JPH055533B2 - - Google Patents

Info

Publication number
JPH055533B2
JPH055533B2 JP16007588A JP16007588A JPH055533B2 JP H055533 B2 JPH055533 B2 JP H055533B2 JP 16007588 A JP16007588 A JP 16007588A JP 16007588 A JP16007588 A JP 16007588A JP H055533 B2 JPH055533 B2 JP H055533B2
Authority
JP
Japan
Prior art keywords
gas separation
membrane
polymer
acid ester
vinyl monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16007588A
Other languages
Japanese (ja)
Other versions
JPH029430A (en
Inventor
Tasuke Sawada
Shigeru Ryuzaki
Koji Takemoto
Yozo Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63160075A priority Critical patent/JPH029430A/en
Publication of JPH029430A publication Critical patent/JPH029430A/en
Publication of JPH055533B2 publication Critical patent/JPH055533B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は混合気体を分離濃縮するのに使用され
る気体分離膜と気体分離複合膜に関するものであ
る。 従来の技術 近年、有機高分子を用いた気体分離膜が数多く
提案されている。気体分離膜を用いて空気中の酸
素を安価に分離濃縮できるならば、燃焼、製鉄、
窯業、廃棄物処理、医療の分野で多大な貢献をす
ることができると期待されている。 酸素分離膜には、空気などのような酸素を含む
気体から選択的に酸素を分離する機能が大きいこ
と、および、効率よく酸素を透過させる機能が大
きいこと、すなわち、酸素選択係数と酸素透過係
数とが大きいことが要求される。空気中から酸素
を分離濃縮する場合、酸素選択係数αは(酸素透
過係数)/(窒素透過係数)の値で表わされる。
一般に、有機高分子は酸素選択係数が大きくなる
と、酸素透過係数が小さくなる傾向にある。また
実用上から言えば、酸素分離膜の強度も必要とな
る。 酸素選択係数は小さく(α=2程度)、酸素透
過係数が大きい点に注目し、膜強度を強化した気
体分離膜として、オルガノポリシロキサンとポリ
カーボネートの共重合体(特開昭51−121485号公
報)や、多官能性高分子と末端官能性高分子の混
合物とα,ω−2官能性ポリアルキルメチルシロ
キサンとの架橋型共重合体(特開昭60−71006号
公報)が知られている。 一方、酸素選択係数の大きい有機高分子として
は、ポリメチルペンテンやポリフエニレンオキサ
イドが知られている。またフマル酸エステルの重
合体も酸素選択係数の大きい材料として報告され
ている(特開昭61−42320号公報)。これらの有機
高分子は膜強度が十分大きく、ポリシロキサンや
その共重合体に比べて酸素透過性が劣つてはいる
ものの、高濃度の酸素を得ることができる。 このような有機高分子を薄膜化する方法の一つ
に、溶剤に溶解させた有機高分子を水面上に展開
し、溶剤を蒸発させて、気体分離膜を形成し、こ
れを多孔性支持膜に移し得る方法がある(特開昭
56−92926号公報など)。メチルペンテンに関して
は、メチルペンテンにポリオルガノシロキサン共
重合体を添加して薄膜を得る方法が知られている
(特開昭60−102907号公報)。 発明が解決しようとする課題 オルガノシロキサンの共重合体を溶剤に溶解
し、それを水面上に展開して、気体分離膜を形成
し、得られた気体分離膜を多孔性支持膜上に直接
積層した気体分離複合膜は、高温高湿中に放置す
ると、その気体の透過流量が低下するという欠点
をもつている。 一方、ポリメチルペンテンやポリフエニレンオ
キサイドやフマル酸エステルの重合体、およびそ
の共重合体を溶剤に溶解し、それを水面上に展開
して、気体分離膜を形成し、発明者らがすでに提
案している方法(多孔性支持膜上に接着層を設け
る方法、多孔性支持膜上に柔軟性高分子で凹凸部
を形成する方法、または多孔性支持膜に分離膜を
侵かさない溶剤を含浸させ付着させる方法)を用
いて多孔性支持膜上に気体分離膜を積層した気体
分離複合膜は、その酸素分離係数αが3以上と大
きいものの、酸素透過性があまりよくなく、実使
用上、多量の酸素富化空気を得ることができない
ことが判明した。また、この気体分離複合膜は、
高温高湿中に放置すると、オルガノシロキサンの
共重合体以上の気体の透過低下するという欠点も
もつている。 本発明は上記欠点に鑑み、高温高湿中に放置し
ても気体の透過流量の低下が小さい気体分離膜、
および酸素選択係数が大きく、また酸素透過性に
優れ、高温高湿中での放置でも気体の透過流量の
低下が小さい気体分離膜と、気体分離複合膜とを
提供しようとするものである。 課題を解決するための手段 本発明の気体分離膜は、ビニル基を含むポリオ
ルガノシロキサンとビニルモノマーとを反応させ
て得られる重合体であり、またこの重合体に、フ
マル酸エステルの重合体、またはフマル酸エステ
ルとビニルモノマーとの共重合体を全重量の10〜
90重量%混合するものである。 さらに、本発明の気体分離複合膜は、多孔性支
持膜上に、ビニル基を含むポリオルガノシロキサ
ンとビニルモノマーとを反応させて得られる重合
体とフマル酸エステルの重合体、およびその共重
合体とを10〜90重量%混合してなる気体分離膜を
積層し、さらにその上にビニル基を含むポリオル
ガノシロキサンとビニルモノマーとを反応させて
得られる重合体を積層したものである。 作 用 気体分離膜中にシロキサン構造を含む割合が大
きいと、高温高湿中に放置しても気体の透過流量
低下が小さい。したがつて、分離という観点から
はポリオルガノシロキサン単独膜が望ましいが、
その膜強度が小さいために、その単独の薄膜で使
用することはできない。 本発明はポリオルガノシロキサンとビニルモノ
マーを反応させて得られる重合体で構成されてい
るので、シロキサン構造の割合が大きい、膜強度
の強い気体分離膜となり、高温高湿中に放置して
もその気体の透過流量の低下が小さい。 また、高温高湿中での気体の透過流量の低下は
大きいものの、その酸素選択係数が大きい(α=
3.5程度)フマル酸エステルの重合体、またはフ
マル酸エステル/ビニルモノマー共重合体と上記
ポリオルガノシロキサン/ビニルモノマー重合体
とを混合することで、酸素選択係数が大きく(α
=2.5以上)、また、気体分離膜中にシロキサン構
造を含む重合体が存在するために、酸素透過性が
良好で、高温高湿中に放置しても気体の透過流量
の低下の小さい気体分離膜が得られる。 一方、本発明の気体分離複合膜は多孔性支持膜
上に上記混合気体分離膜を積層し、さらにその上
に上記ポリオルガノシロキサン/ビニルモノマー
重合体を積層したものであるので、酸素選択係数
が大きく(α=2.5以上)、シロキサン構造を含む
重合体が最表面を覆つている構造となり、高温高
湿中に放置しても気体の透過流量の低下がさらに
小さい気体分離複合膜を得ることができることと
なる。 実施例 以下本発明の実施例について説明する。本発明
は本実施例に限定されるものではない。 実施例 1 ビニル基を含むジメチルポリシロキサン(トー
レ・シリコーン株式会社商品名「SH410」)50.0g
をモノクロルベンゼン600mlに溶解し、それにス
チレンモノマーを10.0g添加し、さらに、過酸化
物として2,5ジメチル2,5ジ(ターシヤリブ
チルパーオキシ)ヘキサン(日本油脂株式会社商
品名「パーヘキサ25B」)を0.25g添加してから、
窒素ガスで脱気し、そして、窒素雰囲気中で温度
