JPH0555195A - Thermal process apparatus for semiconductor wafer - Google Patents
Thermal process apparatus for semiconductor waferInfo
- Publication number
- JPH0555195A JPH0555195A JP21489091A JP21489091A JPH0555195A JP H0555195 A JPH0555195 A JP H0555195A JP 21489091 A JP21489091 A JP 21489091A JP 21489091 A JP21489091 A JP 21489091A JP H0555195 A JPH0555195 A JP H0555195A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- temperature
- output
- lamp
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体ウェハー用熱処理
装置に関し、特に熱酸化および熱拡散を行なう熱処理装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus for semiconductor wafers, and more particularly to a heat treatment apparatus for performing thermal oxidation and thermal diffusion.
【0002】[0002]
【従来の技術】従来の熱処理装置は、図5の構成図に示
すように、炉芯管1はフロントヒーター2、センターヒ
ーター3、リアヒーター4bの3つのヒーターにより抵
抗加熱されるが、これらのヒーターは温度制御装置5に
より制御される。プログラムメモリ8のデータをプログ
ラムコントローラ7が読み、温度制御装置5とガス供給
制御装置6を制御する。このとき、フロントヒーター
2,センターヒーター3,リアヒーター4bは、それぞ
れ通常、図6の側面図(a)、断面図(b)に示すよう
に抵抗加熱ヒーター9が炉芯管1をとり巻く配置になっ
ている。2. Description of the Related Art In a conventional heat treatment apparatus, a furnace core tube 1 is resistance-heated by three heaters of a front heater 2, a center heater 3 and a rear heater 4b as shown in the configuration diagram of FIG. The heater is controlled by the temperature controller 5. The program controller 7 reads the data in the program memory 8 and controls the temperature controller 5 and the gas supply controller 6. At this time, the front heater 2, the center heater 3 and the rear heater 4b are usually arranged such that the resistance heater 9 surrounds the furnace core tube 1 as shown in the side view (a) and sectional view (b) of FIG. It has become.
【0003】例えば、シリコン基板のスチーム酸化を行
なう場合、酸化膜厚の炉内ばらつきを低減するために種
々の対策を施している。スチーム酸化は、通常、酸素雰
囲気下で所定の温度にし、水素を供給する。このとき、
スチーム酸化中(水素供給中)の温度を基準にとれば、
水素供給前後および水素供給中の炉内の温度分布は、そ
れぞれ図7(a)および(b)となる。また、特にガス
供給側では温度の経時変化が激しく、図7(c)に示す
ように、リアヒーター付近の温度の経時変化が大きくな
っている。逆に水素供給をしていないときの温度を基準
にとれば、水素供給前後および水素供給中の炉内の温度
分布は、それぞれ図8(a)および(b)となり、温度
の経時変化は図8(c)となる。この場合、リアヒータ
ー付近の温度変化は30℃以上になる場合がある。For example, when performing steam oxidation on a silicon substrate, various measures are taken to reduce the variation in oxide film thickness in the furnace. In steam oxidation, hydrogen is usually supplied at a predetermined temperature in an oxygen atmosphere. At this time,
Based on the temperature during steam oxidation (during hydrogen supply),
The temperature distributions in the furnace before and after the hydrogen supply and during the hydrogen supply are shown in FIGS. 7A and 7B, respectively. Further, particularly with respect to the gas supply side, the temperature changes drastically with time, and as shown in FIG. 7C, the temperature changes near the rear heater increase with time. On the contrary, if the temperature when the hydrogen is not supplied is used as a reference, the temperature distributions in the furnace before and after the hydrogen supply and during the hydrogen supply are as shown in FIGS. 8 (a) and 8 (b), respectively. 8 (c). In this case, the temperature change near the rear heater may be 30 ° C. or higher.
【0004】このように炉内の温度分布が変わり、熱履
歴に差がでて酸化膜厚が炉内でばらつく場合、一般的に
はあらかじめヒーターの出力を標準値からずらしておく
方法が用いられ、そのずれの量は、プロセス条件やヒー
ターの位置により異なる。また、水素の燃焼方式を変更
する方法もあり、特に外部燃焼装置と呼ばれる装置を用
いて酸素と水素を反応後に炉芯管内に導入し、反応熱に
よる炉内の温度変化を抑えている。When the temperature distribution in the furnace changes as described above and the thermal history is different and the oxide film thickness varies in the furnace, generally, a method of previously shifting the output of the heater from the standard value is used. The amount of the deviation depends on the process conditions and the position of the heater. There is also a method of changing the combustion method of hydrogen, and in particular, an apparatus called an external combustion apparatus is used to introduce oxygen and hydrogen into the furnace core tube after the reaction to suppress the temperature change in the furnace due to the heat of reaction.
【0005】[0005]
【発明が解決しようとする課題】従来の半導体ウェハー
用熱処理装置では、下記のような問題点がある。まず、
あらかじめヒーターの出力を標準値からずらす熱酸化方
法であるが、この方法はある決められた特定の条件で
は、ばらつきの小さな酸化膜を形成できるが、水素供給
時間を変更しただけでウェハーの炉内位置に依存する熱
履歴が変わり、酸化膜厚のばらつきが大きくなる。ま
た、酸化と同時にイオン注入領域の活性化を行なう場
合、熱履歴の差が層抵抗の差となる。これらの現象は熱
拡散の場合も同様で、拡散層抵抗のばらつき要因とな
る。The conventional heat treatment apparatus for semiconductor wafers has the following problems. First,
This is a thermal oxidation method that shifts the heater output from the standard value in advance.This method can form an oxide film with small variations under certain specified conditions, but it can be done by changing the hydrogen supply time within the wafer furnace. The position-dependent thermal history changes, and the variation in the oxide film thickness increases. Further, when the ion implantation region is activated at the same time as the oxidation, the difference in thermal history becomes the difference in layer resistance. These phenomena are also the same in the case of thermal diffusion, which causes variations in diffusion layer resistance.
【0006】また、外部燃焼装置を用いる場合は、常温
での水素−酸素の着火不充分による危険があることと、
装置構成が複雑になるため、メンテナンスが難しくなる
という欠点を有する。さらに、従来の抵抗加熱型ヒータ
ーでは、温度の上昇下降速度が10℃/分程度であり、
特に炉芯管内で水素が燃焼して温度が急上昇した場合、
ヒーターの出力を下げても温度が下がりきらず、一定の
温度を保つことができない。When an external combustion device is used, there is a risk of insufficient ignition of hydrogen-oxygen at room temperature.
Since the device configuration becomes complicated, there is a drawback that maintenance becomes difficult. Furthermore, in the conventional resistance heating type heater, the temperature rising / falling speed is about 10 ° C./minute,
Especially when hydrogen burns in the furnace core tube and the temperature rises sharply,
Even if the heater output is reduced, the temperature does not fall and it is impossible to maintain a constant temperature.
【0007】[0007]
【課題を解決するための手段】本発明の半導体ウェハー
用熱処理装置は、抵抗加熱型のリアヒーター部分に赤外
線ランプを組み込み、このリアヒーターの出力を一定に
して炉芯管内の反応ガス温度に応じて赤外線ランプの出
力を制御する手段を備えている。According to the heat treatment apparatus for semiconductor wafers of the present invention, an infrared lamp is incorporated in a resistance heating type rear heater part, and the output of this rear heater is made constant, depending on the reaction gas temperature in the furnace core tube. And means for controlling the output of the infrared lamp.
【0008】[0008]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の実施例1の装置構成図である。炉芯
管1はフロントヒーター2,センターヒーター3,ラン
プ組込リアヒーター4aの3つのヒーターにより加熱さ
れる。これらのヒーターは温度制御装置5からの出力電
圧に応じて昇温,降温することができる。特にランプ組
込リアヒーター4aは、図2の側面図(a)および断面
図(b)に示すように、通常の抵抗加熱型ヒーター9に
赤外線ランプ10を配置してあり、抵抗加熱型ヒーター
9の出力を一定にして赤外線ランプ10の出力を変える
ことにより、急速昇温および降温が可能である。The present invention will be described below with reference to the drawings. 1 is a device configuration diagram of a first embodiment of the present invention. The furnace core tube 1 is heated by three heaters including a front heater 2, a center heater 3 and a lamp-equipped rear heater 4a. These heaters can raise and lower the temperature according to the output voltage from the temperature control device 5. In particular, as shown in the side view (a) and cross-sectional view (b) of FIG. 2, the rear heater 4a with a built-in lamp has an infrared lamp 10 arranged in a normal resistance heating type heater 9 and the resistance heating type heater 9 By changing the output of the infrared lamp 10 while keeping the output of 1 constant, it is possible to rapidly raise and lower the temperature.
【0009】プログラムメモリ8には、温度、処理時
間、ガス等のプロセス条件のデータが記憶されていて、
プログラムコントローラ7がそのデータを読み込み、温
度制御装置5とガス供給制御装置6を制御する。例え
ば、スチーム酸化を行なう場合、水素供給前には赤外線
ランプ10の出力を一定値に保っておき、水素供給を開
始すると同時に赤外線ランプ10の出力を徐々に下げて
いく。その際に、水素と酸素の反応熱による温度上昇に
合わせて赤外線ランプ10の出力を下げるが、炉内が定
常状態となるときに赤外線ランプの出力をゼロにする。
次に、水素供給が終了すると同時に赤外線ランプ10の
出力を徐々に上げ、水素供給前の値に戻す。The program memory 8 stores data on process conditions such as temperature, processing time and gas.
The program controller 7 reads the data and controls the temperature control device 5 and the gas supply control device 6. For example, in the case of performing steam oxidation, the output of the infrared lamp 10 is kept at a constant value before the hydrogen supply, and the output of the infrared lamp 10 is gradually decreased at the same time when the hydrogen supply is started. At that time, the output of the infrared lamp 10 is lowered in accordance with the temperature rise due to the reaction heat of hydrogen and oxygen, but the output of the infrared lamp is set to zero when the inside of the furnace is in a steady state.
Next, at the same time when the hydrogen supply is completed, the output of the infrared lamp 10 is gradually increased to the value before the hydrogen supply.
【0010】これにより、図3に示すように、ランプ組
込リアヒーター4a付近の温度を一定に保ち、その変動
の幅を±1℃以内に抑えることが可能となる。図3に示
した赤外線ランプ10の出力データは、あらかじめプロ
グラムメモリ8に入力されている。このデータは、赤外
線ランプ10の出力をゼロにした状態で水素供給を行な
い、ランプ組込リアヒーター4a付近の温度の経時変化
を測定し、水素供給中の定常状態の温度との差を補償す
るように設定すればよい。As a result, as shown in FIG. 3, the temperature in the vicinity of the lamp-incorporated rear heater 4a can be kept constant and the fluctuation range can be suppressed within ± 1 ° C. The output data of the infrared lamp 10 shown in FIG. 3 is previously input to the program memory 8. This data is obtained by supplying hydrogen with the output of the infrared lamp 10 set to zero, measuring the time-dependent change in the temperature near the lamp built-in rear heater 4a, and compensating for the difference from the steady-state temperature during hydrogen supply. You can set it as follows.
【0011】図4は本発明の実施例2の装置構成図であ
る。構成は実施例1とほぼ同様であるが、プログラムメ
モリ8に詳細な温度データを入力する代わりに、フロン
ト温度センサー11、センター温度センサー12、リア
温度センサー13により、水素供給前後の反応熱による
温度変化を直接測定し、温度制御装置5によりランプ組
込リアヒーター4aの赤外線ランプ10の出力を調整
し、一定温度を保持する。実施例2では温度を直接測定
しているため、温度の追従性が向上する。FIG. 4 is a block diagram of an apparatus according to the second embodiment of the present invention. The configuration is almost the same as that of the first embodiment, but instead of inputting the detailed temperature data to the program memory 8, the front temperature sensor 11, the center temperature sensor 12, and the rear temperature sensor 13 are used to control the temperature due to the reaction heat before and after the hydrogen supply. The change is directly measured, and the temperature control device 5 adjusts the output of the infrared lamp 10 of the lamp built-in rear heater 4a to maintain a constant temperature. Since the temperature is directly measured in the second embodiment, the temperature followability is improved.
【0012】[0012]
【発明の効果】以上説明したように本発明は、スチーム
酸化のように酸化中に温度が変動する場合でも、温度を
一定に保つことが可能なので、シリコン酸化膜の膜厚の
炉内位置依存性を低減できるという効果を有する。ま
た、スチーム酸化と同時に、イオン注入領域の活性化、
不純物のドライブインを行なう場合は、炉内位置による
熱履歴の差を低減できるので不純物層の層抵抗のばらつ
きが低減し、バイポーラトランジスタのhFE、MOSト
ランジスタのVT 、抵抗値等が安定する。また本発明
は、外部燃焼装置を用いないので、メンテナンス性を損
わず、また安全性も高い。As described above, according to the present invention, the temperature can be kept constant even when the temperature fluctuates during oxidation such as steam oxidation. Therefore, the film thickness of the silicon oxide film depends on the position in the furnace. It has an effect that the property can be reduced. At the same time as steam oxidation, activation of the ion implantation region,
When impurities are driven in, the difference in the thermal history depending on the position in the furnace can be reduced, so that the variation in the layer resistance of the impurity layer is reduced and the h FE of the bipolar transistor, the V T of the MOS transistor, the resistance value, etc. are stabilized. .. Moreover, since the present invention does not use an external combustion device, maintainability is not impaired and safety is high.
【図1】本発明の実施例1の装置構成図である。FIG. 1 is a device configuration diagram of a first embodiment of the present invention.
【図2】ランプ組込リアヒーターを示す図で、同図
(a)は側面図,同図(b)は断面図である。2A and 2B are diagrams showing a rear heater with a built-in lamp, in which FIG. 2A is a side view and FIG. 2B is a sectional view.
【図3】スチーム酸化における赤外線ランプの出力とラ
ンプ組込リアヒーター付近の温度の経時変化を示す図で
ある。FIG. 3 is a diagram showing changes over time in the output of an infrared lamp and the temperature in the vicinity of a lamp built-in rear heater in steam oxidation.
【図4】本発明の実施例2の装置構成図である。FIG. 4 is a device configuration diagram of a second embodiment of the present invention.
【図5】従来の装置構成図である。FIG. 5 is a configuration diagram of a conventional device.
【図6】従来の抵抗加熱ヒーターを示す図で、同図
(a)は側面図、同図(b)は断面図である。6A and 6B are views showing a conventional resistance heater, in which FIG. 6A is a side view and FIG. 6B is a sectional view.
【図7】スチーム酸化において、水素供給中の温度を基
準にした場合を示す図で、同図(a)は水素供給前後の
温度分布、同図(b)は水素供給中の温度分布、同図
(c)は温度の経時変化をそれぞれ示す図である。FIG. 7 is a diagram showing a case where the temperature during hydrogen supply is used as a reference in steam oxidation. FIG. 7A shows a temperature distribution before and after hydrogen supply, and FIG. 7B shows a temperature distribution during hydrogen supply. FIG. 6C is a diagram showing changes in temperature with time.
【図8】スチーム酸化において、水素供給前後の温度を
基準にした場合を示す図で、同図(a)は水素供給前後
の温度分布、同図(b)は水素供給中の温度分布、同図
(c)は温度の経時変化をそれぞれ示す図である。FIG. 8 is a diagram showing a case where the temperature before and after hydrogen supply is used as a reference in steam oxidation. FIG. 8A shows a temperature distribution before and after hydrogen supply, and FIG. 8B shows a temperature distribution during hydrogen supply. FIG. 6C is a diagram showing changes in temperature with time.
1 炉芯管 2 フロントヒーター 3 センターヒーター 4a ランプ組込リアヒーター 4b リアヒーター 5 温度制御装置 6 ガス供給制御装置 7 プログラムコントローラ 8 プログラムメモリ 9 抵抗加熱ヒーター 10 赤外線ランプ 11 フロント温度センサー 12 センター温度センサー 13 リア温度センサー 1 Furnace Core Tube 2 Front Heater 3 Center Heater 4a Lamp Built-in Rear Heater 4b Rear Heater 5 Temperature Control Device 6 Gas Supply Control Device 7 Program Controller 8 Program Memory 9 Resistance Heating Heater 10 Infrared Lamp 11 Front Temperature Sensor 12 Center Temperature Sensor 13 Rear temperature sensor
Claims (1)
ー,センターヒーター,リアヒーターにより炉芯管を加
熱し、温度制御装置とガス供給制御装置をプログラムコ
ントローラで制御する半導体ウェハー用熱処理装置にお
いて、前記リアヒーターに赤外線ランプを組み込み、こ
のリアヒーターの出力を一定にして炉芯管内の反応ガス
温度に応じて前記赤外線ランプの出力を制御することを
特徴とする半導体ウェハー用熱処理装置。1. A heat treatment apparatus for semiconductor wafer, wherein a furnace core tube is heated by a resistance heating type front heater, a center heater, and a rear heater, respectively, and a temperature controller and a gas supply controller are controlled by a program controller. A heat treatment apparatus for semiconductor wafers, characterized in that an infrared lamp is built in, the output of the rear heater is made constant, and the output of the infrared lamp is controlled according to the reaction gas temperature in the furnace core tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03214890A JP3074823B2 (en) | 1991-08-27 | 1991-08-27 | Heat treatment equipment for semiconductor wafers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03214890A JP3074823B2 (en) | 1991-08-27 | 1991-08-27 | Heat treatment equipment for semiconductor wafers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0555195A true JPH0555195A (en) | 1993-03-05 |
JP3074823B2 JP3074823B2 (en) | 2000-08-07 |
Family
ID=16663263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03214890A Expired - Lifetime JP3074823B2 (en) | 1991-08-27 | 1991-08-27 | Heat treatment equipment for semiconductor wafers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3074823B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2792815A1 (en) | 1999-04-28 | 2000-11-03 | G C Dental Ind Corp | DISTRIBUTOR OF VISCOUS DENTAL MATERIAL |
JP2007059772A (en) * | 2005-08-26 | 2007-03-08 | Mie Univ | Group iii nitride crystal, and manufacturing apparatus and method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101787439B1 (en) * | 2015-12-31 | 2017-10-18 | 전영환 | Functional pillow |
-
1991
- 1991-08-27 JP JP03214890A patent/JP3074823B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2792815A1 (en) | 1999-04-28 | 2000-11-03 | G C Dental Ind Corp | DISTRIBUTOR OF VISCOUS DENTAL MATERIAL |
BE1013532A3 (en) | 1999-04-28 | 2002-03-05 | G C Dental Ind Corp | Distributor of dental viscous material. |
JP2007059772A (en) * | 2005-08-26 | 2007-03-08 | Mie Univ | Group iii nitride crystal, and manufacturing apparatus and method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3074823B2 (en) | 2000-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5603772A (en) | Furnace equipped with independently controllable heater elements for uniformly heating semiconductor wafers | |
JP3834216B2 (en) | Temperature control method | |
JPH10107018A (en) | Semiconductor wafer heat treatment apparatus | |
JPH04152518A (en) | Manufacture of semiconductor device | |
JP3074823B2 (en) | Heat treatment equipment for semiconductor wafers | |
JP2004119804A (en) | Semiconductor manufacturing apparatus | |
JP3074312B2 (en) | Vapor growth method | |
JP4222461B2 (en) | Batch type heat treatment method | |
KR100849012B1 (en) | Heat treatment system and heat treatment method | |
US20010042509A1 (en) | Method and apparatus for controlling the thickness of a gate oxide in a semiconductor manufacturing process | |
US6149728A (en) | Semiconductor manufacturing device | |
JPH0355843A (en) | Semiconductor substrate oxidizing equipment | |
JPS63285925A (en) | Device for manufacturing semiconductor integrated circuit device | |
JPH06208964A (en) | Diffusion and oxidation processing device for silicon wafer | |
JP2634595B2 (en) | Semiconductor manufacturing equipment | |
JPS58191438A (en) | Control method for temperature of furnace in semiconductor manufacturing device | |
JPH05251456A (en) | Heat treatment apparatus for single wafer semiconductor substrate | |
JPS63200536A (en) | Apparatus for forming silicon oxide film | |
JPS5948931A (en) | Manufacture of semiconductor device | |
JPH11186249A (en) | Semiconductor process control device and method | |
JP2701716B2 (en) | Plasma CVD equipment | |
JPH06283712A (en) | Manufacture of gate oxide film in mos semiconductor device | |
JP2643990B2 (en) | Diffusion furnace equipment | |
JPS62235740A (en) | Thermal oxidation of silicon | |
JP2003257966A (en) | Method of forming thermal oxide film using high-speed temperature up-and-down furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000509 |