JPH0554403B2 - - Google Patents

Info

Publication number
JPH0554403B2
JPH0554403B2 JP18401885A JP18401885A JPH0554403B2 JP H0554403 B2 JPH0554403 B2 JP H0554403B2 JP 18401885 A JP18401885 A JP 18401885A JP 18401885 A JP18401885 A JP 18401885A JP H0554403 B2 JPH0554403 B2 JP H0554403B2
Authority
JP
Japan
Prior art keywords
clay
temperature
freezing
extrusion
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18401885A
Other languages
Japanese (ja)
Other versions
JPS6244404A (en
Inventor
Toshifumi Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18401885A priority Critical patent/JPS6244404A/en
Publication of JPS6244404A publication Critical patent/JPS6244404A/en
Publication of JPH0554403B2 publication Critical patent/JPH0554403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は押出成形方法に係り、特に成形体の寸
法精度及び成形体の歩留りを向上させるための押
出成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an extrusion molding method, and particularly to an extrusion molding method for improving the dimensional accuracy of molded bodies and the yield of molded bodies.

<従来の技術及びその問題点> セラミツクスに代表される坏土たる無機材料を
複雑な形状に成形するには、さまざまな成形方法
が採られている。例えば触媒の担体等に用いられ
ハニカム(蜂の巣)型セラミツクスの成形には、
パネル積層法、ペーパデイツピング法、パイプ結
束法、押出法、プレス法、鋳型法等が知られてい
るが、特に押出法は、ダイスの形状により各種の
形状のものが造れ、さらに連続成形が可能なこと
から最も有効な方法とされている。
<Prior art and its problems> Various molding methods are used to mold inorganic materials such as ceramics into complex shapes. For example, in the molding of honeycomb-shaped ceramics used as catalyst carriers,
The panel lamination method, paper dipping method, pipe bundling method, extrusion method, press method, mold method, etc. are known, but the extrusion method in particular allows the production of various shapes depending on the shape of the die, and it also allows for continuous molding. This is considered the most effective method possible.

しかしながらこの押出方法では、粘弾性流体の
範疇に属する坏土(無機質材料を主体とし焼成し
て製品とする粘土状の材料をいう)を口金から流
出させる手段によるため、押出成形された成形体
の断面寸法が口金の流路断面寸法よりも大きくな
るいわゆるBarus効果が生じる。これがハニカム
(蜂巣状のもの)のように薄肉で複雑な形状の場
合は、この効果により寸法精度が低下するだけで
なく変形の原因となることがある。このBarus効
果を低減させるには、口金流路の長さlと直径d
との比l/dを大きくし、流速を小さくする方法
が考えられるが、しかしふくらみを完全になくす
ることは不可能に近く寸法精度向上の根本的な解
決策とはならない。
However, in this extrusion method, clay (a clay-like material that is mainly composed of inorganic materials and is fired into a product), which belongs to the category of viscoelastic fluid, flows out from the die, so the extrusion molded body is A so-called Barus effect occurs in which the cross-sectional dimension is larger than the flow path cross-sectional dimension of the mouthpiece. If this is a thin and complex shape such as a honeycomb, this effect not only reduces dimensional accuracy but may also cause deformation. In order to reduce this Barus effect, the length l and diameter d of the mouthpiece flow path must be
One possible method is to increase the ratio l/d and decrease the flow velocity, but it is almost impossible to completely eliminate the bulge and this is not a fundamental solution to improving dimensional accuracy.

さらに坏土を所定形状に成形したグリーンボデ
イは、弾塑性流体であるため、成形体の形状によ
つては乾燥硬化までの間に自重により変形するこ
とがある。例えばハニカム状のような場合は、成
形体の特性によつてはそのリブ厚や形状が制限さ
れてしまう。
Furthermore, since the green body formed by molding the clay into a predetermined shape is an elastoplastic fluid, depending on the shape of the molded body, it may deform due to its own weight until it dries and hardens. For example, in the case of a honeycomb shape, the rib thickness and shape are limited depending on the characteristics of the molded body.