120℃で、12時間反応させた。この重合溶液を5
のメタノールに投入して沈殿物を得た。この沈
殿物を精製し、ジメチルポリシロキサンとスチレ
ンとの重合体を得た。 この重合体をベンゼンに溶解して、2重量%の
ベンゼン溶液を調製し、さらにこの溶液に対して
5重量%のテトラヒドロフランを添加して製膜液
とした。 この製膜液を水面上に滴下して、薄膜を形成
し、多孔性支持膜としてポリエーテルスルホン上
に2層積層して気体分離複合膜を得た。 実施例 2 実施例1においてスチレンモノマーの量を
20.0gとし、他の物質量、および重合方法、製膜
液調製方法、製膜方法については実施例1と同じ
条件として気体分離複合膜を得た。 実施例 3 実施例1において重合されたジメチルポリシロ
キサンとスチレンモノマーとの重合体と、ポリジ
ターシヤリブチルフマレートとを等重量とり、こ
の2種類の重合体の2重量%のベンゼン溶液を調
製し、さらにこの溶液に対して10重量%のテトラ
ヒドロフランを添加して製膜液とした。 この製膜液を水面上に滴下して、薄膜を形成
し、多孔性支持膜としてポリエーテルスルホン上
に2層積層し気体分離複合膜を得た。 実施例 4 実施例3のポリジターシヤリブチルフマレート
の代りにジターシヤリブチルフマレートを使用
し、これと酢酸ビニルの5重量%の共重合体と
し、製膜液調整方法、製膜方法については実施例
3と同じ条件として気体分離複合膜を得た。 実施例 5 製膜液調製までは実施例1と同じ条件で行い、
得られた製膜液を水面に滴下して、薄膜を形成
し、実施例4で得た気体分離複合膜上に1層積層
して気体分離複合膜を得た。 実施例 6 実施例3のポリジターシヤリブチルフマレート
の代りにジターシヤリブチルフマレートを使用
し、それと酢酸ビニルの5重量%の共重合体と
し、また多孔性支持膜としてポリスチレンを用
い、製膜液調製方法、製膜方法については実施例
3と同じ条件として気体分離複合膜を得た。さら
にこの気体分離複合膜上に、製膜液調製までは実
施例1と同じ条件で行い、この製膜液を水面に滴
下して、薄膜を形成し、1層積層して気体分離複
合膜を得た。 比較例 1 α,ωビス(ジエチルアミノ)ポリジメチルシ
ロキサンとポリヒドロキシスチレンとポリスルホ
ンの共重合体をベンゼンに溶解して、2重量%の
ベンゼン溶液を調製し、さらにこの溶液に対して
8重量%のテトラヒドロフランを添加して製膜液
した。この製膜液を水面上に滴下して、薄膜を形
成し、多孔性支持膜としてポリプロピレン(ポリ
ブラスチツク(株)の商品名「ジユラガード#2400」)
上に2層積層し、気体分離複合膜を得た。 比較例 2 ジターシヤリブチルフマレートと酢酸ビニルの
5重量%の共重合体をベンゼンに溶解して、3重
量%のベンゼン溶液を調製し、さらに、この溶液
に対して2重量%のモノクロルベンゼンと5重量
%のテトラヒドロフランとを添加して製膜液とし
た。この製膜液を水面上に滴下して薄膜を形成し
た。多孔性支持膜としてポリプロピレン(ポリプ
ラスチツク株式会社の商品名「ジユラガード
#2400」)をメタノールに浸漬し、それを取り出
した後、表面のメタノールをろ紙で吸い取つた。
それから、水面上に形成されている薄膜の上に載
せ、それを多孔性支持膜上に積層して、気体分離
複合膜を得た。 実施例、比較例の気体分離複合膜株式会社商品
名の膜性能を表に示す。また温度60℃、相対湿度
95%放置試験における酸素の透過流量の変化率を
図に示す。測定条件は有効膜面積11.3cm2、測定圧
力1.0Kg/cm2、測定温度25℃とした。
INDUSTRIAL APPLICATION FIELD The present invention relates to a gas separation membrane and a gas separation composite membrane used to separate and concentrate a mixed gas. BACKGROUND OF THE INVENTION In recent years, many gas separation membranes using organic polymers have been proposed. If oxygen in the air could be separated and concentrated at low cost using gas separation membranes, combustion, iron manufacturing,
It is expected that it will be able to make significant contributions to the fields of ceramics, waste treatment, and medicine. Oxygen separation membranes have a large ability to selectively separate oxygen from oxygen-containing gases such as air, and a large ability to efficiently transmit oxygen, that is, oxygen selection coefficient and oxygen permeability coefficient. is required to be large. When separating and concentrating oxygen from air, the oxygen selection coefficient α is expressed by the value of (oxygen permeability coefficient)/(nitrogen permeability coefficient).
Generally, as the oxygen selectivity coefficient of an organic polymer increases, the oxygen permeability coefficient tends to decrease. From a practical standpoint, the strength of the oxygen separation membrane is also required. Focusing on the fact that the oxygen selectivity coefficient is small (α = about 2) and the oxygen permeability coefficient is large, we developed a copolymer of organopolysiloxane and polycarbonate (Japanese Unexamined Patent Publication No. 121485/1985) as a gas separation membrane with enhanced membrane strength. ), and a crosslinked copolymer of a mixture of a polyfunctional polymer and a terminally functional polymer and an α,ω-2 functional polyalkylmethylsiloxane (Japanese Unexamined Patent Publication No. 1983-71006) are known. . On the other hand, polymethylpentene and polyphenylene oxide are known as organic polymers with a large oxygen selectivity coefficient. Further, a polymer of fumaric acid ester has also been reported as a material with a large oxygen selectivity coefficient (Japanese Patent Application Laid-open No. 42320/1983). These organic polymers have sufficiently high membrane strength, and although their oxygen permeability is inferior to polysiloxane and its copolymers, they can obtain a high concentration of oxygen. One of the methods for making organic polymers into thin films is to spread organic polymers dissolved in a solvent on the water surface, evaporate the solvent, form a gas separation membrane, and then apply this to a porous support membrane. There is a method that can be transferred to
56-92926, etc.). Regarding methylpentene, a method is known in which a thin film is obtained by adding a polyorganosiloxane copolymer to methylpentene (Japanese Unexamined Patent Publication No. 102907/1982). Problem to be Solved by the Invention Dissolving an organosiloxane copolymer in a solvent, spreading it on the water surface to form a gas separation membrane, and laminating the obtained gas separation membrane directly on a porous support membrane. The gas separation composite membrane has the disadvantage that the permeation flow rate of the gas decreases if it is left in high temperature and high humidity. On the other hand, the inventors have already developed a method for forming a gas separation membrane by dissolving polymers of polymethylpentene, polyphenylene oxide, fumaric acid ester, and their copolymers in a solvent and spreading them on the water surface. The proposed method (method of providing an adhesive layer on a porous support membrane, method of forming irregularities on a porous support membrane with a flexible polymer, or method of applying a solvent to the porous support membrane that does not attack the separation membrane) A gas separation composite membrane in which a gas separation membrane is laminated on a porous support membrane using a method of impregnation and adhesion) has a large oxygen separation coefficient α of 3 or more, but its oxygen permeability is not very good and it is difficult to use in practical use. , it was found that it was not possible to obtain large quantities of oxygen-enriched air. In addition, this gas separation composite membrane
It also has the disadvantage that when left in high temperature and high humidity, gas permeation is reduced more than that of organosiloxane copolymers. In view of the above-mentioned drawbacks, the present invention provides a gas separation membrane with a small decrease in gas permeation flow rate even when left in high temperature and high humidity.
Another object of the present invention is to provide a gas separation membrane having a large oxygen selectivity coefficient, excellent oxygen permeability, and a small decrease in gas permeation flow rate even when left in a high temperature and high humidity environment, and a gas separation composite membrane. Means for Solving the Problems The gas separation membrane of the present invention is a polymer obtained by reacting a vinyl group-containing polyorganosiloxane with a vinyl monomer, and a fumaric acid ester polymer, Or a copolymer of fumaric acid ester and vinyl monomer from 10 to 10% of the total weight.
It is a mixture of 90% by weight. Furthermore, the gas separation composite membrane of the present invention includes a polymer obtained by reacting a polyorganosiloxane containing a vinyl group with a vinyl monomer, a polymer of a fumaric acid ester, and a copolymer thereof, on a porous support membrane. A gas separation membrane made of a 10 to 90% by weight mixture of 10 to 90% by weight is laminated, and a polymer obtained by reacting a polyorganosiloxane containing a vinyl group with a vinyl monomer is further laminated thereon. Effect If the proportion of siloxane structure contained in the gas separation membrane is large, the decrease in gas permeation flow rate will be small even if the membrane is left in high temperature and high humidity. Therefore, from the standpoint of separation, a single polyorganosiloxane membrane is desirable;
