JPH0554028B2 - - Google Patents

Info

Publication number
JPH0554028B2
JPH0554028B2 JP6447586A JP6447586A JPH0554028B2 JP H0554028 B2 JPH0554028 B2 JP H0554028B2 JP 6447586 A JP6447586 A JP 6447586A JP 6447586 A JP6447586 A JP 6447586A JP H0554028 B2 JPH0554028 B2 JP H0554028B2
Authority
JP
Japan
Prior art keywords
frozen
soil
frozen soil
cold
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6447586A
Other languages
Japanese (ja)
Other versions
JPS62223585A (en
Inventor
Kimitoshi Ryokai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP6447586A priority Critical patent/JPS62223585A/en
Publication of JPS62223585A publication Critical patent/JPS62223585A/en
Publication of JPH0554028B2 publication Critical patent/JPH0554028B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートパイプにより地盤を凍結さ
せて庫内を冷却させる低温貯蔵庫に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low-temperature storage warehouse that cools the interior of the warehouse by freezing the ground using a heat pipe.

〔従来の技術〕[Conventional technology]

一般に、米などの穀物、食糧などを貯蔵する場
合には、一定した低温、定湿度な環境下にて行う
ことを要求される。
Generally, when storing grains such as rice, food, etc., it is required to store them in an environment of constant low temperature and constant humidity.

従来、この種の貯蔵施設としては、例えば、冷
凍機を用いて庫内を一定温度に保持するように構
成された低温貯蔵庫などが適用されているが、設
備費用(イニシヤルコスト)およびランニングコ
ストが高いものとなつている。
Conventionally, this type of storage facility has been applied, for example, to a low-temperature storage warehouse that uses a refrigerator to maintain the interior at a constant temperature, but the equipment cost (initial cost) and running cost are high. is becoming high.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本出願人等は、このような問題点を解決すべく
鋭意研究した結果、冬季における冷熱を凍土の形
で貯蔵し、温暖な夏季等にこの冷熱を供給すれ
ば、従来の冷凍機を使用した貯蔵庫に比べ、イニ
シヤルコストおよびランニングコストが少なくて
済むとの考えに至つた。
As a result of intensive research to solve these problems, the present applicant and others have found that if cold energy in winter is stored in the form of frozen soil and this cold energy is supplied in warm summer months, it will be possible to avoid using conventional refrigerators. The idea was that the initial cost and running cost would be lower compared to storage.

ところが、電力による強制冷却によつて、人工
凍土を造成すると、イニシヤルコストおよびラン
ニングコストの大幅な低減を実現することができ
ないのが実状である。
However, the reality is that if artificial frozen soil is created using forced cooling using electricity, it is not possible to achieve a significant reduction in initial costs and running costs.

そこで、本出願人等は、ヒートパイプによる凍
土の造成について、各種の実験を実施し、低温貯
蔵庫としての利用の可能性について研究した結
果、積算寒度が400℃・dayより大きければ、ヒ
ートパイプにより地盤内に凍土を構築できるこ
と、自然冷熱をヒートパイプを介して、地下に長
期間貯蔵するためには、潜熱の形が理想的であ
り、そのためには岩盤よりも地盤の方が望ましい
こと、地盤の中でも、含水比が一般に高い粘性土
のほうが砂質土より適していること、そして凍土
厚さが1.5m以上であれば、1年経過後でも凍土
が残存すること等の知見を得た。
Therefore, the applicants conducted various experiments on the creation of frozen soil using heat pipes, and researched the possibility of using it as a low-temperature storage storage. It is possible to build frozen soil in the ground, and the form of latent heat is ideal for storing natural cold heat underground for a long time via heat pipes, and for this purpose, the ground is preferable to bedrock. Among the ground types, we learned that clay soil, which has a high moisture content, is generally more suitable than sandy soil, and that if the thickness of frozen soil is 1.5 m or more, frozen soil will remain even after one year has passed. .