また一般に成形体の乾燥時においては、わずか
の収縮不均一によりき裂が発し易くなる。そこで
特開昭49−36708に代表される真空凍結乾燥法が
考えられている。この方法によれば、凍結した水
分が固体の状態から直接気体になつて飛散する
(昇華)ため、均一に乾燥できるとともに、短時
間に乾燥することができる。しかしながら凍結乾
燥法では、グリーンボデイを凍結させる際に水分
が液体から固体に相変化することに伴なう体積膨
張が生じ、これに起因してグリーンボデイにき裂
が生じるおそれがある。そのため凍結条件を十分
吟味する必要がある。
Additionally, when a molded product is dried, cracks are likely to occur due to slight non-uniform shrinkage. Therefore, a vacuum freeze-drying method typified by Japanese Patent Application Laid-Open No. 49-36708 has been considered. According to this method, the frozen water directly changes from a solid state to a gas and scatters (sublimation), so that it can be dried uniformly and in a short time. However, in the freeze-drying method, when the green body is frozen, volumetric expansion occurs due to the phase change of water from liquid to solid, which may cause cracks to occur in the green body. Therefore, it is necessary to carefully examine the freezing conditions.

一方、無機質原料の中には、例えばγ−アルミ
ナ(Al2O3)に代表される遷移Al2O3などでは製
造条件によつて水硬性をもつことがあり、このた
め水分を比較的多量に必要とする押出機の場合に
は、水硬性が速く発現して坏土の押出成形自体が
できないとか、たとえ初めは押出成形できたとし
ても押出成形中に水和硬化が生じて、その後の押
出成形ができなくなるといつた問題がある。この
ため特公昭57−57247に見られるように、水硬性
γ−Al2O3の場合には水和を防止する方法として
脂肪酸、芳香族化合物、高分子化合物、パラフイ
ン族等を添加して成形する方法が採られている
が、混練時の摩擦熱により坏土の温度が上昇する
ことがあり、水和硬化が促進され、やはり押出成
形が不能となることが経験される。
On the other hand, some inorganic raw materials, such as transition Al 2 O 3 typified by γ-alumina (Al 2 O 3 ), may have hydraulic properties depending on the manufacturing conditions, and therefore require a relatively large amount of moisture. In the case of extruders required for There is a problem that extrusion molding becomes impossible. For this reason, as seen in Japanese Patent Publication No. 57-57247, in the case of hydraulic γ-Al 2 O 3 , fatty acids, aromatic compounds, polymer compounds, paraffin compounds, etc. are added to prevent hydration. However, it has been experienced that the temperature of the clay may rise due to frictional heat during kneading, accelerating hydration hardening and making extrusion molding impossible.

<発明の目的> 本発明の目的は、上記した従来技術の欠点をな
くし、寸法が高精度の成形体を歩留り良く成形乾
燥する方法を提供することにある。
<Objective of the Invention> An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide a method for molding and drying molded bodies with high precision dimensions with good yield.

<手段の概要> 要するに本発明は、押出成形機の筒状部、錐状
部、口金部を冷却することにより、坏土を口金流
路内で凍結固化条件にし、連続して凍結成形体を
送出し、ついで減圧操作により乾燥成形体を得る
手段を提案するものである。
<Summary of Means> In short, the present invention cools the cylindrical part, the conical part, and the mouth part of an extrusion molding machine to bring the clay into freezing and solidifying conditions in the mouth channel, and continuously produces a frozen molded product. This paper proposes a means for obtaining a dry molded body by feeding and then performing a vacuum operation.

<実施例> 凍結押出成形に必要な装置の構成を第1図に示
す。該装置は、パツグミル1、オーガマシン2
(Auger:らせん錐)(柱環部)テーパバレル3及
び口金(口金部)4から成る成形機と、オーガ冷
却ジヤケツト6、テーパバレル冷却ジヤケツト7
及び口金冷却ジヤケツト8に冷却剤を供給するた
めの冷凍機系から構成される。以下各構成部の機
能について説明する。
<Example> Fig. 1 shows the configuration of an apparatus necessary for freeze extrusion molding. The equipment includes a push mill 1, an auger machine 2
(Auger: spiral cone) (column ring part) A molding machine consisting of a taper barrel 3 and a mouthpiece (mouthpiece part) 4, an auger cooling jacket 6, and a taper barrel cooling jacket 7
and a refrigerator system for supplying coolant to the base cooling jacket 8. The functions of each component will be explained below.