Due to its low film strength, it cannot be used as a single thin film. Since the present invention is composed of a polymer obtained by reacting polyorganosiloxane with a vinyl monomer, it becomes a gas separation membrane with a large proportion of siloxane structure and strong membrane strength, and it remains stable even when left in high temperature and high humidity. The decrease in gas permeation flow rate is small. In addition, although the gas permeation flow rate decreases significantly in high temperature and high humidity environments, the oxygen selectivity coefficient is large (α =
By mixing a fumaric acid ester polymer or a fumaric acid ester/vinyl monomer copolymer with the polyorganosiloxane/vinyl monomer polymer (approximately 3.5), the oxygen selectivity coefficient becomes large (α
= 2.5 or more), and because the gas separation membrane contains a polymer containing a siloxane structure, it has good oxygen permeability, and gas separation with a small decrease in gas permeation flow rate even when left in high temperature and high humidity. A membrane is obtained. On the other hand, the gas separation composite membrane of the present invention has the above-mentioned mixed gas separation membrane laminated on a porous support membrane, and the above-mentioned polyorganosiloxane/vinyl monomer polymer is further laminated thereon, so that the oxygen selectivity coefficient is low. It is possible to obtain a gas separation composite membrane with a structure in which the outermost surface is covered with a polymer containing a large (α = 2.5 or more) siloxane structure, and the decrease in gas permeation flow rate is even smaller even when left in high temperature and high humidity. It becomes possible. Examples Examples of the present invention will be described below. The present invention is not limited to this example. Example 1 50.0g of dimethylpolysiloxane containing vinyl groups (Toray Silicone Co., Ltd. trade name "SH410")
was dissolved in 600 ml of monochlorobenzene, 10.0 g of styrene monomer was added thereto, and 2,5 dimethyl 2,5 di(tert-butylperoxy)hexane (product name of NOF Co., Ltd. "Perhexa 25B") was added as a peroxide. ) after adding 0.25g of
Degas with nitrogen gas and lower the temperature in a nitrogen atmosphere.
The reaction was carried out at 120°C for 12 hours. Add this polymerization solution to 5
of methanol to obtain a precipitate. This precipitate was purified to obtain a polymer of dimethylpolysiloxane and styrene. This polymer was dissolved in benzene to prepare a 2% by weight benzene solution, and further 5% by weight of tetrahydrofuran was added to this solution to prepare a film forming solution. This membrane forming solution was dropped onto the water surface to form a thin film, and two layers were laminated on polyether sulfone as a porous support membrane to obtain a gas separation composite membrane. Example 2 In Example 1, the amount of styrene monomer was
