JPH0554904A - Manufacture of solid electrolyte for fuel cell - Google Patents

Manufacture of solid electrolyte for fuel cell

Info

Publication number
JPH0554904A
JPH0554904A JP3209750A JP20975091A JPH0554904A JP H0554904 A JPH0554904 A JP H0554904A JP 3209750 A JP3209750 A JP 3209750A JP 20975091 A JP20975091 A JP 20975091A JP H0554904 A JPH0554904 A JP H0554904A
Authority
JP
Japan
Prior art keywords
solid electrolyte
laf
fuel cell
laof
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209750A
Other languages
Japanese (ja)
Inventor
Kaoru Kitakizaki
薫 北寄崎
Kazuo Fushimi
和夫 伏見
Kazuhiko Kawakami
和彦 河上
Yasuhiro Yoshioka
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3209750A priority Critical patent/JPH0554904A/en
Publication of JPH0554904A publication Critical patent/JPH0554904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the electric conductivity and heat resistance. CONSTITUTION:Lace powders and SrF2 powders are weighed to make a material including LaF3 95mol% and SrF2 5mol%, which is then ground and dry mixed in an agate mortar for about one hour. Obtained ground powders are weighed by 2g, and pressed under a pressure of 1ton/cm<2> to obtain a molded body. This molded body is heated in an argon atmosphere furnace at a speed of 200 deg.C/h, and it is baked at 1180 C for one hour to obtain a baked body. One of obtained baked bodies is then crushed, and an X-ray refraction is taken.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池用の固体電解
質の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a solid electrolyte for a fuel cell.

【0002】[0002]

【従来の技術】一般的に固体電解質型燃料電池としては
安定化ジルコニア(YSZ)を用いたものが知られてい
る。しかし、このYSZを用いた燃料電池の動作は約1
000℃と高温であるために、使用材料には耐熱材料を
用いなければならない。そこで、電池の動作温度を下げ
るため、他の固体電解質、例えばCeO2,Bi23
を用いて700〜800℃で動作する燃料電池の開発が
進められている。しかし、これらの材料は水素雰囲気等
の還元雰囲気において還元されてしまうという欠点があ
る。
2. Description of the Related Art Generally, a solid oxide fuel cell using stabilized zirconia (YSZ) is known. However, the operation of the fuel cell using this YSZ is about 1
Due to the high temperature of 000 ° C., a heat resistant material must be used as the material used. Therefore, in order to lower the operating temperature of the cell, the development of a fuel cell that operates at 700 to 800 ° C. using another solid electrolyte such as CeO 2 or Bi 2 O 3 is under way. However, these materials have a drawback that they are reduced in a reducing atmosphere such as a hydrogen atmosphere.

【0003】このため、発明者は低温(300℃〜50
0℃)で動作可能な固体電解質としてフッ化ランタン
(LaF3)あるいはフッ化ランタンに電気導電率を上
げるため、2価のストロンチウムSr、バリウムBa等
をドープし、La1-xx3-x(M=Sr,Ba,C
a)(x=0.05〜0.10)という様な組成にした
材料を用いて研究を進めて来た。
Therefore, the inventor has found that the low temperature (300.degree.
In order to increase the electric conductivity of lanthanum fluoride (LaF 3 ) or lanthanum fluoride as a solid electrolyte capable of operating at 0 ° C., divalent strontium Sr, barium Ba, etc. are doped to form La 1-x M x F 3 -x (M = Sr, Ba, C
a) Research has been carried out using a material having a composition such as (x = 0.05 to 0.10).