凍結押出成形に供する坏土は、押出成形の坏土
と同様であり、セラミツクス粉末原料に結合剤、
潤滑剤、水等を添加しニーダ(混練機)等で十分
混練したものである。これを更にバツグミル(混
練機)1に投入し混練しながらオーガマシン(端
部錐状押出機)2に送る。この部位では坏土の温
度は、混練による摩擦熱により室温より多少上昇
する。オーガマシンでは、該坏土に圧力を与えな
がらテーパバレル3、口金4に向つて流動させ
る。
The clay used for frozen extrusion molding is the same as the clay for extrusion molding, and is made by adding a binder, a binder, and a ceramic powder raw material.
A lubricant, water, etc. are added and the mixture is sufficiently kneaded using a kneader (kneading machine) or the like. This is further put into a bag mill (kneading machine) 1 and sent to an auger machine (conical end extruder) 2 while being kneaded. At this location, the temperature of the clay rises slightly above room temperature due to frictional heat from kneading. In the auger machine, the clay is made to flow toward the taper barrel 3 and the mouthpiece 4 while applying pressure.

ここで該坏土は、オーガ冷却ジヤケツト6を流
れる冷却剤によつて冷却され、テーパバレル内で
は坏土が凝固点より多少高い温度即ち水を用いる
場合は0℃近くなるよう制御される。なお冷却剤
としては通常冷凍機等に用いるエチルアルコール
(氷点は−114℃)や塩化カルシウム等が用いられ
る。
Here, the clay is cooled by the coolant flowing through the auger cooling jacket 6, and the temperature of the clay in the tapered barrel is controlled to be slightly higher than the freezing point, ie, close to 0° C. when water is used. As the coolant, ethyl alcohol (freezing point: -114°C), calcium chloride, etc., which are normally used in refrigerators, etc., are used.

また図示のテーパバレル(Taper Barrel)内
では圧力が最大となり10〜150Kg/cm2程度になる
ものが使用できる。結合剤等のモル凝固点降下、
過冷却現象とともに凝固点は多少降下することと
なる。
Further, the taper barrel shown in the drawing can be used with a pressure that reaches a maximum of about 10 to 150 kg/cm 2 . Lowering the molar freezing point of binders, etc.
Along with the supercooling phenomenon, the freezing point will drop to some extent.

この時点で坏土が凝固点に達すれば、口金入口
で坏土が凍結するため押出不能となる。坏土温度
を支配する因子は、坏土性状、冷却剤温度、冷却
剤流速(流量ということになる)等が考えられ、
温度を下げるには、冷却剤温度を下げ、冷却剤流
速を上げればよく、温度を上げるには、その逆の
条件にすればよい。
If the clay reaches the freezing point at this point, the clay will freeze at the inlet of the die, making it impossible to extrude. The factors that control the clay temperature are clay properties, coolant temperature, coolant flow rate (flow rate), etc.
To lower the temperature, the coolant temperature may be lowered and the coolant flow rate may be increased; to increase the temperature, the conditions may be reversed.

定量的には、押出機等の特性で大きく変わるた
めここでは規定しないが冷却剤の温度については
0℃に保つことが必要である。
Quantitatively, the temperature of the coolant needs to be maintained at 0°C, although it is not specified here because it varies greatly depending on the characteristics of the extruder, etc.

坏土温度の制御は具体的には熱電対を坏土と接
触する位置に設け、その温度を制御箱にフイード
バツクしながらオーガスクリユーの回転数、冷却
剤の温度(冷凍機9の制御ともなる)、供給する
冷却剤の流量の調節により行なうものである、熱
電対の取付位置は一例としてそれらの個所と符号
T1〜T6で示す。
Specifically, the temperature of the clay is controlled by installing a thermocouple at a position where it comes into contact with the clay, and feeding back the temperature to the control box, controlling the rotation speed of the auger screw and the temperature of the coolant (which also controls the refrigerator 9). ), this is done by adjusting the flow rate of the supplied coolant.The installation positions of thermocouples are, for example, their locations and symbols.
Indicated by T 1 to T 6 .

次にテーパバレル部7で0℃近くまで冷却され
た坏土は成形のため口金4に送られる。
Next, the clay cooled to nearly 0° C. in the tapered barrel portion 7 is sent to the die 4 for molding.