A gas separation composite membrane was obtained under the same conditions as in Example 1, except for the amount of other substances and the polymerization method, membrane forming solution preparation method, and membrane forming method. Example 3 Equal weights of the polymer of dimethylpolysiloxane and styrene monomer polymerized in Example 1 and polyditertiary butyl fumarate were taken, and a 2% by weight benzene solution of these two types of polymers was prepared. Further, 10% by weight of tetrahydrofuran was added to this solution to prepare a film forming solution. This membrane-forming solution was dropped onto the water surface to form a thin film, and two layers were laminated on polyethersulfone as a porous support membrane to obtain a gas separation composite membrane. Example 4 Ditertiary butyl fumarate was used instead of polyditertiary butyl fumarate in Example 3, and a 5% by weight copolymer of this and vinyl acetate was used, and a method for preparing a film forming solution and a film forming method were described. A gas separation composite membrane was obtained under the same conditions as in Example 3. Example 5 The same conditions as Example 1 were used until the preparation of the membrane forming solution.
The obtained membrane forming solution was dropped onto the water surface to form a thin film, and one layer was laminated on the gas separation composite membrane obtained in Example 4 to obtain a gas separation composite membrane. Example 6 Ditertiary butyl fumarate was used instead of polyditertiary butyl fumarate in Example 3, and a 5% by weight copolymer of vinyl acetate was used, and polystyrene was used as the porous support membrane. A gas separation composite membrane was obtained under the same conditions as in Example 3 regarding the membrane liquid preparation method and membrane forming method. Furthermore, on this gas separation composite membrane, the membrane forming liquid was prepared under the same conditions as in Example 1, and this membrane forming liquid was dropped onto the water surface to form a thin film, and one layer was laminated to form a gas separation composite membrane. Obtained. Comparative Example 1 A copolymer of α,ω bis(diethylamino)polydimethylsiloxane, polyhydroxystyrene, and polysulfone was dissolved in benzene to prepare a 2% by weight benzene solution, and further 8% by weight was added to this solution. Tetrahydrofuran was added to form a film forming solution. This film-forming solution is dropped onto the water surface to form a thin film, and a porous support film made of polypropylene (trade name "Jyuraguard #2400" by Polyblastics Co., Ltd.)
Two layers were laminated on top to obtain a gas separation composite membrane. Comparative Example 2 A 5% by weight copolymer of ditertiary butyl fumarate and vinyl acetate was dissolved in benzene to prepare a 3% by weight benzene solution, and further, 2% by weight of monochlorobenzene was added to this solution. and 5% by weight of tetrahydrofuran were added to prepare a film forming solution. This film forming solution was dropped onto the water surface to form a thin film. As a porous support membrane, polypropylene (trade name "Jyuraguard #2400" manufactured by Polyplastics Co., Ltd.) was immersed in methanol, taken out, and methanol on the surface was absorbed with filter paper.
Then, it was placed on the thin film formed on the water surface and laminated on a porous support membrane to obtain a gas separation composite membrane. The membrane performance of the product name of Gas Separation Composite Membrane Co., Ltd. of Examples and Comparative Examples is shown in the table. Also temperature 60℃, relative humidity
The figure shows the rate of change in oxygen permeation flow rate in the 95% storage test. The measurement conditions were an effective membrane area of 11.3 cm 2 , a measurement pressure of 1.0 Kg/cm 2 , and a measurement temperature of 25°C.