ただし、ヒートパイプにより地盤を冷却して凍
土を造成した場合、低温貯蔵庫構築後その周囲に
凍土が形成されるのを待つて、この低温貯蔵庫が
使用可能な状態となるので、低温貯蔵庫構築後使
用までに所定の期間が必要であつた。また、ヒー
トパイプの熱輸送能力は、地盤中に埋設された時
点が最大で、この後徐々に小さくなるという性質
がある。従つて、温暖期に凍土として維持できる
だけの所定の凍土層の厚さを造成するのに長時間
を要し、一冬でこの所定の厚さの凍土層が造成不
可能な場合が大半である。
However, if frozen soil is created by cooling the ground with heat pipes, the cold storage facility will be ready for use after the construction of the cold storage facility and after waiting for frozen soil to form around it. A certain period of time was required. Furthermore, the heat transport capacity of a heat pipe is at its maximum when it is buried in the ground, and gradually decreases thereafter. Therefore, it takes a long time to create a predetermined thickness of permafrost layer that can be maintained as frozen soil during the warm season, and in most cases it is not possible to create a predetermined thickness of permafrost layer in one winter. .

本発明はこのような知見を基になされたもの
で、ヒートパイプを利用して冬季の冷熱を地下に
貯蔵し、それを冷熱源として、庫内を低温に保持
することによつて、イニシヤルコストおよびラン
ニングコストを大幅に低減することができる低温
貯蔵庫を、即時使用可能な状態でかつ一冬で施工
しうる施工方法を提供することを目的としてい
る。
The present invention was made based on this knowledge, and uses heat pipes to store cold energy in the winter underground, and uses this as a cold heat source to maintain the inside of the refrigerator at a low temperature. The purpose of the present invention is to provide a method of constructing a low-temperature storage facility, which can significantly reduce costs and running costs, in a ready-to-use state and in one winter.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、地盤の表面部に外気に開口する掘
削穴を掘削すると共に、この掘削穴の側壁部を、
その開口部に向かうにしたがつて上り勾配の傾斜
面に形成する工程と、前記掘削穴掘削の工程後、
冬季等の寒冷期にこの掘削穴の内部に土を所定の
厚さだけ埋め戻し、この埋め戻された土を前記掘
削穴からの自然冷気等により凍結させた後に、こ
の凍結した土の上に順次所定の厚さだけ土を埋め
戻しながらこの土を凍結させることで、前記掘削
穴の内部に凍土層を形成する工程と、この凍土層
形成の工程の途中で、前記掘削穴の側壁部に沿い
ながら下端がこの掘削穴の底部にまで至るように
ヒートパイプを前記凍土層中に配設する工程と、
前記凍土層形成の工程後、前記掘削穴の周囲の地
盤上にこの掘削穴の上面を覆う屋根を架設する工
程とからなる低温貯蔵庫の施工方法を構成して、
前記問題点を解決している。
This invention involves excavating an excavation hole that opens to the outside air on the surface of the ground, and
A step of forming an inclined surface with an upward slope toward the opening, and after the step of excavating the borehole,
During cold periods such as winter, the inside of this excavated hole is backfilled with soil to a predetermined thickness, and this backfilled soil is frozen by natural cold air from the aforementioned excavated hole, and then the soil is poured on top of this frozen soil. By sequentially backfilling soil to a predetermined thickness and freezing this soil, a frozen soil layer is formed inside the excavated hole, and during the process of forming this frozen soil layer, the side wall of the excavated hole is arranging a heat pipe in the frozen soil layer so that the lower end reaches the bottom of the excavation hole while following the heat pipe;
After the step of forming a frozen soil layer, the method for constructing a low temperature storage warehouse comprises the step of constructing a roof on the ground surrounding the excavation hole to cover the top surface of the excavation hole,
This solves the above problems.

〔作用〕[Effect]

この発明では、掘削穴の内部に土を埋め戻しな
がら凍結する工程を繰り返して、凍土層を形成し
ているので、低温貯蔵庫構築後、直ちにこの低温
貯蔵庫が使用可能な状態となると共に、冬季等の
寒冷期に所定の厚さの土を埋め戻しながら凍結さ
せているので、凍土層の形成が短期間で行える。
そして、この凍土層中には、凍土層中に配設され
たヒートパイプにより、冬季等の寒冷期に過冷外
気エネルギーが蓄冷熱される。
In this invention, a frozen soil layer is formed by repeating the process of freezing while backfilling the soil inside the excavated hole, so that the cold storage is ready for use immediately after construction, and can be used even during winter. Since the soil is backfilled to a predetermined thickness and frozen during the cold season, a frozen layer can be formed in a short period of time.
In this frozen soil layer, supercooled outside air energy is stored as cold heat during cold periods such as winter by heat pipes disposed in the frozen soil layer.

〔実施例〕〔Example〕

以下、この発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第2図は、この発明の一実施例で
ある低温貯蔵庫の施工方法に従つて施工された低
温貯蔵庫を示す図である。第1図ないし第2図に
おいて、符号Aは地盤Gの表面部に作られた外気
に開口する低温貯蔵庫、符号1はこの低温貯蔵庫
Aの庫内であり、この庫内1は、全体がほぼ長方
形の穴に形成されて食糧などの貯蔵場所を構成す
るもので、図示例の場合、庫内1の長方形状の底
部2が平面に形成され、かつ、この底部2の周囲
の側壁部3が開口部に向かうに従い上り勾配とな
つた傾斜面に形成されている。
FIGS. 1 and 2 are diagrams showing a low-temperature storage facility constructed according to a method for constructing a low-temperature storage facility according to an embodiment of the present invention. In Figures 1 and 2, reference numeral A indicates a low-temperature storage facility opened to the outside air made on the surface of the ground G, and reference numeral 1 indicates the interior of this low-temperature storage facility A. It is formed in a rectangular hole to constitute a storage place for food, etc. In the illustrated example, the rectangular bottom 2 of the interior 1 is formed flat, and the side wall 3 around the bottom 2 is flat. It is formed on an inclined surface that slopes upward toward the opening.

また、前記底部2の上面には捨てコンクリート
あるいは砕石等によつて、床版4が構築されると
ともに、傾斜面となつた側壁部3の上には、底部
2から順に土のう5が積まれ、かつ、低温貯蔵庫
Aの周囲の盛土6の上面には、後述する屋根7を
載せるためのコンクリート製の基礎部8が形成さ
れている。
Further, a floor slab 4 is constructed on the upper surface of the bottom portion 2 using concrete or crushed stone, and sandbags 5 are stacked on the sloped side wall portion 3 in order from the bottom portion 2. Further, on the upper surface of the embankment 6 around the low-temperature storage A, a concrete foundation 8 is formed on which a roof 7, which will be described later, is placed.

そして、前記低温貯蔵庫Aの庫内1周囲の地盤
Gには凍土層Fが、この庫内1を囲繞するように
形成されていると共に、この凍土層F中には、凍
土層Fを冷却、凍結させて、低温貯蔵庫Aの庫内
1を冷却させるヒートパイプ10が、庫内1の周
囲に沿つて等間隔に複数設置されている。この凍
土層Fと周囲の地盤Gとの間は、凍土層F中に含
まれる水が地盤Gに浸出しないように、不透水性
の膜13によつて相互の水の出入が遮断されてい
る。
A frozen layer F is formed on the ground G around the interior 1 of the low-temperature storage warehouse A so as to surround the interior 1. A plurality of heat pipes 10 that cool the interior 1 of the low-temperature storage A by freezing are installed at equal intervals along the periphery of the interior 1. Between this frozen layer F and the surrounding ground G, an impermeable membrane 13 blocks water from flowing into and out of the frozen layer F so that the water contained in the frozen layer F does not leak into the ground G. .

このヒートパイプ10は、第1図に示すよう
に、十分脱気された長寸の円筒状気密容器11内
に作動流体を封入し、その流体の相変化に伴つて
熱移動が生じるように構成したもので、図示例の
場合、気密容器11の上端11aが基礎部8から
突出し、その下側が側壁部3と平行に底部近傍ま
で延びており、しかもその先端(下端)11bが
底部2(床)下部まで延出する形態で埋設された
構造となつている。また、この気密容器11の外
気に露出する上部外周には熱の出入りの効率を上
げるために、その長さ方向に沿つて複数の受放熱
用フイン12が突設されている。
As shown in FIG. 1, this heat pipe 10 is constructed so that a working fluid is sealed in a long cylindrical airtight container 11 that is sufficiently deaerated, and heat transfer occurs as the phase of the fluid changes. In the illustrated example, the upper end 11a of the airtight container 11 protrudes from the base 8, the lower side thereof extends parallel to the side wall 3 to the vicinity of the bottom, and the tip (lower end) 11b of the airtight container 11 protrudes from the base 8 (floor 2). ) It has a buried structure that extends to the bottom. In addition, a plurality of heat receiving and dissipating fins 12 are provided protruding along the length of the upper outer periphery of the airtight container 11 exposed to the outside air in order to increase the efficiency of heat transfer.

なお、図示例では、左右のヒートパイプ10の
下端(気密容器11の下端11b)が床下部で互
いに干渉しないように、互い違いに配設されてい
るが、この配置構造はこのものに限定されるもの
ではなく、例えば若干これらをラツプさせる構造
であつても良い。
In the illustrated example, the lower ends of the left and right heat pipes 10 (lower ends 11b of the airtight container 11) are arranged alternately so as not to interfere with each other under the floor, but this arrangement structure is limited to this. For example, it may be a structure in which these are slightly wrapped.

前記庫内1の上面を覆う屋根7は、庫内1の周
囲の基礎部8に載置され、トラス構造の梁7aの
上に断熱構造の屋根板7bを被せた構造となつて
いる。なお、この屋根7の構造はこのものに限定
されるものではなく、他の構造であつても良い。
The roof 7 covering the upper surface of the refrigerator interior 1 is placed on the foundation 8 around the refrigerator interior 1, and has a structure in which a roof plate 7b having a heat-insulating structure is placed on a beam 7a having a truss structure. Note that the structure of the roof 7 is not limited to this one, and may have another structure.

図中符号15は盛土の外面に敷かれた断熱材を
示すもので、特に夏季等の外気の温度が高い時等
に設けられるものである。
Reference numeral 15 in the figure indicates a heat insulating material laid on the outer surface of the embankment, and is provided especially when the outside air temperature is high, such as in summer.

また、第2図は、このような構造の複数の低温
貯蔵庫Aを並設(群設)した状態を示すもので、
このような配置とすれば、熱負荷が少なくなり、
効率的になるので好ましい。
Furthermore, Fig. 2 shows a state in which a plurality of low temperature storages A having such a structure are arranged side by side (in a group).
This arrangement reduces the heat load,
This is preferable because it is efficient.

次に、この発明の一実施例である低温貯蔵庫A
の施工方法及びその使用方法等を、第1図ないし
第3図を参照して説明する。
Next, a low temperature storage warehouse A which is an embodiment of this invention
The construction method and its usage will be explained with reference to FIGS. 1 to 3.

まず、低温貯蔵庫Aの施工方法について、各工
程順に説明を行う。
First, the construction method for low temperature storage A will be explained in order of each step.

(i) 工程1(第3図a) 貯蔵場所となる地盤Gの表面部を掘削して、外
気に開口する掘削穴16を形成すると共に、この
掘削穴16の側壁部を、その開口部に向かうに従
つて上り勾配の傾斜面に形成する。ここで、地盤
Gの地下水位が掘削穴16の底部よりも低い場
合、また地盤Gの含水比が小さい場合には、後述
する埋め戻し用の土中の水分が地盤Gに浸出しな
いように、掘削穴16の表面を不透水性の膜13
で覆う。
(i) Step 1 (Figure 3a) The surface of the ground G that will be the storage location is excavated to form an excavated hole 16 that opens to the outside air, and the side wall of this excavated hole 16 is inserted into the opening. It is formed into a slope that slopes upward as you go towards the area. Here, if the groundwater level of the ground G is lower than the bottom of the excavation hole 16, or if the water content ratio of the ground G is small, then in order to prevent water in the soil for backfilling, which will be described later, from seeping into the ground G, A water-impermeable membrane 13 covers the surface of the excavated hole 16.
cover with

(ii) 工程2(第3図b) 冬季等の寒冷期に、掘削穴16の内部に所定の
厚さだけ土17を埋め戻し、この土17を掘削穴
16からの自然冷気等により凍結させる。この工
程を繰り返して、ヒートパイプ10が配設される
深度まで、掘削穴16の内部に数層の凍土層Fを
形成する。埋め戻される土17には、埋め戻し後
の凍結を促進し、かつ低温貯蔵庫Aの施工後凍土
層Fの維持を容易にする目的で、飽和量の水分が
含有されるのが好ましいが、土17の含水比はそ
の施工条件等により適宜調整されれば良い。ま
た、一回に埋め戻される土17の厚さも、施工条
件等により適宜決定されれば良いが、埋め戻され
た土17が均一にかつ速やかに凍結されるよう
に、10cm〜20cm程度ずつ埋め戻すのが好ましい。
(ii) Step 2 (Fig. 3b) During a cold season such as winter, the inside of the excavated hole 16 is backfilled with soil 17 to a predetermined thickness, and this soil 17 is frozen by natural cold air from the excavated hole 16. . This process is repeated to form several layers of frozen soil F within the excavated hole 16 up to the depth at which the heat pipe 10 is disposed. It is preferable that the soil 17 to be backfilled contains a saturated amount of water in order to promote freezing after backfilling and to facilitate maintenance of the frozen soil layer F after construction of the cold storage facility A. The water content ratio of No. 17 may be adjusted as appropriate depending on the construction conditions and the like. In addition, the thickness of the soil 17 to be backfilled at one time may be determined as appropriate depending on the construction conditions, etc., but in order to ensure that the backfilled soil 17 is frozen uniformly and quickly, the thickness should be filled in approximately 10 to 20 cm increments. It is preferable to return it.

(iii) 工程3(第3図c) 凍土層F中に、気密容器11が掘削穴16の側
壁部に沿つて延在し、かつその下端11bが掘削
穴16の底部にまで至るように、ヒートパイプ1
0を配設する。この後、前記工程2と同様に、凍
土層Fの内部に所定の厚さだけ土17を埋め戻
し、この土17を掘削穴16からの自然冷気及び
ヒートパイプ10からの冷却により凍結させる。
この工程を繰り返して、最終的に年間を通じて低
温貯蔵庫Aの周囲に凍土層Fを維持できるだけの
厚さの凍土層Fを形成すると共に、この凍土層F
の内部に低温貯蔵庫Aの庫内1を形成する。
(iii) Step 3 (Fig. 3c) In the frozen soil layer F, the airtight container 11 extends along the side wall of the excavation hole 16, and its lower end 11b reaches the bottom of the excavation hole 16. heat pipe 1
Set 0. After that, similarly to step 2, the soil 17 is backfilled to a predetermined thickness inside the frozen soil layer F, and this soil 17 is frozen by natural cold air from the excavated hole 16 and cooling from the heat pipe 10.
By repeating this process, a frozen soil layer F with a thickness sufficient to maintain the frozen soil layer F around the cold storage facility A is finally formed throughout the year, and this frozen soil layer F
Inside 1 of low temperature storage A is formed inside.

ここで、前記工程に従つて一冬に形成可能な凍
土層Fの厚さは、積算寒度が500℃・dayよりも
大きければ、3〜4mにも達するため、年間を通
じて維持しうるだけの厚さの凍土層Fを形成する
ための期間は、一冬で十分であると言える。ま
た、埋め戻される土17中の水分の蒸発等によ
り、庫内1の湿度や気密性に問題がある場合、こ
の凍土層F表面にも不透水性の膜13を被せる。
Here, the thickness of the frozen soil layer F that can be formed in one winter according to the above process reaches 3 to 4 m if the cumulative cold temperature is greater than 500°C/day, so it is sufficient to maintain it throughout the year. It can be said that one winter is sufficient to form a thick frozen layer F. Further, if there is a problem with the humidity or airtightness of the interior 1 due to evaporation of moisture in the soil 17 to be backfilled, the surface of the frozen soil layer F is also covered with a water-impermeable film 13.

(iv) 工程4(第3図d) 庫内1の側壁部3に沿つて土のう5を縦積み
し、庫内1の底部2の上に捨てコンクリート等を
打設して、床版4を構築するとともに、基礎部8
を形成する。そして、この基礎部8の上面に屋根
7を取り付けると、第1図に示すような低温貯蔵
庫Aが構築される。
(iv) Step 4 (Fig. 3 d) Sandbags 5 are stacked vertically along the side wall 3 of the warehouse interior 1, concrete is placed on the bottom 2 of the warehouse interior 1, and the floor slab 4 is placed. Along with construction, the foundation part 8
form. When a roof 7 is attached to the upper surface of this foundation 8, a low temperature storage A as shown in FIG. 1 is constructed.

このような構成の低温貯蔵庫Aは、構築と同時
にその周囲に十分な厚さの凍土層Fが形成されて
いるため、即時に使用可能な状態であるが、更に
冬季等の寒冷期において、ヒートパイプ10の上
部を寒気により冷却し、ヒートパイプ10の周囲
の土壁Fを冷却、凍結させることで、庫内1の周
囲に凍土層Fを構築、維持して、過冷外気エネル
ギーを蓄える。
Low-temperature storage A with such a configuration has a sufficiently thick frozen layer F formed around it at the time of construction, so it is ready for immediate use, but it also suffers from heat damage during cold periods such as winter. By cooling the upper part of the pipe 10 with cold air and cooling and freezing the earthen wall F around the heat pipe 10, a frozen soil layer F is built and maintained around the inside of the refrigerator 1, and supercooled outside air energy is stored.

すなわち、ヒートパイプ10の上部が冬季の寒
気によつて冷却されると、気密容器11内の作動
流体が凝縮し液体となり、重力によつて気密容器
の管壁を伝わつて落下する。この結果、冷熱が下
部に運ばれ、この運ばれた冷熱によつて、気密容
器11周囲の凍土層Fが冷却、凍結させられて、
気密容器11の周囲に、第1図に示すように、凍
土層Fが構築、維持される。そして、この現象が
冬季において繰り返され、ヒートパイプ10の周
囲には凍土層Fが構築され、過冷外気エネルギー
(冷熱エネルギー)が凍土層Fおよび氷という状
態で蓄熱されるのである。
That is, when the upper part of the heat pipe 10 is cooled by cold air in winter, the working fluid in the airtight container 11 condenses and becomes a liquid, which falls by gravity along the pipe wall of the airtight container. As a result, cold heat is carried to the lower part, and the frozen soil layer F around the airtight container 11 is cooled and frozen by this carried cold heat.
A frozen soil layer F is constructed and maintained around the airtight container 11, as shown in FIG. This phenomenon is repeated in winter, and a frozen layer F is built around the heat pipe 10, and supercooled outside air energy (cold energy) is stored in the frozen layer F and ice.

一方、温暖な春季および夏季などにおいては、
凍土層F中の地区蓄冷熱エネルギーが放出され、
庫内1が低温度に保たれる。
On the other hand, in warm spring and summer,
The local cold storage thermal energy in the frozen soil layer F is released,
The temperature inside the refrigerator 1 is maintained at a low temperature.

以上説明した施工方法により、低温貯蔵庫Aが
構築される。ここで、この低温貯蔵庫Aは、掘削
穴16の内部に凍土層Fを成形しながら施工され
るので、低温貯蔵庫A完成時に、既にこの低温貯
蔵量Aの周囲には十分な厚さの凍土層Fが形成さ
れている。従つて、この低温貯蔵庫Aは、完成と
同時に、その庫内1に食糧等を貯蔵して使用され
ることが可能である。また、前記凍土層Fの形成
は、冬季等の寒冷期に行なわれると共に、埋め戻
される土は、凍土層Fの形成が容易な所定の厚さ
に分割されて、埋め戻された後に順次凍結される
ので、凍土層Fの形成が短期間で行なわれ、条件
が整えば一冬で十分な厚さの凍土層Fを形成する
ことが可能である。
The low temperature storage A is constructed by the construction method described above. Here, this low-temperature storage A is constructed while forming a frozen layer F inside the excavated hole 16, so when the low-temperature storage A is completed, there is already a sufficiently thick frozen layer around the low-temperature storage amount A. F is formed. Therefore, this low-temperature storage A can be used to store food and the like in the interior 1 at the same time as it is completed. In addition, the formation of the frozen soil layer F is carried out during cold seasons such as winter, and the soil to be backfilled is divided into predetermined thicknesses that facilitate the formation of the frozen soil layer F, and after being backfilled, it is sequentially frozen. Therefore, the formation of frozen soil layer F is carried out in a short period of time, and if the conditions are right, it is possible to form frozen soil layer F of sufficient thickness in one winter.

また、この低温貯蔵庫Aの施工は、地盤Gをそ
の表面部から掘削して、土17を埋め戻しつつヒ
ートパイプ10を配設し、更にこの上面に屋根7
を架設するような単純作業であり、その施工(例
えばヒートパイプ10の設置)に特別な技術(ボ
ーリング等)を必要とせず、また、冷凍機の代わ
りにメンテナンスフリーなヒートパイプ10によ
つて冷熱源を構成するので、低温貯蔵庫Aの設置
及び維持が簡単であるため、イニシヤルコスト、
ランニングコスト共に大幅に低減することが可能
である。
In addition, in the construction of this low-temperature storage facility A, the ground G is excavated from the surface, the heat pipes 10 are installed while backfilling with soil 17, and the roof 7 is placed on the upper surface of the ground G.
It is a simple work such as constructing a heat pipe 10, and does not require special techniques (boring, etc.) for the construction (for example, installing the heat pipe 10).In addition, the maintenance-free heat pipe 10 can be used instead of a refrigerator to provide cooling and heating. Since cold storage A is easy to install and maintain, the initial cost is low.
It is possible to significantly reduce both running costs.

そして、実施例の低温貯蔵庫Aでは、側壁部3
が傾斜面に形成されているので、土のう5等の安
価なものでの支保が可能となり、貯蔵場所の構築
のコストを低減することができる。
In the low temperature storage A of the embodiment, the side wall portion 3
Since it is formed on an inclined surface, it is possible to support it with inexpensive materials such as sandbags 5, and the cost of constructing the storage place can be reduced.

なお、前記実施例では、庫内1自身を貯蔵場所
としてこの上に屋根7を取り付ける構成としてい
るが、この庫内1に大口径のコルゲート管やボツ
クスカルバート等を設置し、これらを貯蔵場所と
して埋め戻す構造とすることも可能である。この
場合、前記の如く土17を埋め戻しつつこの土1
7を凍結させれば、急速施工、即時使用が可能で
ある。
In the above-mentioned embodiment, the interior 1 itself is used as a storage place and the roof 7 is attached above it. However, it is also possible to install large-diameter corrugated pipes, box culverts, etc. in this interior 1 and use these as a storage place. It is also possible to have a backfilled structure. In this case, while backfilling soil 17 as described above, this soil 1
If 7 is frozen, rapid construction and immediate use are possible.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明によれ
ば、低温貯蔵庫完成時に、既にその周囲には十分
な厚さの凍土層が形成されているので、この低温
貯蔵庫は、完成と同時に使用可能な状態となると
共に、前記凍土層の形成は、冬季等の寒冷期に行
なわれ、かつ埋め戻される土は所定の厚さに分割
されて、埋め戻された後に順次凍結されるので、
凍土層の形成が短期間で行なわれ、条件が整えば
一冬で十分な厚さの凍土層を形成することが可能
である。そして、前記低温貯蔵庫の構築後は、前
記ヒートパイプの作用により、周囲の過冷外気エ
ネルギーを凍土の形成、維持に利用することがで
きる。従つて、温暖な春季及び夏季などにおい
て、この凍土中の蓄冷熱エネルギーが放出される
ことで、低温貯蔵庫の庫内は低温度に保たれる。
As explained in detail above, according to the present invention, when the cold storage facility is completed, a sufficiently thick layer of frozen soil has already been formed around it, so that the cold storage facility is ready for use upon completion. In addition, the formation of the frozen soil layer is carried out during cold seasons such as winter, and the soil to be backfilled is divided into predetermined thicknesses and frozen sequentially after being backfilled.
The formation of a frozen layer takes place in a short period of time, and if the conditions are right, it is possible to form a frozen layer of sufficient thickness in one winter. After the low-temperature storage is constructed, the energy of the surrounding supercooled outside air can be used to form and maintain frozen soil due to the action of the heat pipe. Therefore, during the warm spring and summer months, the cold thermal energy stored in the frozen ground is released, thereby maintaining the temperature inside the low-temperature storage at a low temperature.

また、この低温貯蔵庫の施工そのものは単純作
業であり、その施工に特別な技術を必要とせず、
また、冷凍機の代わりにメンテナンスフリーなヒ
ートパイプによつて冷熱源を構成するので、低温
貯蔵庫の設置及び維持が簡単であるため、低温貯
蔵庫のイニシヤルコスト、ランニングコストを共
に大幅に低減することが可能である。
In addition, the construction of this low-temperature storage facility itself is a simple task and does not require any special technology.
In addition, since the cold heat source is composed of a maintenance-free heat pipe instead of a refrigerator, the installation and maintenance of the low-temperature storage is easy, which significantly reduces both the initial cost and running cost of the low-temperature storage. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である低温貯蔵庫
の施工方法に従つて施工された低温貯蔵庫を示す
側断面図、第2図はそれら低温貯蔵庫を群設した
状態を示す斜視図、第3図はこの発明の一実施例
である低温貯蔵庫の施工方法を説明する図であ
る。 A……低温貯蔵庫、F……凍土層、G……地
盤、7……屋根、10……ヒートパイプ、11b
……ヒートパイプ下端、16……掘削穴、17…
…土。
FIG. 1 is a side sectional view showing a low-temperature storage facility constructed according to the method for constructing a low-temperature storage facility according to an embodiment of the present invention, FIG. 2 is a perspective view showing a state in which the low-temperature storage facilities are arranged in groups, and FIG. The figure is a diagram illustrating a method of constructing a low temperature storage warehouse according to an embodiment of the present invention. A... Low temperature storage, F... Frozen soil layer, G... Ground, 7... Roof, 10... Heat pipe, 11b
... lower end of heat pipe, 16 ... drilling hole, 17 ...
…soil.

Claims (1)

【特許請求の範囲】[Claims] 1 地盤の表面部に外気に開口する掘削穴を掘削
すると共に、この掘削穴の側壁部を、その開口部
に向かうにしたがつて上り勾配の傾斜面に形成す
る工程と、前記掘削穴掘削の工程後、冬季等の寒
冷期にこの掘削穴の内部に土を所定の厚さだけ埋
め戻し、この埋め戻された土を前記掘削穴からの
自然冷気等により凍結させた後に、この凍結した
土の上に順次所定の厚さだけ土を埋め戻しながら
この土を凍結させることで、前記掘削穴の内部に
凍土層を形成する工程と、この凍土層形成の工程
の途中で、前記掘削穴の側壁部に沿いながら下端
がこの掘削穴の底部にまで至るようにヒートパイ
プを前記凍土層中に配設する工程と、前記凍土層
形成の工程後、前記掘削穴の周囲の地盤上にこの
掘削穴の上面を覆う屋根を架設する工程とからな
る低温貯蔵庫の施工方法。
1. A step of excavating an excavation hole that opens to the outside air on the surface of the ground, and forming the side wall of this excavation hole into an inclined surface that slopes upward toward the opening; After the process, during the cold season such as winter, the inside of this excavated hole is backfilled with soil to a predetermined thickness, and this backfilled soil is frozen by natural cold air from the aforementioned excavated hole, and then this frozen soil is A process of forming a frozen soil layer inside the excavated hole by sequentially backfilling soil to a predetermined thickness and freezing this soil, and a process of forming a frozen soil layer inside the excavated hole. A step of arranging a heat pipe in the frozen soil layer so that the lower end reaches the bottom of the excavation hole along the side wall, and after the step of forming the frozen soil layer, installing the heat pipe on the ground around the excavation hole. A method for constructing a cold storage facility, which includes the step of constructing a roof to cover the top of the hole.
JP6447586A 1986-03-22 1986-03-22 Method of executing cold storage Granted JPS62223585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6447586A JPS62223585A (en) 1986-03-22 1986-03-22 Method of executing cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6447586A JPS62223585A (en) 1986-03-22 1986-03-22 Method of executing cold storage

Publications (2)

Publication Number Publication Date
JPS62223585A JPS62223585A (en) 1987-10-01
JPH0554028B2 true JPH0554028B2 (en) 1993-08-11

Family

ID=13259291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6447586A Granted JPS62223585A (en) 1986-03-22 1986-03-22 Method of executing cold storage

Country Status (1)

Country Link
JP (1) JPS62223585A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388888B2 (en) * 2010-02-04 2014-01-15 株式会社ドーコン Construction method of cold and hot warehouse using ice layer

Also Published As

Publication number Publication date
JPS62223585A (en) 1987-10-01

Similar Documents

Publication Publication Date Title
US4139321A (en) Rock channel heat storage
US3990502A (en) Arrangement to control heat flow between a member and its environment
US3840068A (en) Permafrost structural support with heat pipe stabilization
KR20010020553A (en) A method for stratified construction and heating a grasspitch, particularly a football ground, and a grass playing field built up in accordance with the method
US3768547A (en) Arrangement to control heat flow between a member and its environment
US3135097A (en) Insulated foundation
US9593868B2 (en) Horizontal ground-coupled heat exchanger for geothermal systems
US4793146A (en) Cold storage structure
US3948313A (en) Arrangement to control heat flow between a member and its environment
JPH0554028B2 (en)
US4036285A (en) Arrangement to control heat flow between a member and its environment
Hamilton Effects of environment on the performance of shallow foundations
JPS62142973A (en) Cryogenic storage shed
JPS62142974A (en) Cryogenic storage shed
JPH0554030B2 (en)
JPH0413586Y2 (en)
JPH0554029B2 (en)
JP2607912B2 (en) Underground cold storage
CN207685862U (en) A kind of assembled storage space being built in farmland underground
RU2806888C1 (en) Method for construction and operation of surface storage facility for solid toxic waste in permafrost zone
Melnikov et al. The engineering-physical basis of temperature regime regulation of ground massifs in northern construction
RU2717890C1 (en) Method for underground accumulation of heat or cold
US3846989A (en) Insulated embankment design techniques
JP2003221883A (en) Structure for heating and cooling building by using geothermy
CN110004911B (en) Cold pad system for protecting buried object in permafrost region and construction method thereof