(Clasius Clapeyronの式で示されるように100
Kg/cm2の圧力上昇に対して0.73℃凝固点が降下す
る)。ここで口金4を、常圧下で坏土が凍結する
温度以下に冷却する。口金入口部及び口金入口部
から僅かに入つた位置では、坏土に高い圧力(通
常30〜150Kg/cm2になる)がかかつているため、
いわゆるClasius Clapeyron効果により、凝固点
が降下し、坏土は凍結しない。ところが、坏土が
オーガスクリユーの押出力を受け、口金を通つて
系外に押出されてゆくと、坏土に掛つていた圧力
は急激に解放されるため、凝固点が上昇すること
になり、坏土は口金を通過して系外に出る直前に
凍結し、口金の形状をそのまま保持して押出成形
されることとなる。
(100 as shown in Clasius Clapeyron's formula
The freezing point decreases by 0.73℃ for a pressure increase of Kg/ cm2 ). Here, the cap 4 is cooled to a temperature below which the clay freezes under normal pressure. High pressure (usually 30 to 150 kg/cm 2 ) is applied to the clay at the mouth of the mouth and at the position slightly below the mouth of the mouth.
Due to the so-called Clasius Clapeyron effect, the freezing point drops and the clay does not freeze. However, when the clay is subjected to the extrusion force of the auger screw and is pushed out of the system through the nozzle, the pressure on the clay is suddenly released, causing the freezing point to rise. The clay is frozen just before passing through the die and exiting the system, and is extruded while maintaining the shape of the die.

ここで坏土の凝固は、坏土の調製に水を用いた
場合はモル凝固点降下や過冷却現象により−6℃
〜−1℃の間で生じる。このため、口金冷却ジヤ
ケツト内の冷却剤温度は−10℃以下にする必要が
ある。厳密には、口金の出口直前で坏土を凍結さ
せるために口金流路の直径と流さ、坏土の性状、
押出速度等に応じた冷却剤温度とする。
If water is used to prepare the clay, the solidification of the clay will be -6°C due to the lowering of the molar freezing point and the supercooling phenomenon.
Occurs between -1°C. For this reason, the temperature of the coolant inside the base cooling jacket must be kept at -10°C or lower. Strictly speaking, in order to freeze the clay just before the outlet of the die, the diameter and flow rate of the die flow path, the properties of the clay,
Adjust the coolant temperature according to the extrusion speed, etc.

凍結押出成形で得られた成形体は、弾塑性流体
の状態で押出成形した物と比較して、押出成形特
有のふくらみ(Barus効果)を生ずることなく高
精度である。しかも取扱い運搬においても変形す
ることがない。
Molded objects obtained by freeze extrusion have higher precision than those extruded in an elastoplastic fluid state without producing the bulges (Barus effect) characteristic of extrusion. Moreover, it does not deform during handling and transportation.

さらに連続して押出した凍結成形体をホツトワ
イヤ等で切断し、そのまま真空チヤンバに入れ真
空凍結乾燥に供する。真空度は成形体の形状によ
つて異なり、体積にくらべて表面積の大きいハニ
カム状のもののときは、比較的低くて0.1mmHg以
下であればよい。逆に体積に比べて表面積が小さ
な丸棒状のもののときは昇華潜熱に比べて外部か
らの放射熱が支配することとなるため、乾燥速度
を大きくせねば解凍される懸念があるため、少な
くとも0.1mmHgより更に低くする必要がある。一
方真空シヤンバ内面に放射率の小さな金を蒸着す
ることにより外部からの放射を極力小さくするこ
とができ、丸棒でも0.1mmHg程度の真空でよくな
る。
Further, the continuously extruded frozen molded product is cut with a hot wire or the like, and then placed in a vacuum chamber as it is and subjected to vacuum freeze-drying. The degree of vacuum varies depending on the shape of the molded product, and in the case of a honeycomb-shaped product with a large surface area compared to its volume, it may be relatively low and 0.1 mmHg or less. Conversely, if the surface area is small compared to the volume, the radiant heat from the outside will dominate compared to the latent heat of sublimation, so there is a risk of thawing if the drying rate is not increased, so the drying rate should be at least 0.1 mmHg. It needs to be lowered even further. On the other hand, by depositing gold with low emissivity on the inner surface of the vacuum chamber, radiation from the outside can be minimized, and even a round bar can be used with a vacuum of about 0.1 mmHg.

従つて本発明の実施に際しては真空度0.1mmHg
以下に規定することがよい。
Therefore, when implementing the present invention, the degree of vacuum is 0.1 mmHg.
It is preferable to specify the following.