【表】【table】

【表】 窒素透過流量
発明の効果 以上のように、本発明によれば、ビニル基を含
むポリオルガノシロキサンとビニルモノマーとを
反応させて得られる重合体からなるため、高温高
湿中での放置特性のよい気体分離膜が得られる。
また、この重合体と酸素選択係数の大きいフマル
酸エステルの重合体、およびその共重合体と混合
して気体分離膜を得ているため、その酸素選択係
数が大きく、高温高湿中での放置特性が優れてい
る。さらにまた、多孔性支持膜上に酸素選択係数
が大きく、耐湿性に優れた混合気体分離膜を積層
し、その上にさらに、耐湿性に優れた上記重合体
を積層しているため、酸素選択係数が大きく、高
温高湿中での放置特性がさらに優れた信頼性の高
い気体分離複合膜を提供することができる。
[Table] Effects of the invention on nitrogen permeation flow rate As described above, according to the present invention, since it is made of a polymer obtained by reacting a polyorganosiloxane containing a vinyl group with a vinyl monomer, it is difficult to leave it in a high temperature and high humidity environment. A gas separation membrane with good characteristics can be obtained.
In addition, since this polymer is mixed with a fumaric acid ester polymer with a high oxygen selectivity coefficient and its copolymer to obtain a gas separation membrane, its oxygen selectivity coefficient is high and it cannot be left in high temperature and high humidity. Excellent characteristics. Furthermore, a mixed gas separation membrane with a large oxygen selectivity coefficient and excellent moisture resistance is laminated on a porous support membrane, and the above-mentioned polymer with excellent moisture resistance is further laminated on top of the membrane, making it highly oxygen selective. It is possible to provide a highly reliable gas separation composite membrane with a large coefficient and excellent storage characteristics under high temperature and high humidity.

【図面の簡単な説明】[Brief explanation of the drawing]

図は温度60℃、相対湿度95%の雰囲気中での気
体分離複合膜の放置試験における酸素透過流量の
変化率を示す特性図である。
The figure is a characteristic diagram showing the rate of change in oxygen permeation flow rate in a storage test of a gas separation composite membrane in an atmosphere at a temperature of 60°C and a relative humidity of 95%.

Claims (1)