【0004】[0004]

【発明が解決しようとする課題】LaF3にSr,B
a,CaをドープさせたLa1-xx3-x(x=0.0
5〜0.10、M=Sr,Ba,Ca)の電気導電率は
LaF3と比較すると、はるかに高く、燃料電池用固体
電解質として有望である。しかし、LaF3,La1-x
x3-xの材料は耐熱性がないため、動作温度を上げるに
つれ、LaF3結晶構造から空気極側のO2と反応したり
して、LaOF結晶構造に変化してしまう欠点がある。
また、電極界面抵抗を下げるため、酸素極側電極(例え
ばLa0・6Sr0・403あるいはLa0・6Sr0・4Co
0・98Ni0・023の様なペロブスカイト電極)の固体電
解質上への形成時の焼成温度を上げたりすると、LaF
3あるいはLa1-xx3-xsと酸素極側電極中の酸素が
反応し、LaOF結晶構造に変化してしまうという問題
がある。
[Problems to be Solved by the Invention] Sr, B in LaF 3
La 1-x M x F 3-x (x = 0.0) doped with a, Ca
The electric conductivity of 5 to 0.10, M = Sr, Ba, Ca) is much higher than that of LaF 3 and is promising as a solid electrolyte for fuel cells. However, LaF 3 , La 1-x M
material x F 3-x, because there is no heat resistance, as raising the operating temperature, or by reaction of LaF 3 crystal structure and O 2 of the air electrode side, there is a disadvantage that changes in LaOF crystal structure.
Further, in order to reduce the electrode interface resistance, an oxygen electrode side electrode (for example, La 0 .6 Sr 0 .4 C 0 O 3 or La 0 .6 Sr 0 .4 Co) is used.
LaF may be increased by increasing the firing temperature during the formation of a perovskite electrode such as 0.98 Ni 0.02 O 3 ) on the solid electrolyte.
There is a problem that 3 or La 1-x M x F 3-x s reacts with oxygen in the oxygen electrode side electrode to change to a LaOF crystal structure.

【0005】LaOFの密度は6.02g/cm3であ
り、LaF3の5.96g/cm3より大きいため、La
3がLaOFに変化すると、体積収縮が生じ固体電解
質中にクラックが発生するとともに、燃料電池としての
発電が行えなくなってしまう問題がある。一方、LaO
Fの電気導電率はA.Pelloux等によって測定さ
れており(文献C.R.Acad.Sci,Ser.
C,276,241(1973))、例えば、500℃
においては約1.5×10-3Scm-1程度と低く燃料電
池用固体電解質として用いるには電気導電率が低すぎて
しまう問題がある。
[0005] Density of LaOF is 6.02 g / cm 3, since larger 5.96 g / cm 3 of LaF 3, La
When F 3 changes to LaOF, there are problems that volume contraction occurs, cracks occur in the solid electrolyte, and power generation as a fuel cell cannot be performed. On the other hand, LaO
The electric conductivity of F. It has been measured by Pelloux et al. (Reference CR Acad. Sci, Ser.
C, 276, 241 (1973)), for example, 500 ° C.
However, the electric conductivity is too low to be used as a solid electrolyte for fuel cells, which is as low as about 1.5 × 10 −3 Scm −1 .

【0006】この発明は上記の事情に鑑みてなされたも
ので、電気導電率及び耐熱性の向上を図るようにした燃
料電池用の固体電解質の製造方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a solid electrolyte for a fuel cell, which is intended to improve electric conductivity and heat resistance.

【0007】[0007]

【課題を解決するための手段】この発明は上記の目的を
達成するために、La1-xx1-x(x=0.05〜
0.20、M=Sr,Ba,Ca)の組成式で表される
物質を、ジルコニア容器内で1200℃、数時間焼成し
た後にLa1-xxOF1-x(x=0.05〜0.20,
M=Sr,Ba,Ca)の組成式で表される物質に組成
したことを特徴とするものである。
In order to achieve the above object, the present invention provides La 1-x M x F 1-x (x = 0.05 to
0.20, M = Sr, Ba, Ca), the substance represented by the composition formula is fired in a zirconia container at 1200 ° C. for several hours, and then La 1-x M x OF 1-x (x = 0.05). ~ 0.20,
M = Sr, Ba, Ca) is a composition represented by a composition formula.

【0008】[0008]

【作用】大気中の焼成前にはLa0・95Sr0・052・95
焼成体が焼成後において結晶構造的にはLaOF結晶構
造になったことから、焼成体はLa0・95Sr0・052・35
中のフッ素が酸素Oに置換され、La0・95Sr0・051
±y2・95(yはほぼ0に近い数字)という組成にな
る。例えばy=0と仮定すると、La0・98Sr0・05OF
0・95となり、結晶中にはF欠陥が導入されたことにな
る。
Since [action] which fired body prior to firing in the air is La 0 · 95 Sr 0 · 05 F 2 · 95 becomes crystallographically The LaOF crystal structure after sintering, the sintered body is La 0 · 95 Sr 0 · 05 F 2 · 35
Fluorine in the inside is replaced with oxygen O, and La 0 .95 Sr 0 .05 O 1
The composition is ± y F 2 · 95 (y is a number close to 0). For example, assuming y = 0, La 0 · 98 Sr 0 · 05 OF
This is 0.95, which means that F defects have been introduced into the crystal.

【0009】[0009]

【実施例】以下この発明の実施例を説明する。出発原料
にはオプトロン社製の−100メッシュ、純度99%の
LaF3粉末及び−100メッシュ、純度99.9%の
SrF2粉末を用いて、LaF395mol%、SrF2
5mol%となるように秤量し、めのう乳鉢中で1時間
程度摩砕、乾式混合した。この混合摩砕粉末を2g秤量
し、直径18φの金型を用い、1ton/cm2の圧力
でプレスし、成形体を得た。この成形体をアルゴン雰囲
気炉で200℃/hの速度で昇温させ、1180℃で1
時間焼成した。焼成体の1個を粉砕し、X線回折装置で
X線回折を計測したところ、LaF3のX線回折ピーク
しか検出されず、SrF2のX線回折ピークは検出され
なかった。
Embodiments of the present invention will be described below. As a starting material, -100 mesh manufactured by Optron Co., LaF 3 powder having a purity of 99% and -100 mesh, SrF 2 powder having a purity of 99.9% were used, and LaF 3 95 mol% and SrF 2 were used.
The mixture was weighed so as to be 5 mol%, ground in an agate mortar for about 1 hour, and dry-mixed. 2 g of this mixed ground powder was weighed and pressed at a pressure of 1 ton / cm 2 using a mold having a diameter of 18φ to obtain a molded body. The compact was heated in an argon atmosphere furnace at a rate of 200 ° C./h and heated at 1180 ° C. for 1 hour.
Burned for hours. When one of the fired bodies was crushed and the X-ray diffraction was measured by an X-ray diffractometer, only the X-ray diffraction peak of LaF 3 was detected and the X-ray diffraction peak of SrF 2 was not detected.

【0010】また、焼成体の定量分析を行ったところ、
Laと比較し、5.04at%含まれており、ほぼLa
0・95Sr0・052・95の焼成体が得られた。その後、その
焼成体をジルコニア容器に移し、大気中で1200℃6
時間焼成した。焼成後、焼成体の1個を粉砕し、X線回
折装置でX線回折を計測したところ、純粋なLaOF結
晶構造となっていた。大気中の焼成前にはLa0・95Sr
0・052・95という組成になっており、大気中の焼成後に
おいて結晶構造的にはLaOF結晶構造になったことか
ら、焼成体はLa0・95Sr0・052・29中のフッ素Fが酸
素Oに置換され、La0・95Sr0・051±y0・952y
(yはほぼ0に近い数)という組成になっている。例え
ばy=0と仮定すると、La0・95Sr0・05OF0・95とな
り、結晶中にはF欠陥が導入されたことになる。なお、
焼成されたペレットの充填率を計算すると84〜90%
になっていた。
Further, when a quantitative analysis of the fired body was carried out,
Compared with La, it contained 5.04 at% and was almost La.
0 fired bodies · 95 Sr 0 · 05 F 2 · 95 were obtained. Then, the fired body was transferred to a zirconia container, and the temperature was 1200 ° C. 6
Burned for hours. After firing, one of the fired bodies was crushed, and X-ray diffraction was measured by an X-ray diffractometer, and it was found that the crystal structure was pure LaOF. La 0 · 95 Sr before firing in the air is
0 · 05 has become a composition of F 2 · 95, since the crystal structural after firing in air became LaOF crystal structure, the sintered body is La 0 · 95 Sr 0 · 05 F 2 · 29 Fluorine F is replaced with oxygen O, and La 0 · 95 Sr 0 · 05 O 1 ± y F 0 · 95 2y
(Y is a number close to 0). For example, assuming that y = 0, La 0 .95 Sr 0 .05 OF 0 .95 is obtained, which means that F defects are introduced into the crystal. In addition,
Calculated filling rate of fired pellets 84-90%
It was.

【0011】このペレットの両端面に、いま白金ptを
スパッタリングし、電極を形成し、複素インピーダンス
法を用いて電気導電率を400°〜800℃間で測定し
た結果を次表に示す。
Platinum pt is sputtered on both end faces of the pellet to form electrodes, and the electric conductivity is measured at 400 ° to 800 ° C. by the complex impedance method. The results are shown in the following table.

【0012】[0012]

【表1】 [Table 1]

【0013】なお、表には上述した方法と同一の製法で
製作されたLa1-XSrx1±y1-x±2y(x=0.0
3〜0.20、y=0)及びLaOFの電気導電率の測
定結果も併せて示しておく。なお、以下y=0であるか
らLa1-XSrx1±y1-x±2yはLa1-XSrxOF1-x
と記す。
In the table, La 1-X Sr x O 1 ± y F 1-x ± 2y (x = 0.0) manufactured by the same manufacturing method as described above.
3 to 0.20, y = 0) and the measurement results of the electric conductivity of LaOF are also shown. Since y = 0, La 1-X Sr x O 1 ± y F 1-x ± 2y is La 1-X Sr x OF 1-x.
Is written.

【0014】上述した表から明らかなようにLa1-X
xOF1-x(x=0.03〜0.20)ペレットの電気
導電率は明らかに純粋なLaOFの電気導電率よりも高
い値を示している。x=0.03以下ではSrをドープ
させた効果はそれほど現れてきていない。これは次の理
由による。LaOF中にSrをドープすると、結晶格子
中のSr2+はLa3+と置換されるが、Laイオンは3
価、Srイオンは2価であるため、La3+に対応してい
た3個のF-イオンはSr2+と対応することによって本
来3個あるべきところが2個になり、空孔子点が1個導
入される。しかし、x=0.03以下では導入される空
孔子が少ないため、電気導電率の向上にはそれほど寄与
しないためである。導電率を向上させるためにはx=
0.05以上が望ましいことになる。
As is clear from the above table, La 1-X S
The electrical conductivity of the r x OF 1-x (x = 0.03 to 0.20) pellets is clearly higher than that of pure LaOF. When x = 0.03 or less, the effect of doping Sr does not appear so much. This is for the following reason. When Sr is doped into LaOF, Sr 2+ in the crystal lattice is replaced with La 3+ , but La ion is 3
Since the valence and the Sr ion are divalent, the three F ions that corresponded to La 3+ correspond to Sr 2+ , so that the number of originally three becomes two, and the vacancy point is 1 Introduced individually. However, if x = 0.03 or less, the number of vacancies introduced is small, so that it does not contribute so much to the improvement of electric conductivity. X = to improve conductivity
0.05 or more is desirable.

【0015】一方、x=0.20以上ドープすると、導
電率は低下してきたことを確認した。これは次のような
理由である。LaF3にSrF2をドープしようとする
と、SrF2の固溶限は1400℃においても20mo
l%程度以下である(窯業協会誌93〔3〕1985)
LaOF中へのSrの固溶限は調べていないが、LaF
3−SrF2と同程度であると考えると、20mol%以
上SrをドープしてもSrはLaOF結晶中のLaと置
換できず、空孔を形成できないためである。導電率向上
のためにはx=0.15以下が望ましい。従って、La
OF中にSrをx=0.03〜0.20ドープすると望
ましくはx=0.05〜0.15ドープし、La1-X
xOF1-x(x=0.05〜0.15)とすると、電気
導電率の向上がみられ、燃料電池用固体電解質として十
分使用できることが判明した。
On the other hand, it was confirmed that the conductivity was lowered when x = 0.20 or more was doped. This is for the following reasons. When trying to dope SrF 2 into LaF 3 , the solid solubility limit of SrF 2 is 20 mo even at 1400 ° C.
It is about 1% or less (Ceramics Association Journal 93 [3] 1985)
Although the solid solubility limit of Sr in LaOF has not been investigated,
This is because if it is considered to be about the same as 3- SrF 2 , Sr cannot be replaced with La in the LaOF crystal even if 20 mol% or more of Sr is doped, and vacancies cannot be formed. In order to improve the conductivity, x = 0.15 or less is desirable. Therefore, La
If Sr is doped in the OF at x = 0.03 to 0.20, preferably x = 0.05 to 0.15, and La 1-X S is doped.
When r x OF 1-x (x = 0.05 to 0.15), the electric conductivity was improved, and it was found that the solid electrolyte can be sufficiently used as a solid electrolyte for fuel cells.

【0016】次にLa1-XSrxOF1-x2粉末(x=0.
03〜0.20)を、(イ)30℃で加湿された酸素雰
囲気中(H2O+O2雰囲気)と(ロ)30℃で加湿され
た水素雰囲気中(H2O+H2雰囲気)の2種類の雰囲気
で各々975℃−30時間、900℃−500時間さら
し、その後、X線回折法でLa23ピークの有無を調べ
た。その結果、どのサンプルにおいてもLa23は検出
されなかった。La23が形成されるまでの時間Aは次
式で表される。
Next, La 1-X Sr x OF 1-x2 powder (x = 0.
03 to 0.20) in (a) oxygen atmosphere humidified at 30 ° C. (H 2 O + O 2 atmosphere) and (b) hydrogen atmosphere humidified at 30 ° C. (H 2 O + H 2 atmosphere). Were exposed to 975 ° C. for 30 hours and 900 ° C. for 500 hours, and then the presence or absence of the La 2 O 3 peak was examined by X-ray diffraction. As a result, La 2 O 3 was not detected in any of the samples. The time A until La 2 O 3 is formed is represented by the following equation.

【0017】[0017]

【数1】 [Equation 1]

【0018】ただし、A0は定数、kはボルツマン定
数、Tは絶対温度、Qは活性化エネルギーである。上述
の実験値を燃料電池に必要とされる寿命40000時間
に相当し、800℃においてもこの時間を達成する。な
お、上記実施例ではLaF3にSrをドープし、La1-x
SrxOF1-xとした固体電解質を例にとって説明してき
たが、SrをBa,Caに変えても同様の電気導電率特
性及び耐熱性の特性を示した。
However, A 0 is a constant, k is Boltzmann's constant, T is absolute temperature, and Q is activation energy. The above experimental value corresponds to a life of 40,000 hours required for a fuel cell, and this time is achieved even at 800 ° C. In the above embodiment, LaF 3 was doped with Sr to obtain La 1-x
Although the solid electrolyte made of Sr x OF 1-x has been described as an example, even if Sr is changed to Ba or Ca, similar electric conductivity characteristics and heat resistance characteristics are shown.

【0019】[0019]

【発明の効果】以上述べたように、この発明によれば、
電気導電率の向上を図ることができるとともに耐熱性の
向上も図ることができる利点がある。
As described above, according to the present invention,
There is an advantage that the electric conductivity can be improved and the heat resistance can be improved.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月7日[Submission date] October 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【発明が解決しようとする課題】LaFにSr,B
a,CaをドープさせたLa1−x3−x(x=
0.05〜0.10、M=Sr,Ba,Ca)の電気導
電率はLaFと比較すると、はるかに高く、燃料電池
用固体電解質として有望である。しかし、LaF,L
1−x3−xの材料は耐熱性がないため、動作
温度を上げるにつれ、LaF結晶構造から空気極側の
と反応したりして、LaOF結晶構造に変化してし
まう欠点がある。また、電極界面抵抗を下げるため、酸
素極側電極(例えばLa0.6Sr0.4ある
いはLa0.6Sr0.4Co0.98Ni0.02
の様なペロブスカイト電極)の固体電解質上への形成
時の焼成温度を上げたりすると、LaFあるいLa
1−x3−x と酸素極側電極中の酸素が反応し、
LaOF結晶構造に変化してしまうという問題がある。
[Problems to be Solved by the Invention] Sr, B in LaF 3
a, La 1-x was doped with Ca M x F 3-x ( x =
The electric conductivity of 0.05 to 0.10, M = Sr, Ba, Ca) is much higher than that of LaF 3 and is promising as a solid electrolyte for fuel cells. However, LaF 3 , L
For a 1-x M x F 3 -x is a material that is not heat resistant, as raising the operating temperature, or by reaction of LaF 3 crystal structure and O 2 of the air electrode side, changes in LaOF crystal structure There is a drawback that ends up. Further, in order to reduce the electrode interface resistance, an electrode on the oxygen electrode side (for example, La 0.6 Sr 0.4 C 0 O 3 or La 0.6 Sr 0.4 Co 0.98 Ni 0.02 O
If the firing temperature at the time of forming a perovskite electrode such as No. 3 ) on the solid electrolyte is increased, LaF 3 or La
1-x M x F 3-x reacts with oxygen in the oxygen electrode side electrode,
There is a problem that it changes to the LaOF crystal structure.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【作用】大気中の焼成前にはLa0.95Sr0.05
2.95の焼成体が焼成後において結晶構造的にはL
aOF結晶構造になったことから、焼成体はLa
0.95Sr0.052.95 すると、La 0.95Sr0.05OF0.95 とな
り、結晶中にはF欠陥が導入されたことになる。
[Operation] La 0.95 Sr 0.05 before firing in air
The crystal structure of the fired product of F 2.95 is L after firing.
Since it has an aOF crystal structure, the fired body is La
0.95 Sr 0.05 F 2.95 Then, it becomes La 0.95 Sr 0.05 OF 0.95 , which means that F defects are introduced into the crystal.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】また、焼成体の定量分析を行ったところ、
Srは5.04at%含まれており、ほぼLa0.95
Sr0.052.95の焼成体が得られた。その後、
その焼成体をジルコニア容器に移し、大気中で1200
℃6時間焼成した。焼成後、焼成体の1個を粉砕し、X
線回折装置でX線回折を計測したところ、純粋なLaO
F結晶構造となっていた。大気中の焼成前にはLa
0.95Sr0.052.95という組成になってお
り、大気中の焼成後において結晶構造的にはLaOF結
晶構造になったことから、焼成体はLa0.95Sr
0.052.95 中のフッ素Fが酸素Oに置換され、
La0.95 ばy=0と仮定すると、La0.95Sr0.05OF
0.95となり、結晶中にはF欠陥が導入されたことに
なる。なお、焼成されたペレットの充填率を計算すると
84〜90%になっていた。
Further, when a quantitative analysis of the fired body was carried out,
Sr is included at 5.04 at%, which is almost La 0.95.
A fired product of Sr 0.05 F 2.95 was obtained. afterwards,
The fired body is transferred to a zirconia container, and 1200
Calcination was performed for 6 hours. After firing, crush one of the fired bodies and
When X-ray diffraction was measured with a line diffractometer, pure LaO
It had an F crystal structure. La before firing in air
It has a composition of 0.95 Sr 0.05 F 2.95 , and has a LaOF crystal structure in terms of crystal structure after firing in the air. Therefore, the fired body is La 0.95 Sr.
Fluorine F in 0.05 F 2.95 is replaced by oxygen O,
La 0.95 S If y = 0, then La 0.95 Sr 0.05 OF
It was 0.95 , which means that F defects were introduced into the crystal. The filling rate of the fired pellets was calculated to be 84 to 90%.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】 2y はLa1−xSrOF1−xと記す。[0013] 2y is described as La 1-x Sr x OF 1-x .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】次にLa1−xSrOF1−x 粉末(x
=0.03〜0.20)を、(イ)30℃で加湿された
酸素雰囲気中(HO+O雰囲気)と(ロ)30℃で
加湿された水素雰囲気中(HO+H雰囲気)の2種
類の雰囲気で各々975℃−30時間、900℃−50
0時間さらし、その後、X線回折法でLaピーク
の有無を調べた。その結果、どのサンプルにおいてもL
は検出されなかった。Laが形成される
までの時間Aは次式で表される。
Next, La 1-x Sr x OF 1-x powder (x
= 0.03 to 0.20) in (a) oxygen atmosphere humidified at 30 ° C (H 2 O + O 2 atmosphere) and (b) hydrogen atmosphere humidified at 30 ° C (H 2 O + H 2 atmosphere). In two atmospheres, 975 ℃ -30 hours and 900 ℃ -50
After exposure for 0 hour, the presence or absence of a La 2 O 3 peak was examined by X-ray diffraction. As a result, L
a 2 O 3 were detected. The time A until La 2 O 3 is formed is represented by the following equation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 靖浩 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Yoshioka 2-1-1 Osaki, Shinagawa-ku, Tokyo Incorporated company Meidensha

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 La1-xx1-x(x=0.05〜0.
20、M=Sr.Ba.Ca)の組成式で表される物質
を、ジルコニア容器内で1200℃、数時間焼成した後
にLa1-xxOF1-x(x=0.05〜0.20、M=
Sr,Ba,Ca)の組成式で表される物質に組成した
ことを特徴とする燃料電池用の固体電解質の製造方法。
1. La 1-x M x F 1-x (x = 0.05-0.
20, M = Sr. Ba. After calcining the substance represented by the composition formula of Ca) at 1200 ° C. for several hours in a zirconia container, La 1-x M x OF 1-x (x = 0.05 to 0.20, M =
A method for producing a solid electrolyte for a fuel cell, characterized in that it is composed of a substance represented by a composition formula of Sr, Ba, Ca).
JP3209750A 1991-08-22 1991-08-22 Manufacture of solid electrolyte for fuel cell Pending JPH0554904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209750A JPH0554904A (en) 1991-08-22 1991-08-22 Manufacture of solid electrolyte for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209750A JPH0554904A (en) 1991-08-22 1991-08-22 Manufacture of solid electrolyte for fuel cell

Publications (1)

Publication Number Publication Date
JPH0554904A true JPH0554904A (en) 1993-03-05

Family

ID=16578017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209750A Pending JPH0554904A (en) 1991-08-22 1991-08-22 Manufacture of solid electrolyte for fuel cell

Country Status (1)

Country Link
JP (1) JPH0554904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634261B2 (en) 2017-08-31 2020-04-28 Kitz Sct Corporation Attachment structure for actuator-specific solenoid valve and actuator-equipped valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634261B2 (en) 2017-08-31 2020-04-28 Kitz Sct Corporation Attachment structure for actuator-specific solenoid valve and actuator-equipped valve

Similar Documents

Publication Publication Date Title
JP2882104B2 (en) Proton conductor and method for producing the same
Stevenson et al. Sintering behavior of doped lanthanum and yttrium manganite
CZ275498A3 (en) Cheap stable material of air electrodes for high-temperature electrochemical cells with electrolyte of solid oxide
JPH05190180A (en) Air electrode body of solid electrolyte type fuel cell, manufacture of air electrode body and solid electrolyte type fuel cell
KR101987299B1 (en) Structure
JP4360110B2 (en) Lanthanum gallate sintered body and solid oxide fuel cell using the same as a solid electrolyte
JP4092106B2 (en) Compounds derived from La2Mo2O9 and their use as ion conductors
JP3121982B2 (en) Conductive ceramics
JPH08119732A (en) Production of solid electrolyte
JP3011387B2 (en) Ceramics, cylindrical solid electrolyte fuel cells using the same, and flat solid electrolyte fuel cells
JP7300439B2 (en) Oriented apatite-type oxide ion conductor and method for producing the same
JPH06231611A (en) Mixed ion conductor
JP3121993B2 (en) Method for producing conductive ceramics
JPH0554904A (en) Manufacture of solid electrolyte for fuel cell
JPH07249414A (en) Solid electrolytic fuel cell
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
JP3359412B2 (en) Solid oxide fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP3300077B2 (en) Ion conductor material
JP3193214B2 (en) Porous ceramic sintered body
JPH0785875A (en) Solid electrolytic fuel cell
JPH0547404A (en) Manufacture of solid electrolyte for fuel cell
JPH0359953A (en) Solid electrolyte-type fuel cell
JP3863207B2 (en) Lanthanum chromite ceramics, separator containing the same, and solid oxide fuel cell using the separator