この場合の試料は既に凍結しているため、弾塑
性流体を凍結真空乾燥する場合に生ずることのあ
る凍結時の割れは回避され、冷却しなくとも減圧
するだけで迅速かつ歩留り良く乾燥体を得ること
ができる。また、弾塑性流体の成形体を乾燥する
場合には硬化するまで自重により変形することが
あつたが、凍結成形体の場合は、乾燥時に水分が
固体から気体に昇華するため変形の問題がほとん
どない。
Since the sample in this case has already been frozen, cracks during freezing that can occur when freeze-vacuum drying an elastoplastic fluid are avoided, and a dried product can be obtained quickly and with high yield simply by reducing the pressure without cooling. be able to. In addition, when drying an elastoplastic fluid molded product, it sometimes deforms due to its own weight until it hardens, but in the case of frozen molded products, the problem of deformation is almost nonexistent because the moisture sublimes from solid to gas during drying. do not have.

以上の凍結押出成形法はセラミツクス原料全般
に適用できるが、γ−Al2O3のように水硬性を有
する原料を生成する場合に特に大きな効果を発揮
する。第2図はγ−Al2O3100重量部に対してメ
チルセルロース10重量部、グリセリン3重量部、
水50重量部を添加し混練した坏土について各温度
における針入度)坏土の固さを示す数値)の経時
変化を示している。この図から通常の押出法によ
れば摩擦熱により発熱硬化を引き起こし押出不能
となる場合がある。そこで本発明なる凍結押出成
形法を用いることにより成形機内で発生する摩擦
熱を吸収し非水硬性原料と同様に凍結成形体を得
ることができる。
The above-described freeze extrusion molding method can be applied to all ceramic raw materials, but it is particularly effective when producing hydraulic raw materials such as γ-Al 2 O 3 . Figure 2 shows 10 parts by weight of methylcellulose, 3 parts by weight of glycerin, and 100 parts by weight of γ-Al 2 O 3 .
It shows the change over time in the penetration degree (a numerical value indicating the hardness of the clay) at each temperature for clay mixed with 50 parts by weight of water. As can be seen from this figure, if a normal extrusion method is used, exothermic hardening may occur due to frictional heat, making extrusion impossible. Therefore, by using the freeze extrusion molding method of the present invention, it is possible to absorb the frictional heat generated within the molding machine and obtain a frozen molded product in the same way as with non-hydraulic raw materials.

<発明の効果> 本発明なる凍結押出成形法を用いることによ
り、以下のような効果が得られる。
<Effects of the Invention> By using the freeze extrusion molding method of the present invention, the following effects can be obtained.

(1) 口金出口では、セラミツクス坏土が完全に凍
結しているため寸法精度が良く、取扱いに際し
ての変形が生じない。
(1) At the mouthpiece outlet, the ceramic clay is completely frozen, resulting in good dimensional accuracy and no deformation during handling.

(2) 凍結成形体を断熱真空容器に入れることによ
り、迅速かつ歩留り良く変形のない乾燥体を得
ることができる。
(2) By placing the frozen molded product in an insulated vacuum container, a dried product without deformation can be obtained quickly and with a high yield.

(3) 水硬性の原料を本凍結押出成形法により成形
することにより、水和硬化により押出不能とな
ることがない。
(3) By molding a hydraulic raw material by this freezing extrusion molding method, it will not become impossible to extrude due to hydration hardening.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる凍結押出成
形装置の縦断面図、第2図は水硬性γ−Al2O3
再水和防止剤を添加し混練した坏土について、各
温度における針入度の経時変化を示した線図であ
る。 1……パツグミル、2……オーガマシン、3…
…テーパバレル、4……口金、5……成形体、6
……オーガ冷却ジヤケツト、7……テーパバレル
冷却ジヤケツト、8…口金冷却ジヤケツト、9…
…冷凍機、10……冷却剤冷却ループ、11……
冷却剤タンク、12……冷却剤供給管、13……
冷却剤回収配管、1……坏土投入口。
Fig. 1 is a vertical cross-sectional view of a freezing extrusion molding apparatus according to an embodiment of the present invention, and Fig. 2 shows the results at various temperatures of clay made by adding a rehydration inhibitor to hydraulic γ-Al 2 O 3 and kneading it. FIG. 3 is a diagram showing changes in penetration over time in FIG. 1...Patsugumil, 2...Ogre Machine, 3...
... Taper barrel, 4 ... Mouthpiece, 5 ... Molded object, 6
... Auger cooling jacket, 7 ... Tapered barrel cooling jacket, 8 ... Mouth cooling jacket, 9 ...
... Refrigerator, 10 ... Coolant cooling loop, 11 ...
Coolant tank, 12... Coolant supply pipe, 13...
Coolant recovery pipe, 1... Clay inlet.

Claims (1)

【特許請求の範囲】 1 無機質原料を主成分とし、結合剤、潤滑剤等
を添加し混練して坏土を押出成形する方法におい
て、押出機の柱環部の坏土を液体成分の凝固点直
上に冷却し、押出機口金部を流動する坏土を前記
液体成分の凝固点以下に冷却して坏土を押出成形
することを特徴とする坏土の凍結押出成形方法。 2 前記押出成形された坏土を解凍しない温度に
保持しうる容器内に収容し、該容器内圧力を0.1
mmHg以下に減圧して該押出成形されたものを乾
燥することを特徴とする特許請求の範囲第1項記
載の坏土の凍結押出成形方法。
[Scope of Claims] 1. In a method of extruding clay by adding and kneading an inorganic raw material with a binder, a lubricant, etc. as the main component, the clay in the column ring part of an extruder is heated just above the solidification point of the liquid component. A method for freezing and extruding clay, which comprises cooling the clay flowing through the extruder nozzle to a temperature below the freezing point of the liquid component to extrude the clay. 2 The extruded clay is placed in a container that can be maintained at a temperature that will not thaw, and the pressure inside the container is set to 0.1.
2. The method for freezing and extrusion molding of clay according to claim 1, wherein the extrusion molded product is dried under reduced pressure to below mmHg.
JP18401885A 1985-08-23 1985-08-23 Freezing extrusion molding method of removed earth Granted JPS6244404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18401885A JPS6244404A (en) 1985-08-23 1985-08-23 Freezing extrusion molding method of removed earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18401885A JPS6244404A (en) 1985-08-23 1985-08-23 Freezing extrusion molding method of removed earth

Publications (2)

Publication Number Publication Date
JPS6244404A JPS6244404A (en) 1987-02-26
JPH0554403B2 true JPH0554403B2 (en) 1993-08-12

Family

ID=16145898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18401885A Granted JPS6244404A (en) 1985-08-23 1985-08-23 Freezing extrusion molding method of removed earth

Country Status (1)

Country Link
JP (1) JPS6244404A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2346657T3 (en) 2008-10-31 2013-09-30 Corning Inc Dual loop control of ceramic precursor extrusion batch

Also Published As

Publication number Publication date
JPS6244404A (en) 1987-02-26

Similar Documents

Publication Publication Date Title
US4965027A (en) Method for the freeze-pressure molding of inorganic powders
US5238627A (en) Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
JP5042404B2 (en) Cellular honeycomb body and manufacturing method thereof
EP2646209B1 (en) Method and system for real-time, closed-loop shape control of extruded ceramic honeycomb structures
US3919384A (en) Method for extruding thin-walled honeycombed structures
EP0160855B1 (en) A method for the freeze-pressure molding of metallic powders
US4364881A (en) Continuous extrusion method of manufacturing ceramic honeycomb structures with the aid of screw type vacuum extruding machine
US5066449A (en) Injection molding process for ceramics
EP0487172A2 (en) Molding method and molding apparatus for producing ceramics
US20020167102A1 (en) Production method of ceramic moldings and apparatus therefor
JPH0554403B2 (en)
JPH064502B2 (en) Ceramics manufacturing method
CA2381800A1 (en) Honeycomb formed body and process for production thereof
CN116355595A (en) Phase-change heat-preservation and heat-insulation composite material and preparation method thereof
US6680101B1 (en) Molded honeycomb material and process for production thereof
CA2120142A1 (en) Method and apparatus for making articles from particle-based materials
US4446087A (en) Continuous extrusion of paraffin wax
JP2006224341A (en) Ceramic honeycomb structure and its manufacturing method
JP2001220246A (en) Honeycomb molding product and method for producing the same
JP2513905B2 (en) Ceramic injection molding method and molding die used therefor
JPS60253505A (en) Manufacture of ceramics product
JP2000280217A (en) Manufacture of extruded molding
JP2002144405A (en) Foam molding method and foamed resin extrusion machine used for this method
JPH0688862B2 (en) Method and apparatus for producing monobasic propellant charge powders using alcohols and ethers as solvents
CN220049993U (en) Alloy rapid solidification forming equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees