JP2003257966A - Method of forming thermal oxide film using high-speed temperature up-and-down furnace - Google Patents

Method of forming thermal oxide film using high-speed temperature up-and-down furnace

Info

Publication number
JP2003257966A
JP2003257966A JP2002058233A JP2002058233A JP2003257966A JP 2003257966 A JP2003257966 A JP 2003257966A JP 2002058233 A JP2002058233 A JP 2002058233A JP 2002058233 A JP2002058233 A JP 2002058233A JP 2003257966 A JP2003257966 A JP 2003257966A
Authority
JP
Japan
Prior art keywords
temperature
oxide film
furnace
thermal oxide
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002058233A
Other languages
Japanese (ja)
Inventor
Takeshi Ishizaki
武士 石崎
Yutaka Watanabe
豊 渡辺
Tsutomu Nobuhara
勉 延原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002058233A priority Critical patent/JP2003257966A/en
Publication of JP2003257966A publication Critical patent/JP2003257966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a uniform oxide film in a plane of a substrate, in the formation of a thermal oxide film on a semiconductor substrate using a high-speed temperature up-and-down furnace. <P>SOLUTION: In the method of forming the thermal oxide film with a little variation in the temperature of the plane of the semiconductor substrate, the high-speed temperature up of the furnace is stopped at a prescribed temperature in order to reduce the variations in the temperature of the plane of the semiconductor substrate when the furnace is heated up, and a temperature stabilizing step for keeping the temperature of the furnace constant for a prescribed period of time is set up thereafter, and then the furnace is heated up at a prescribed low speed to an oxide film formation temperature. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高速昇降温炉を用い
た半導体基板の熱酸化膜形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thermal oxide film on a semiconductor substrate using a fast heating / cooling furnace.

【0002】[0002]

【従来の技術】以下図面を参照しながら、従来の高速昇
降温炉を用いた熱酸化膜形成方法について説明する。
2. Description of the Related Art A thermal oxide film forming method using a conventional high-speed heating / cooling furnace will be described below with reference to the drawings.

【0003】図1は高速昇降温炉の構成図である。1は
高速降温時の炉内冷却エアー排気口である。2は反応管
である。3は反応管内の熱電対である。4はボートであ
る。5は高速降温時の冷却エアー吹き出し口である。6
は保温治具である。7は反応管のキャップである。8は
ヒーター部の熱電対である。9はガス吹き出し口であ
る。10はヒーターである。11は半導体基板である。
FIG. 1 is a block diagram of a fast heating / cooling furnace. Reference numeral 1 is an outlet for cooling air in the furnace during high-speed cooling. 2 is a reaction tube. 3 is a thermocouple in the reaction tube. 4 is a boat. Reference numeral 5 is a cooling air outlet for high-speed cooling. 6
Is a heat retention jig. 7 is a cap of the reaction tube. Reference numeral 8 is a thermocouple of the heater section. 9 is a gas outlet. 10 is a heater. Reference numeral 11 is a semiconductor substrate.

【0004】以下、上記のように構成された熱酸化膜形
成装置について、その動作を説明する。
The operation of the thermal oxide film forming apparatus configured as described above will be described below.

【0005】11の半導体基板を搭載した4のボートを
2の反応管に挿入後、所定の時間炉内温度を安定させ
る。これが図2のステップ1である。次に10のヒータ
ーによる加熱で、毎分30℃〜100℃にて酸化膜形成
の設定温度である850℃〜1000℃まで高速昇温す
る。これが図2のステップ2である。次に850℃〜1
000℃の範囲で設定された酸化膜形成温度にて9のガ
ス吹き出し口よりガスを導入し、11の半導体基板に熱
酸化膜を形成する。これが図2のステップ3である。次
に9のガス吹き出し口からのガスの導入を停止するとと
もに、5の冷却エアー吹き出し口より導入した冷却エア
ーを1の冷却エアー排気口より装置外部に排気し、毎分
30℃以上にて高速降温を行う。これが図2のステップ
4である。最後に炉内温度を安定させる。これが図2の
ステップ5である。
After inserting the boat of No. 4 having the semiconductor substrate of No. 11 into the reaction tube of No. 2, the temperature inside the furnace is stabilized for a predetermined time. This is step 1 in FIG. Next, by heating with a heater of 10, the temperature is rapidly raised at 30 ° C. to 100 ° C. per minute to 850 ° C. to 1000 ° C. which is the set temperature for oxide film formation. This is step 2 in FIG. Then 850 ℃ ~ 1
A gas is introduced from the gas outlet 9 to form a thermal oxide film on the semiconductor substrate 11 at the oxide film forming temperature set in the range of 000 ° C. This is step 3 in FIG. Next, the introduction of the gas from the gas outlet 9 is stopped, and the cooling air introduced from the cooling air outlet 5 is exhausted to the outside of the device through the cooling air exhaust outlet 1 and at a high speed of 30 ° C. or more per minute. The temperature is lowered. This is step 4 in FIG. Finally, the temperature inside the furnace is stabilized. This is step 5 in FIG.

【0006】以上のように高速昇降温炉は、半導体装置
の製造方法である熱酸化膜形成において、高速昇温、高
速降温することにより高スループット化を実現した製造
装置である。
As described above, the high-speed temperature raising / lowering furnace is a manufacturing apparatus that realizes high throughput by rapidly raising and lowering the temperature in the formation of a thermal oxide film, which is a method of manufacturing a semiconductor device.

【0007】[0007]

【発明が解決しようとする課題】上記のような構成で
は、半導体基板面内の温度ばらつきが大きい状態でガス
を導入しているため、半導体基板面内に均一な熱酸化膜
を形成することができない問題がある。
In the above structure, since the gas is introduced in a state where the temperature variation in the semiconductor substrate surface is large, it is possible to form a uniform thermal oxide film in the semiconductor substrate surface. There is a problem that cannot be done.

【0008】さらにガス導入停止後の炉内降温時に、残
留ガスによる熱酸化膜形成が生じるが、基板面内温度の
温度ばらつきが大きいため、基板面内に均一な熱酸化膜
を形成することができない。
Further, when the temperature in the furnace is lowered after the gas introduction is stopped, a thermal oxide film is formed due to the residual gas. However, since the temperature within the substrate surface varies widely, a uniform thermal oxide film can be formed within the substrate surface. Can not.

【0009】本発明は上記問題点に鑑み、高速昇降温炉
を用いた半導体基板の熱酸化膜形成において、安定して
面内の均一性を確保するための高速昇降温炉を用いた半
導体基板の熱酸化膜形成方法を提供するものである。
In view of the above problems, the present invention is directed to a semiconductor substrate using a high-speed heating / cooling furnace for stably ensuring in-plane uniformity in forming a thermal oxide film on the semiconductor substrate using the high-speed heating / cooling furnace. The present invention provides a method for forming a thermal oxide film.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明の高速昇降温炉を用いた半導体基板上の熱
酸化膜形成方法として、以下の3つを用いる。半導体基
板面内の温度ばらつきが小さい状態で熱酸化膜を形成す
る方法として、1つは、炉内昇温時に半導体基板面内の
温度ばらつきを小さくするために高速昇温を850℃以
下の温度にて停止し、5分以上炉内温度を一定に保つ温
度安定ステップを設けた後に、酸化膜形成温度まで毎分
1℃〜8℃程度にて低速昇温する方法である。
In order to solve the above-mentioned problems, the following three methods are used as a method for forming a thermal oxide film on a semiconductor substrate using the fast heating / cooling furnace of the present invention. As a method for forming a thermal oxide film in a state where the temperature variation in the semiconductor substrate surface is small, one method is to perform high-speed heating at a temperature of 850 ° C. or less in order to reduce the temperature variation in the semiconductor substrate surface when the temperature is raised in the furnace. And a temperature stabilization step for keeping the temperature inside the furnace constant for 5 minutes or more, and then slowly increasing the temperature to the oxide film forming temperature at 1 ° C to 8 ° C per minute.

【0011】1つは、さらにガスを導入し酸化膜を形成
する前に、半導体基板面内の温度ばらつきを小さくする
ため、酸化膜形成温度到達後に、5分以上炉内温度を一
定にする温度安定ステップを設けた後にガスを導入し、
酸化膜を形成する方法である。
First, in order to reduce the temperature variation in the surface of the semiconductor substrate before further introducing a gas to form an oxide film, a temperature that keeps the furnace temperature constant for 5 minutes or more after reaching the oxide film formation temperature. Introducing gas after providing a stable step,
This is a method of forming an oxide film.

【0012】その上、ガス導入停止後の残留ガスによる
酸化膜形成時も、半導体基板面内の温度ばらつきを小さ
くするために、酸化膜形成後の降温を10分間程度、毎
分1℃〜4℃程度で低速降温し、残留ガスによる酸化膜
形成が終了後、高速降温する方法である。
Further, even when the oxide film is formed by the residual gas after the gas introduction is stopped, in order to reduce the temperature variation in the surface of the semiconductor substrate, the temperature is lowered after the oxide film is formed for about 10 minutes at 1 ° C. to 4 ° C. per minute. This is a method in which the temperature is lowered at a low temperature at about 0 ° C., and after the oxide film formation by the residual gas is completed, the temperature is rapidly lowered.

【0013】本発明は上記にした構成によって、ガス導
入時において半導体基板面内の温度ばらつきが小さくな
る。また、ガス導入停止後の残留ガスによる酸化膜形成
時も半導体基板面内の温度ばらつきを小さくする事がで
きる。その結果、半導体基板に均一な熱酸化膜を形成す
ることが可能である。
According to the present invention, the temperature variation in the plane of the semiconductor substrate is reduced when gas is introduced. Further, it is possible to reduce the temperature variation in the surface of the semiconductor substrate even when the oxide film is formed by the residual gas after the gas introduction is stopped. As a result, it is possible to form a uniform thermal oxide film on the semiconductor substrate.

【0014】[0014]

【発明の実施の形態】以下本発明の第1の実施の形態に
ついて、図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to the drawings.

【0015】高速昇降温炉の構成は図1と同様である。
図3は本発明の実施の形態における高速昇降温炉を用い
た、半導体基板上の熱酸化膜形成方法の処理ステップを
示したものであるが、この第1の実施の形態に相当する
ものはステップ1からステップ4である。ステップ1は
炉内温度を安定させるステップである。ステップ2は高
速昇温ステップである。ステップ3は炉内温度安定ステ
ップである。4は低速昇温ステップである。
The structure of the fast heating / cooling furnace is the same as that shown in FIG.
FIG. 3 shows the processing steps of the method for forming a thermal oxide film on a semiconductor substrate using the fast heating / cooling furnace according to the embodiment of the present invention. What corresponds to the first embodiment is shown in FIG. Steps 1 to 4. Step 1 is a step of stabilizing the temperature in the furnace. Step 2 is a high speed temperature raising step. Step 3 is a furnace temperature stabilization step. 4 is a low speed temperature raising step.

【0016】図4は従来技術での昇温時における炉内温
度特性と半導体基板面内温度分布を示したもので、図5
は本実施の形態での昇温時における炉内温度特性と半導
体基板面内温度分布を示したものである。
FIG. 4 shows the temperature characteristics in the furnace and the temperature distribution in the surface of the semiconductor substrate when the temperature is raised in the prior art.
FIG. 4 shows the temperature characteristics in the furnace and the in-plane temperature distribution of the semiconductor substrate at the time of temperature rise in the present embodiment.

【0017】以上のように本実施の形態によれば、図3
のステップ2において、850℃以下の温度に高速昇温
した後に、図3のステップ3において、5分以上炉内温
度を一定に保持し、図3のステップ4にて酸化膜形成温
度まで毎分1℃〜8℃程度で低速昇温することで、図4
に示す従来技術での昇温時の炉内温度特性と半導体基板
面内温度分布が、図5に示す本実施の形態での昇温時の
炉内温度特性と半導体基板面内温度分布となり、半導体
基板面内の温度ばらつきを小さくできている。図4に示
す従来技術での昇温時の炉内温度特性と半導体基板面内
温度分布では、基板外周部の温度が高く基板中心部の温
度が低いため、基板外周部と基板中心部の酸化膜厚に差
がでてしまうが、図5に示す本実施の形態での昇温時の
炉内温度特性と半導体基板面内温度分布では、基板外周
部と基板中心部の温度差が小さいため、基板外周部と基
板中心部の酸化膜厚差は小さくなる。
As described above, according to this embodiment, as shown in FIG.
In step 2 of FIG. 3, after the temperature is rapidly raised to a temperature of 850 ° C. or lower, in step 3 of FIG. 3, the furnace temperature is kept constant for 5 minutes or more, and in step 4 of FIG. As shown in FIG.
The in-furnace temperature characteristic during temperature increase and the in-plane temperature distribution of the semiconductor substrate in the prior art shown in FIG. 5 become the in-furnace temperature characteristic during temperature increase and the in-plane temperature distribution of the semiconductor substrate in the present embodiment shown in FIG. The temperature variation in the plane of the semiconductor substrate can be reduced. According to the temperature characteristics in the furnace and the temperature distribution in the surface of the semiconductor substrate at the time of temperature rise in the conventional technique shown in FIG. Although there is a difference in film thickness, in the temperature characteristic in the furnace and the temperature distribution in the surface of the semiconductor substrate in the present embodiment shown in FIG. 5, the temperature difference between the substrate outer peripheral portion and the substrate central portion is small. The difference in oxide film thickness between the outer peripheral portion of the substrate and the central portion of the substrate becomes small.

【0018】なお、図10は昇温速度とオーバーシュー
ト量の関係を示したものであるが、昇温速度8℃付近か
らオーバーシュート量が増加している。この事例から低
速昇温速度は1℃〜8℃に設定している。図4におい
て、酸化膜形成温度にてオーバーシュートしているが、
図5においては、高速昇温後にはオーバーシュートして
いるが、酸化膜形成温度においては、昇温速度を1〜8
℃にて低速昇温しているため、オーバーシュートはみら
れない。
Although FIG. 10 shows the relationship between the rate of temperature rise and the amount of overshoot, the amount of overshoot increases from around the rate of temperature rise of 8 ° C. From this example, the low temperature increase rate is set to 1 ° C to 8 ° C. In FIG. 4, overshoot occurs at the oxide film formation temperature.
In FIG. 5, overshooting occurs after high-speed heating, but at the oxide film forming temperature, the heating rate is 1 to 8
There is no overshoot because the temperature is slowly rising at ℃.

【0019】さらに、本実施の形態の図3のステップ2
において、高速昇温終了温度を850℃以下に設定した
理由は、高速昇温を行った際に850℃付近から半導体
基板面内の反りが大きくなるからである。その高速昇温
温度と半導体基板面内の反りの関係を図6に示す。
Further, step 2 in FIG. 3 of the present embodiment.
In the above, the reason why the high-speed temperature increase end temperature is set to 850 ° C. or lower is that the warp in the plane of the semiconductor substrate increases from around 850 ° C. when the high-speed temperature increase is performed. FIG. 6 shows the relationship between the high temperature rising temperature and the warp in the plane of the semiconductor substrate.

【0020】以下本発明の第2の実施の形態について、
図面を参照しながら説明する。
The second embodiment of the present invention will be described below.
A description will be given with reference to the drawings.

【0021】高速昇降温炉の構成は図1と同様である。
図3は本発明の実施の形態における高速昇降温炉を用い
た、半導体基板上の熱酸化膜形成方法の処理ステップを
示したものであるが、この第2の実施の形態に相当する
ものはステップ5からステップ6である。ステップ5は
酸化膜形成温度時の炉内温度を安定させるステップであ
る。ステップ6は酸化膜形成ステップである。
The structure of the fast heating / cooling furnace is the same as that shown in FIG.
FIG. 3 shows the processing steps of the method for forming a thermal oxide film on a semiconductor substrate using the fast heating / cooling furnace according to the embodiment of the present invention. What corresponds to the second embodiment is as follows. Steps 5 to 6. Step 5 is a step of stabilizing the temperature in the furnace at the oxide film forming temperature. Step 6 is an oxide film formation step.

【0022】この第2の実施の形態における酸化膜形成
温度時の炉内及び半導体基板面内の温度変化を図7に示
す。
FIG. 7 shows the temperature changes in the furnace and in the plane of the semiconductor substrate at the oxide film forming temperature in the second embodiment.