【特許請求の範囲】 1 ビニル基を含むポリオルガノシロキサンとビ
ニルモノマーとを反応させて得られる重合体から
なることを特徴とする気体分離膜。 2 ビニルモノマーがスチレンモノマーであるこ
とを特徴とする請求項1記載の気体分離膜。 3 ビニル基を含むポリオルガノシロキサンとビ
ニルモノマーとを反応させて得られる重合体から
なる気体分離膜に、フマル酸エステルの重合体、
またはフマル酸エステルとビニルモノマーの共重
合体を混合してなる気体分離膜であつて、前記フ
マル酸エステルの重合体、またはフマル酸エステ
ルとビニルモノマーの共重合体の含有量が、混合
してなる気体分離膜の重量の10〜90重量%である
気体分離膜。 4 ビニル基を含むポリオルガノシロキサンとビ
ニルモノマーとを反応させて得られる重合体から
なる気体分離膜に、フマル酸エステルの重合体、
またはフマル酸エステルとビニルモノマーの共重
合体を混合してなる気体分離膜であつて、前記フ
マル酸エステルの重合体、またはフマル酸エステ
ルとビニルモノマーの共重合体の含有量が、混合
してなる気体分離膜の重量の10〜90重量%である
気体分離膜を、多孔性支持膜上に積層し、さらに
その上にビニル基を含むポリオルガノシロキサン
とビニルモノマーとを反応させて得られる重合体
からなる気体分離膜を積層してなることを特徴と
する気体分離複合膜。 5 多孔性支持膜がポリエーテルスルホンもしく
はポリスルホンの少なくともいずれか一方である
ことを特徴とする請求項4記載の気体分離複合
膜。
[Scope of Claims] 1. A gas separation membrane comprising a polymer obtained by reacting a polyorganosiloxane containing a vinyl group with a vinyl monomer. 2. The gas separation membrane according to claim 1, wherein the vinyl monomer is a styrene monomer. 3. A fumaric acid ester polymer,
or a gas separation membrane formed by mixing a copolymer of a fumaric acid ester and a vinyl monomer, wherein the content of the polymer of the fumaric acid ester or the copolymer of a fumaric acid ester and a vinyl monomer is mixed. The gas separation membrane is 10-90% by weight of the gas separation membrane weight. 4 A gas separation membrane made of a polymer obtained by reacting a polyorganosiloxane containing a vinyl group with a vinyl monomer,
or a gas separation membrane formed by mixing a copolymer of a fumaric acid ester and a vinyl monomer, wherein the content of the polymer of the fumaric acid ester or the copolymer of a fumaric acid ester and a vinyl monomer is mixed. A gas separation membrane with a weight of 10 to 90% by weight of the gas separation membrane is laminated on a porous support membrane, and a polyorganosiloxane containing a vinyl group is further reacted with a vinyl monomer on top of the porous support membrane. A gas separation composite membrane characterized by being formed by laminating gas separation membranes consisting of coalescing. 5. The gas separation composite membrane according to claim 4, wherein the porous support membrane is at least one of polyethersulfone and polysulfone.
JP63160075A 1988-06-28 1988-06-28 Gas separation membrane and composite gas separation membrane Granted JPH029430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160075A JPH029430A (en) 1988-06-28 1988-06-28 Gas separation membrane and composite gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160075A JPH029430A (en) 1988-06-28 1988-06-28 Gas separation membrane and composite gas separation membrane

Publications (2)

Publication Number Publication Date
JPH029430A JPH029430A (en) 1990-01-12
JPH055533B2 true JPH055533B2 (en) 1993-01-22

Family

ID=15707337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160075A Granted JPH029430A (en) 1988-06-28 1988-06-28 Gas separation membrane and composite gas separation membrane

Country Status (1)

Country Link
JP (1) JPH029430A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039569A (en) * 2000-07-24 2002-02-06 Matsushita Electric Ind Co Ltd Air conditioner
US7811359B2 (en) 2007-01-18 2010-10-12 General Electric Company Composite membrane for separation of carbon dioxide
CN102208769A (en) * 2011-03-21 2011-10-05 辽宁省电力有限公司沈阳供电公司 Portable 10kV vacuum switch dolly baffle plate raiser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172884U (en) * 1974-12-06 1976-06-08
JPS5354487U (en) * 1976-10-13 1978-05-10

Also Published As

Publication number Publication date
JPH029430A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
US4689267A (en) Composite hollow fiber
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
GB2138702A (en) Composite membrane for gas separation
JP3506793B2 (en) Resin composition and film formed therefrom
JPH055533B2 (en)
JPH0388B2 (en)
JPH0413011B2 (en)
JPH03262523A (en) Oxygen enriching composite membrane
JPH0440223A (en) Gas separation composite membrane
JPH0262299B2 (en)
JPH0419891B2 (en)
JPH0696107B2 (en) Selective gas permeable membrane
JPS5924844B2 (en) Method for manufacturing gas selective permeability composite membrane
JPH02131128A (en) Gas separating multilayer membrane
JPS61107922A (en) Composite membrane for gas separation
JPS60257820A (en) Gas separation composite membrane
JPH04317734A (en) Gas separating composite membrane and its production
JPH04219130A (en) Gas separating laminated membrane
JPH0446172B2 (en)
JPS6336286B2 (en)
JP2005350573A (en) Gas-permeable polymer composition and gas-separating composite membrane
JPS63141625A (en) Production of composite membrane for separating gas
JPH02237627A (en) Permselective membrane for gas
JPS63296821A (en) Gas permselective membrane
JPH0761426B2 (en) Selective gas permeable composite membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees