、特に小型のデ
バイスを量産する場合などに好ましく用いることができ
る。
The method for producing an oxide superconductor chip according to the present invention can be preferably used, for example, when mass-producing a device to which superconductivity is applied, such as a diode, a transistor, or a sensor, particularly a small device.

【0025】[0025]

【発明の効果】本発明によれば酸化物超電導膜が水分等
で劣化することを防止でき、超電導特性の維持率に優れ
る小サイズの酸化物超電導体チップを効率的に製造する
ことができる。
According to the present invention, it is possible to prevent the oxide superconducting film from deteriorating due to moisture or the like, and it is possible to efficiently manufacture a small-sized oxide superconductor chip having an excellent maintenance rate of superconducting properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】分断用の切れ目を入れる工程の説明図。FIG. 1 is an explanatory diagram of a process of making a cut for division.

【図2】酸化物超電導膜付設工程の説明図。FIG. 2 is an explanatory view of a step of attaching an oxide superconducting film.

【図3】酸化物超電導膜のパターンニング工程の説明
図。
FIG. 3 is an explanatory view of a patterning process of an oxide superconducting film.

【図4】分断工程の説明図。FIG. 4 is an explanatory diagram of a dividing step.

【符号の説明】[Explanation of symbols]

1:基板 2:切れ目 3:酸化物超電導膜 31:素子単位(デバイス回路パターン) 4:酸化物超電導体チップ 1: Substrate 2: Cut 3: Oxide superconducting film 31: Element unit (device circuit pattern) 4: Oxide superconductor chip

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板に分断用の切れ目を入れる工程、切
れ目を入れた基板の他面に酸化物超電導膜を設ける工
程、基板上に設けた酸化物超電導膜をパターンニングし
て複数の素子単位を構成する回路パターンを形成する工
程、回路パターンを形成した基板をその分断用の切れ目
を介しブレーキングして素子単位に分断する工程からな
ることを特徴とする酸化物超電導体チップの製造方法。
1. A step of forming a cut for dividing a substrate, a step of providing an oxide superconducting film on the other surface of the cut substrate, and a patterning of the oxide superconducting film provided on the substrate to form a plurality of device units. And a step of breaking the substrate on which the circuit pattern is formed through the dividing slits to divide the substrate into element units.
JP3237408A 1991-08-23 1991-08-23 Manufacture of oxide superconductor chip Pending JPH0555372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237408A JPH0555372A (en) 1991-08-23 1991-08-23 Manufacture of oxide superconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237408A JPH0555372A (en) 1991-08-23 1991-08-23 Manufacture of oxide superconductor chip

Publications (1)

Publication Number Publication Date
JPH0555372A true JPH0555372A (en) 1993-03-05

Family

ID=17014941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237408A Pending JPH0555372A (en) 1991-08-23 1991-08-23 Manufacture of oxide superconductor chip

Country Status (1)

Country Link
JP (1) JPH0555372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018870A1 (en) * 2011-08-02 2013-02-07 古河電気工業株式会社 Superconductor manufacturing method, superconductor, and superconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018870A1 (en) * 2011-08-02 2013-02-07 古河電気工業株式会社 Superconductor manufacturing method, superconductor, and superconductor substrate
JPWO2013018870A1 (en) * 2011-08-02 2015-03-05 古河電気工業株式会社 Superconducting conductor manufacturing method, superconducting conductor and superconducting conductor substrate

Similar Documents

Publication Publication Date Title
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
EP0660428B1 (en) Method for forming a step on a deposition surface of a substrate for a superconducting device utilizing an oxide superconductor
US6023072A (en) Superconductor hetero-epitaxial josephson junction
EP0546958B1 (en) Superconducting field-effect transitor having an extremly thin superconducting channel formed of oxide superconductor material
JP2963614B2 (en) Method for manufacturing oxide superconductor junction element
EP0798789A1 (en) Method for manufacturing a superconducting device having an extremely thin superconducting channel
JPH0555372A (en) Manufacture of oxide superconductor chip
KR100372889B1 (en) Ramp edge josephson junction devices and methods for fabricating the same
EP0546957B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
EP0508844B1 (en) Superconducting thin film having at least one isolated superconducting region formed of oxide superconductor material and method for manufacturing the same
JPH104223A (en) Oxide superconducting josephson element
JPH0714079B2 (en) Oxide superconducting three-terminal device
JPH10150228A (en) Superconductive circuit and its manufacture
EP0534811B1 (en) Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film
JP3425422B2 (en) Superconducting element manufacturing method
EP0325408A2 (en) Semiconductor device having an interconnection layer
JP2908346B2 (en) Superconducting structure
JPH0548154A (en) Manufacture of oxide superconductor chip
JP4843772B2 (en) Method for manufacturing superconducting circuit device
KR100400080B1 (en) Josephson junction including superconducting MgB2 thin film and method for manufacturing the same
JP3147999B2 (en) Josephson junction device and method of manufacturing the same
JP2614942B2 (en) Superconducting integrated circuit device manufacturing method
JP2544390B2 (en) Oxide superconducting integrated circuit
JPH05167122A (en) Manufacture of superconducting device
JPH04284632A (en) Formation of superconductor line