【0023】以上のように本実施の形態によれば、図3
のステップ5において、酸化膜形成温度にて5分以上炉
内温度を一定に保持することで、図3のステップ6でガ
スを導入し酸化膜を形成する前に、半導体基板面内の温
度ばらつきを小さくできている。図7において、従来技
術のガス導入時では、基板外周部の温度が高く基板中心
部の温度が低いため、基板外周部と基板中心部の酸化膜
厚に差がでてしまうが、改善技術のガス導入時では、基
板外周部と基板中心部の温度差が小さいため、基板外周
部と基板中心部の酸化膜厚の差は小さくなる。
As described above, according to this embodiment, as shown in FIG.
In step 5, the temperature in the furnace is kept constant for 5 minutes or more at the oxide film forming temperature, so that the temperature variation in the surface of the semiconductor substrate can be increased before the gas is introduced and the oxide film is formed in step 6 in FIG. Is made smaller. In FIG. 7, when the gas is introduced according to the related art, the temperature of the outer peripheral portion of the substrate is high and the temperature of the central portion of the substrate is low, so that a difference in oxide film thickness between the outer peripheral portion of the substrate and the central portion of the substrate occurs. When the gas is introduced, the temperature difference between the outer peripheral portion of the substrate and the central portion of the substrate is small, so that the difference in oxide film thickness between the outer peripheral portion of the substrate and the central portion of the substrate is small.

【0024】以下本発明の第3の実施の形態について、
図面を参照しながら説明する。
The third embodiment of the present invention will be described below.
A description will be given with reference to the drawings.

【0025】高速昇降温炉の構成は図1と同様である。
図3は本発明の実施の形態における高速昇降温炉を用い
た、半導体基板上の熱酸化膜形成方法の処理ステップを
示したものであるが、この第3の実施の形態に相当する
ものはステップ7からステップ8である。ステップ7は
低速降温ステップである。ステップ8は高速降温ステッ
プである。
The structure of the fast heating / cooling furnace is the same as that shown in FIG.
FIG. 3 shows the processing steps of the method for forming a thermal oxide film on a semiconductor substrate using the fast heating / cooling furnace according to the embodiment of the present invention. What corresponds to the third embodiment is as follows. Steps 7 to 8. Step 7 is a low temperature cooling step. Step 8 is a high temperature cooling step.

【0026】図8は従来技術での降温時の炉内温度特性
と半導体基板面内温度分布を示したもので、図9は本実
施の形態での降温時の炉内温度特性と半導体基板面内温
度分布を示したものである。
FIG. 8 shows the temperature characteristics in the furnace and the temperature distribution in the surface of the semiconductor substrate when the temperature is lowered in the prior art, and FIG. 9 is the temperature characteristics in the furnace and the semiconductor substrate surface when the temperature is lowered in the present embodiment. It shows the internal temperature distribution.

【0027】以上のように本実施の形態によれば、図3
のステップ7において、10分間程度、毎分1℃〜4℃
程度で低速降温した後に、図3のステップ8にて高速降
温することで、図8に示す従来技術での炉内温度特性と
半導体基板面内温度分布が、図9に示す本実施の形態で
の炉内温度特性と半導体基板面内温度分布となり、残留
ガスによる酸化膜形成時においても均一な半導体基板面
内の温度を確保できている。図8に示す従来技術での降
温時の炉内温度特性と半導体基板面内温度分布では、基
板外周部の温度が低く基板中心部の温度が高いため、基
板外周部と基板中心部の酸化膜厚に差がでてしまうが、
図9に示す本実施の形態での昇温時の炉内温度特性と半
導体基板面内温度分布では、基板外周部と基板中心部の
温度差が小さいため、基板外周部と基板中心部の酸化膜
厚差は小さくなる。
As described above, according to this embodiment, as shown in FIG.
Step 7 of 10 minutes, 1 ℃ ~ 4 ℃ per minute
By lowering the temperature at a low rate at a low speed and then rapidly lowering the temperature in step 8 of FIG. 3, the temperature characteristics in the furnace and the in-plane temperature distribution of the semiconductor substrate in the conventional technique shown in FIG. The in-furnace temperature characteristics and the in-plane temperature distribution of the semiconductor substrate are obtained, and a uniform in-plane temperature of the semiconductor substrate can be secured even when the oxide film is formed by the residual gas. In the temperature characteristics in the furnace and the in-plane temperature distribution of the semiconductor substrate in the conventional technique shown in FIG. 8, the temperature of the outer peripheral portion of the substrate is low and the temperature of the central portion of the substrate is high. There will be a difference in thickness,
In the temperature characteristics in the furnace and the temperature distribution in the surface of the semiconductor substrate at the time of temperature rise in the present embodiment shown in FIG. 9, since the temperature difference between the substrate outer peripheral portion and the substrate central portion is small, oxidation of the substrate outer peripheral portion and the substrate central portion is performed. The film thickness difference becomes small.

【0028】なお、低速降温する時間を10分間程度と
した理由は、図8、9に示すように残留ガスが約10分
で排気され、N2に置換されるためである。また、低速
降温速度を1〜4℃とした理由は、図11に示す、降温
速度と反応管内ポジション別温度分布のように、降温速
度が4℃以上となると反応管内ポジション別で温度ばら
つきが大きくなり、反応管ポジション別で半導体基板の
温度ばらつきが大きくなり、反応管ポジション別で半導
体基板の酸化膜厚ばらつきが大きくなるからである。
The reason why the slow cooling time is about 10 minutes is that the residual gas is exhausted in about 10 minutes and replaced with N 2 as shown in FIGS. Further, the reason for setting the low temperature-decreasing rate to 1 to 4 ° C. is that, as shown in FIG. 11, when the temperature-decreasing rate is 4 ° C. or more, the temperature variation between the positions in the reaction tube is large, as shown in the temperature-decreasing rate and temperature distribution by position in the reaction tube. This is because the temperature variation of the semiconductor substrate increases depending on the reaction tube position, and the oxide film thickness variation of the semiconductor substrate increases depending on the reaction tube position.

【0029】上記3つの実施の形態の効果である、酸化
膜厚均一性を表1に示す。
Table 1 shows the oxide film thickness uniformity, which is the effect of the above-described three embodiments.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から、本発明の効果である半導体基板
面内の温度ばらつきを小さくすることで、半導体基板面
内に均一な熱酸化膜を形成することが可能である。
From Table 1, it is possible to form a uniform thermal oxide film in the surface of the semiconductor substrate by reducing the temperature variation in the surface of the semiconductor substrate, which is the effect of the present invention.

【0032】[0032]

【発明の効果】以上のように本発明は、炉内昇温時に半
導体基板面内の温度ばらつきを小さくするために高速昇
温を850℃以下の温度で停止し、5分以上炉内温度を
一定に保つ温度安定ステップを設けた後に、酸化膜形成
温度まで毎分1℃〜8℃程度にて低速昇温することで、
半導体基板面内の温度ばらつきを小さくでき、半導体基
板面内に均一な熱酸化膜を形成することができる。
As described above, according to the present invention, in order to reduce the temperature variation in the surface of the semiconductor substrate when the temperature inside the furnace is raised, the high-speed temperature rising is stopped at a temperature of 850 ° C. or lower, and the temperature inside the furnace is kept higher than 5 minutes. After providing the temperature stabilizing step for keeping the temperature constant, by slowly increasing the temperature to the oxide film forming temperature at about 1 ° C to 8 ° C per minute,
It is possible to reduce the temperature variation in the semiconductor substrate surface and form a uniform thermal oxide film in the semiconductor substrate surface.

【0033】さらに、ガスを導入して酸化膜を形成する
前に、酸化膜形成温度到達後に5分以上炉内温度を一定
に保つ温度安定ステップを設けることで、半導体基板面
内温度のばらつきを小さくでき、半導体基板面内に均一
な熱酸化膜を形成することができる。
Further, before the gas is introduced to form the oxide film, a temperature stabilization step for keeping the temperature in the furnace constant for 5 minutes or more after the temperature for forming the oxide film is provided, so that the in-plane temperature of the semiconductor substrate can be prevented from varying. The size can be reduced, and a uniform thermal oxide film can be formed within the surface of the semiconductor substrate.

【0034】また、酸化膜形成後の降温を10分間程
度、毎分1℃〜4℃程度で低速降温した後に、高速降温
することで、ガス導入停止後の残留ガスによる酸化膜形
成時においても、半導体基板面内温度のばらつきを小さ
くでき、半導体基板面内に均一な熱酸化膜を形成するこ
とができる。
Further, by lowering the temperature after the oxide film is formed at a low speed for about 10 minutes at a rate of 1 ° C. to 4 ° C. per minute and then at a high speed, even when the oxide film is formed by the residual gas after the gas introduction is stopped. Further, it is possible to reduce the variation in the temperature within the semiconductor substrate surface and form a uniform thermal oxide film within the semiconductor substrate surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】高速昇降温炉の構成図[Fig. 1] Block diagram of fast heating / cooling furnace

【図2】従来条件でのステップ図[Figure 2] Step diagram under conventional conditions

【図3】改善条件でのステップ図[Figure 3] Step diagram for improvement conditions

【図4】従来条件での昇温時の基板面内温度ばらつきを
示した図
FIG. 4 is a diagram showing variations in temperature within a substrate surface during temperature increase under conventional conditions.

【図5】改善条件での昇温時の基板面内温度ばらつきを
示した図
FIG. 5 is a diagram showing variations in temperature within the substrate surface when the temperature is raised under the improved conditions.

【図6】高速昇降温時の温度と半導体基板の反りを示し
た図
FIG. 6 is a diagram showing the temperature and the warp of the semiconductor substrate during high-speed temperature increase / decrease.

【図7】酸化膜形成温度時の半導体基板面内温度ばらつ
きを示した図
FIG. 7 is a diagram showing a temperature variation in a surface of a semiconductor substrate at a temperature of forming an oxide film.

【図8】従来条件での降温時の半導体基板面内温度のば
らつきを示した図
FIG. 8 is a diagram showing variations in in-plane temperature of the semiconductor substrate when the temperature is lowered under the conventional conditions.

【図9】改善条件での降温時の半導体基板面内温度のば
らつきを示した図
FIG. 9 is a diagram showing variations in the in-plane temperature of the semiconductor substrate when the temperature is lowered under the improved conditions.

【図10】昇温速度とオーバーシュート量を示した図FIG. 10 is a diagram showing a heating rate and an overshoot amount.

【図11】降温速度と反応管内ポジション別の温度差を
示した図
FIG. 11 is a diagram showing a temperature drop rate and a temperature difference for each position in the reaction tube.

【符号の説明】[Explanation of symbols]

1 高速降温時の炉内冷却エアー排気口 2 反応管 3 反応管内の熱電対 4 ボート 5 高速降温時の冷却エアー吹き出し口 6 保温治具 7 反応管のキャップ 8 ヒーター部の熱電対 9 ガス吹き出し口 10 ヒータ 11 半導体基板 1 Cooling air exhaust port during high-speed cooling 2 reaction tubes 3 Thermocouple in the reaction tube 4 boats 5 Cooling air outlet for high-speed cooling 6 Heat insulation jig 7 Reaction tube cap 8 Thermocouple of heater part 9 gas outlet 10 heater 11 Semiconductor substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 延原 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F058 BA06 BC02 BF52 BF62 BJ01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsutomu Nobuhara             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5F058 BA06 BC02 BF52 BF62 BJ01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸化膜形成温度までの炉内温度の昇温
は、所定の温度までは高速昇温させ、所定の時間炉内温
度を一定に保ったあとに酸化膜形成温度まで低速昇温す
ることを特徴とする高速昇降温炉を用いた熱酸化膜形成
方法。
1. The temperature rise in the furnace up to the oxide film formation temperature is carried out at a high speed up to a predetermined temperature, and after the furnace temperature is kept constant for a predetermined time, the temperature is slowly raised up to the oxide film formation temperature. A method for forming a thermal oxide film using a high-speed heating / cooling furnace.
【請求項2】 請求項1記載の高速昇降温炉を用いた熱
酸化膜形成方法であって、所定の温度は850℃以下と
することを特徴とする高速昇降温炉を用いた熱酸化膜形
成方法。
2. A method for forming a thermal oxide film using the fast heating / cooling furnace according to claim 1, wherein the predetermined temperature is 850 ° C. or lower. Forming method.
【請求項3】 請求項1記載の高速昇降温炉を用いた熱
酸化膜形成方法であって、炉内温度を安定させる所定の
時間は5分以上とすることを特徴とする高速昇降温炉を
用いた熱酸化膜形成方法。
3. The method for forming a thermal oxide film using the fast heating / cooling furnace according to claim 1, wherein the predetermined time for stabilizing the temperature inside the furnace is 5 minutes or more. Method for forming thermal oxide film using.
【請求項4】 請求項1記載の高速昇降温炉を用いた熱
酸化膜形成方法であって、低速昇温速度は毎分1℃〜8
℃程度であることを特徴とする高速昇降温炉を用いた熱
酸化膜形成方法。
4. The method for forming a thermal oxide film using the high-speed heating / cooling furnace according to claim 1, wherein the low temperature-rising rate is 1 ° C. to 8 minutes per minute.
A method for forming a thermal oxide film using a high-speed heating / cooling furnace, which is characterized in that the temperature is about ℃.
【請求項5】 請求項1〜4記載の高速昇降温炉を用い
た熱酸化膜形成方法であって、熱酸化膜形成温度に到達
させたあとは、所定の時間炉内温度を一定に保ったあと
にガスを導入して熱酸化膜を形成することを特徴とする
高速昇降温炉を用いた熱酸化膜形成方法。
5. A method for forming a thermal oxide film using the fast heating / cooling furnace according to claim 1, wherein the temperature inside the furnace is kept constant for a predetermined time after reaching the temperature for forming the thermal oxide film. A method for forming a thermal oxide film using a fast heating / cooling furnace, characterized in that a gas is then introduced to form the thermal oxide film.
JP2002058233A 2002-03-05 2002-03-05 Method of forming thermal oxide film using high-speed temperature up-and-down furnace Pending JP2003257966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058233A JP2003257966A (en) 2002-03-05 2002-03-05 Method of forming thermal oxide film using high-speed temperature up-and-down furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058233A JP2003257966A (en) 2002-03-05 2002-03-05 Method of forming thermal oxide film using high-speed temperature up-and-down furnace

Publications (1)

Publication Number Publication Date
JP2003257966A true JP2003257966A (en) 2003-09-12

Family

ID=28668251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058233A Pending JP2003257966A (en) 2002-03-05 2002-03-05 Method of forming thermal oxide film using high-speed temperature up-and-down furnace

Country Status (1)

Country Link
JP (1) JP2003257966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218490A (en) * 2007-02-28 2008-09-18 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218490A (en) * 2007-02-28 2008-09-18 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3711199B2 (en) Heat treatment method for silicon substrate
KR950009940B1 (en) Heat treating method and apparatus thereof
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JP6971622B2 (en) Manufacturing method of semiconductor wafer and semiconductor wafer
JPH06188413A (en) Manufacture of mos-type semiconductor device
JP3276500B2 (en) Silicon wafer and manufacturing method thereof
JP4552415B2 (en) Method for manufacturing silicon wafer
JP2003257966A (en) Method of forming thermal oxide film using high-speed temperature up-and-down furnace
KR100230429B1 (en) Method for forming silicon oxynitride in semiconductor device
CN105185691A (en) Method for eliminating first sheet effect
JP2004172564A (en) Annealed wafer and its manufacturing method
JP2008227060A (en) Method of manufacturing annealed wafer
JP3074823B2 (en) Heat treatment equipment for semiconductor wafers
JP2005136095A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP3636606B2 (en) Heat treatment method for silicon wafer
TWI585250B (en) Thermal processing method for wafer (2)
JP2967593B2 (en) Open-tube pre-deposition diffusion method
JPH07235507A (en) Method of manufacturing semiconductor device
KR100607417B1 (en) method for forming a silicon oxide layer in a semiconductor fabricating
JP3089669B2 (en) Method for manufacturing semiconductor device
JP3287308B2 (en) Preparation method of oxide film
JPH11154649A (en) Rapid heat processor
JP2017157812A (en) Method of heat treatment of wafer
JPS63128623A (en) Heat treatment control substrate and its application
JPH1131662A (en) Heat treatment apparatus and manufacture of semiconductor device using it