JPS62142973A - Cryogenic storage shed - Google Patents

Cryogenic storage shed

Info

Publication number
JPS62142973A
JPS62142973A JP28512185A JP28512185A JPS62142973A JP S62142973 A JPS62142973 A JP S62142973A JP 28512185 A JP28512185 A JP 28512185A JP 28512185 A JP28512185 A JP 28512185A JP S62142973 A JPS62142973 A JP S62142973A
Authority
JP
Japan
Prior art keywords
heat
hole
ground
ice
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28512185A
Other languages
Japanese (ja)
Inventor
公利 了戒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP28512185A priority Critical patent/JPS62142973A/en
Publication of JPS62142973A publication Critical patent/JPS62142973A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はヒートパイプにより地盤を凍結させて庫内を冷
却させる低温貯蔵庫に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a low temperature storage warehouse in which the interior of the warehouse is cooled by freezing the ground using a heat pipe.

「従来の技術」 一般に、米などの穀物、食糧などを貯蔵する場合には、
一定した低温、定湿度な環境下にて行うことを要求され
る。
"Conventional technology" Generally, when storing grains such as rice, food, etc.
It is required to be carried out in an environment of constant low temperature and constant humidity.

従来、この種の貯蔵施設としては、例えば、冷凍機を用
いて庫内を一定温度に保持するように構成された低温貯
蔵庫などが適用されているが、設備費用(イニシャルコ
スト )およびランニングコストが高いものとなってい
る。
Conventionally, this type of storage facility has been applied, for example, to a low-temperature storage warehouse configured to use a refrigerator to maintain the interior at a constant temperature, but the equipment cost (initial cost) and running cost are high. It is expensive.

「発明が解決しようとする問題点」 本出願人等は、このような問題点を解決すべく鋭意研究
した結果、寒冷地において、自然冷熱をヒートパイプに
より凍土あるいは氷の形態で長期間貯蔵すれば、従来の
冷凍機を使用した貯蔵庫に比べ、イニシャルコストおよ
びランニングコストが少なくて済むとの考えに至った。
“Problems to be Solved by the Invention” As a result of intensive research aimed at solving these problems, the applicant and others have discovered that natural cold energy can be stored for long periods in the form of frozen soil or ice using heat pipes in cold regions. For example, we have come up with the idea that the initial cost and running cost will be lower compared to storage using conventional refrigerators.

そこで、本出願人等は、ヒートパイプによる凍土の造成
について、各種の実験を実施し、低温貯蔵庫としての利
用の可能性について研究した結果、自然冷熱をヒートパ
イプを介して、地下に長期間貯蔵するためには、潜熱の
形が理想的であり、そのためには岩盤よりも地盤の方が
望ましいこと、地盤の中でも、含水比が一般に高い粘性
土のほうが砂質土より適しているとの知見を得た。
Therefore, as a result of conducting various experiments on the creation of frozen soil using heat pipes and researching the possibility of using it as a low-temperature storage facility, the applicant et al. For this purpose, the form of latent heat is ideal, and for this purpose, the ground is more preferable than bedrock, and among the ground types, it is known that cohesive soil, which generally has a high moisture content, is more suitable than sandy soil. I got it.

本発明は前記事情に鑑みてなされた乙ので、イニシャル
コストおよびランニングコストを低減することができ、
しかもヒートパイプに対する適用性を向上させた低温貯
蔵庫を提供することを目的としている。
Since the present invention was made in view of the above circumstances, it is possible to reduce initial cost and running cost,
Moreover, it is an object of the present invention to provide a low-temperature storage with improved applicability to heat pipes.

「問題点を解決するための手段J 本発明に係る低温貯蔵庫は、地盤の表面に掘削した外気
に開口する掘削穴を貯蔵場所として、該掘削穴の周囲に
埋設したヒートパイプにより地盤を凍結させて、前記掘
削穴内を冷却させるしので、前記掘削穴の床下部に氷蓄
熱槽を設け、掘削穴の周囲の地盤上に掘削穴の上面を覆
う屋根を配置し、前記ヒートパイプを、その下端が氷蓄
熱槽の内部に達した状態に埋設したものである。
``Means for Solving Problems J'' The low-temperature storage according to the present invention uses an excavated hole opened to the outside air that is excavated on the surface of the ground as a storage location, and freezes the ground using a heat pipe buried around the excavated hole. In order to cool the inside of the drilled hole, an ice heat storage tank is provided at the bottom of the floor of the drilled hole, a roof is placed on the ground around the drilled hole to cover the top surface of the drilled hole, and the heat pipe is connected to the lower end of the roof. The ice was buried so that it reached the inside of the ice heat storage tank.

「作用 」 前記構成によれば、冬季に適冷外気エネルギーを、掘削
式周囲の地盤の中に凍土および氷として畜冷熱させるこ
とができるとともに、掘削穴の床下部に設置した氷蓄熱
槽に水として貯蔵させることができ、春季および夏季な
どに前記蓄冷熱エネルギーを(り用して掘削穴内を低温
に一定に保つことができる。
``Function'' According to the above configuration, in winter, it is possible to convert the energy from the cool outside air into cold heat in the form of frozen soil and ice in the ground surrounding the excavation type, and also to supply water to the ice heat storage tank installed under the floor of the excavation hole. The cold storage thermal energy can be used to keep the inside of the borehole at a constant low temperature during spring and summer.

[実施例J 以下、本発明を図面を参照して説明する。第1図および
第2図は本発明の一実施例を示す乙ので、図中符号lは
地盤Gの表面に掘削した外気に開口する掘削穴(庫内)
を示すものである。このni削穴lは、全体がほぼ長方
形状に掘削されて食糧などの貯蔵場所を構成するもので
、図示例の場合、この掘削した長方形状の底面およびそ
の周囲の上り勾配となった傾斜面上に、コンクリートに
よって底版(床)2および側版3がそれぞれ構築され、
かつ、周囲の盛土4の上面に後述する屋根5を載せるた
めの基礎部6が形成されている。
[Example J] Hereinafter, the present invention will be described with reference to the drawings. Figures 1 and 2 show an embodiment of the present invention, and the symbol l in the figures indicates an excavated hole (inside the warehouse) that opens to the outside air and is drilled on the surface of the ground G.
This shows that. This hole L is excavated in a generally rectangular shape as a whole to constitute a storage area for food, etc. In the illustrated example, the bottom surface of this excavated rectangular shape and the sloped surface surrounding it are uphill. On top, a bottom slab (floor) 2 and a side slab 3 are constructed with concrete, respectively.
Moreover, a foundation 6 on which a roof 5 to be described later is placed is formed on the upper surface of the surrounding embankment 4.

これら底版2、側版3、盛土4および基礎部6の上面に
は、これら全面を覆う如くメンブレン7が敷設されてお
り、掘削穴1の周囲の土中の水を飽和させる効果をなし
ている。また、前記底版2および側版3とこのメンブレ
ン7との間には、断熱材が設けられ、掘削穴(貯蔵空間
)Iの内部の保温性を向上させている。この掘削穴1内
であって側版3上には、支持壁8を介して冷却ダクト9
が設置され、掘削穴1内の温度を一様に保持する構造と
なっている。
A membrane 7 is laid on the top surfaces of the bottom slab 2, side slabs 3, embankment 4, and foundation 6 so as to cover the entire surface thereof, and has the effect of saturating the water in the soil around the excavated hole 1. . Further, a heat insulating material is provided between the bottom plate 2 and the side plates 3 and the membrane 7 to improve heat retention inside the excavated hole (storage space) I. Inside this excavated hole 1 and above the side plate 3, a cooling duct 9 is installed via a support wall 8.
is installed to maintain a uniform temperature inside the excavated hole 1.

一方、前記底版2の下部には、その長さ方向に沿って延
びる溝断面四角筒状の氷蓄熱槽10が設けられている。
On the other hand, in the lower part of the bottom plate 2, there is provided an ice heat storage tank 10 having a square tubular groove cross section and extending along the length direction of the bottom plate 2.

この氷蓄熱槽10は、項版部IQa 、底版部10bお
よび左右の側版部10c、lQdによって囲まれた内部
空間に製氷用の水11を貯蔵した乙のである。
This ice heat storage tank 10 stores ice-making water 11 in an internal space surrounded by a top plate IQa, a bottom plate 10b, and left and right side plates 10c and lQd.

そして、前記掘削穴1の周囲の地盤Gには、この地盤G
を凍結させて、掘削穴1内を冷却させるヒートパイプ1
5が、掘削穴Iの周囲に沿って等間隔に段数設置されて
いる。
The ground G around the excavated hole 1 has this ground G.
A heat pipe 1 that cools the inside of the excavation hole 1 by freezing
5 are installed in stages along the circumference of the excavated hole I at equal intervals.

このヒートパイプ15は、第1図に示すように、十分脱
気された長寸の円筒状気密容2316内に作動流体を封
入し、その流体の相変化に伴って熱f多動が生じるよう
に構成した乙ので、図示例の場合、気密容器16の上端
L6aが基礎部6から突出し、その下側が側版3と平行
に氷蓄熱W110の近傍まで延びており、しかもその先
端(下端)16bが氷蓄熱槽lOの内部に達した状態で
埋設された構造となっている。また、この気密容器16
の外気に露出する上部外周には熱の出入りの効率を上げ
るために、その長さ方向に沿って複数の受放熱用フィン
17が突設されている。なお、掘削穴(の左右に配置さ
れた各ヒートパイプ15は、それぞれの下端が氷蓄熱槽
10内で干渉しないように、上下に段差をつけて配設さ
れる。
As shown in FIG. 1, this heat pipe 15 has a working fluid sealed in a long cylindrical airtight chamber 2316 that has been sufficiently deaerated, so that heat f hyperactivity occurs as the phase of the fluid changes. In the illustrated example, the upper end L6a of the airtight container 16 protrudes from the base 6, and its lower side extends parallel to the side plate 3 to the vicinity of the ice heat storage W110, and its tip (lower end) 16b It has a structure in which it is buried so that it reaches the inside of the ice heat storage tank IO. In addition, this airtight container 16
A plurality of heat receiving and dissipating fins 17 are provided protruding along the length of the upper outer periphery of the upper part exposed to the outside air in order to increase the efficiency of heat inflow and outflow. Note that the heat pipes 15 arranged on the left and right sides of the excavated hole are arranged with a difference in height from top to bottom so that their lower ends do not interfere in the ice heat storage tank 10.

前記掘削穴1の上面を覆う屋根5は、掘削穴1の周囲の
基礎部6に載置され、トラス構造の梁5aの上に断熱構
造の屋根板5bを被せた構造となっている。なお、この
屋根5の構造は、このものに限定されるものではない。
A roof 5 covering the upper surface of the excavated hole 1 is placed on a foundation 6 around the excavated hole 1, and has a structure in which a roof plate 5b having an insulating structure is placed over a beam 5a having a truss structure. Note that the structure of the roof 5 is not limited to this one.

次に、このような構成の低温貯蔵庫の施工方法およびそ
の使用方法等を説明する。
Next, a method of constructing a low-temperature storage with such a configuration, a method of using the same, etc. will be explained.

第1図なとに示すように、この低温貯蔵庫を構築するに
は、貯蔵場所の地盤の表面を掘削して、貯蔵空間および
氷蓄熱槽10を形成するための穴を形成するとともに、
ヒートパイプ埋設用の荷を掘削する。次いで、この溝に
ヒートパイプI5を設置し、氷蓄熱槽工0を溝築した後
、これらを埋め戻す。
As shown in FIG. 1, in order to construct this low-temperature storage, the surface of the ground at the storage location is excavated to form holes for forming the storage space and the ice heat storage tank 10, and
Excavating the load for burying the heat pipe. Next, the heat pipe I5 is installed in this groove, and after the ice heat storage tank construction 0 is constructed in the groove, these are backfilled.

そして、これらの上にコンクリートを打設して、底板2
、側版3および基礎部6等を構築した後、断熱材および
メンブレン7をこれらの上に敷設して、基礎部6の上面
に屋根5を取り付けると、第1図に示すような低温貯蔵
庫が構築される。
Then, concrete is poured on top of these and the bottom plate 2 is
After constructing the side plates 3, foundation 6, etc., a heat insulating material and membrane 7 are laid on top of these, and a roof 5 is attached to the top of the foundation 6, creating a low-temperature storage facility as shown in Figure 1. Constructed.

この施工は、地盤をその表面から掘削して埋め戻し、コ
ンクリート成形する単純作業であり、その施工(例えば
ヒートパイプの設置など)に、特別な技術(ポーリング
など)を必要とせず、また、冷凍機の代イつりにメンテ
ナンスフリーなヒートパイプI5によって、冷熱源を構
成するので、その設置が簡単で、コストの低減を図るこ
とができる。
This construction is a simple work of excavating the ground from the surface, backfilling, and forming concrete, and does not require special techniques (such as polling) for the construction (such as installing heat pipes). Since the heat pipe I5, which is maintenance-free in place of the machine, constitutes the cold heat source, its installation is simple and costs can be reduced.

このような構成の低温貯蔵庫を使用するには、まず、冬
季においてヒートパイプ15の上部を、寒気により冷却
し、ヒートパイプ15の周囲に凍土Fを構築するととも
に氷蓄熱槽10内で製氷を行い、過冷外気エネルギーを
蓄える。
To use a low-temperature storage with such a configuration, first, in winter, the upper part of the heat pipe 15 is cooled with cold air, frozen soil F is built around the heat pipe 15, and ice is made in the ice storage tank 10. , stores supercooled outside air energy.

すなわち、ヒートパイプI5の上部が冬季の寒気によっ
て冷却されると、気密容器16内の作動流体が凝縮し液
体となり、重力によって気密容器の管壁を伝4つって落
下する。この結果、冷熱が下部に運ばれ、この運ばれた
冷熱によって、気密容器16周囲の地盤Gが凍結させら
れて、気密容器16の周囲に、第1図に示すように、凍
土Fが構築され、また氷蓄熱槽10内において製氷され
る。そして、この現象が冬季において繰り返され、氷蓄
熱槽lO内には貯水が起こり、またヒートバイブプI5
の周囲には凍土Fが構築され、過冷外気エネルギー(冷
熱エネルギー)が凍土Fおよび氷という状態で蓄熱され
るのである。
That is, when the upper part of the heat pipe I5 is cooled by cold air in winter, the working fluid in the airtight container 16 condenses into a liquid, which falls down the tube wall of the airtight container due to gravity. As a result, the cold heat is carried to the lower part, and the ground G around the airtight container 16 is frozen by the carried cold heat, and frozen ground F is built around the airtight container 16, as shown in FIG. , ice is also made in the ice heat storage tank 10. This phenomenon is repeated in the winter, causing water to accumulate in the ice heat storage tank IO, and also causing water to accumulate in the ice heat storage tank IO.
Frozen soil F is built around the frozen soil F, and supercooled outside air energy (cold energy) is stored in the form of frozen soil F and ice.

一方、温暖な春季および夏季などにおいては、氷蓄熱槽
10および凍土F中の蓄冷熱エネルギーが放出され、庫
内が低温度に保れる。
On the other hand, during warm spring and summer months, the cold thermal energy stored in the ice heat storage tank 10 and the frozen soil F is released, and the temperature inside the refrigerator can be maintained at a low temperature.

なお、面記構成においては、貯蔵空間(掘削穴)l内は
、断熱十オ等により断熱構造となっているので、厳冬季
に庫内を適冷にすることがなく、また氷蓄熱槽10によ
って、凍土F以外に多くの冷熱エネルギーを貯蔵するこ
とができるので、効率的な蓄冷熱を行うことを達成する
ことが可能になる。
In addition, in the surface structure, the inside of the storage space (excavation hole) is insulated with a heat insulator, etc., so that the inside of the refrigerator does not cool down properly in severe winters, and the ice heat storage tank 10 As a result, a large amount of cold energy can be stored in a source other than the frozen soil F, making it possible to efficiently store cold heat.

前記構成、作用の低温貯蔵庫によれば、掘削穴Iを貯蔵
場所として、その周囲にヒートパイプ15を、また床下
部に氷蓄熱槽10をそれぞれ設置し、掘削穴Iの上面を
屋根5で覆うだけで実施に供することができるので、イ
ニシャルコストが少なくて済み、またメンテナンスフリ
ーなヒートパイプ15によって、凍土Fや水などを構築
する乙のであるから、ランニングコストらほとんど負担
とならない程度のものである。
According to the low-temperature storage with the above structure and operation, the excavated hole I is used as a storage place, a heat pipe 15 is installed around it, an ice heat storage tank 10 is installed under the floor, and the upper surface of the excavated hole I is covered with a roof 5. The initial cost is low because the heat pipe 15 is maintenance-free, and since frozen soil F, water, etc. are constructed, the running cost is hardly a burden. be.

なお、前記実施例では、掘削穴1自身を貯蔵場所として
この」二に屋根5を取り付ける構成としているが、この
掘削穴lに大口径のコルゲート管やボックスカルバート
等を設置し、これらを貯蔵場所として埋め戻す構造とす
ることも可能である。
In the above-mentioned embodiment, the excavated hole 1 itself is used as a storage place and the roof 5 is attached to the excavated hole 1 itself.However, large-diameter corrugated pipes, box culverts, etc. are installed in this excavated hole 1, and these are used as a storage place. It is also possible to create a structure in which it is backfilled.

「発明の効果」 以上説明したように本発明によれば、冬季に過冷外気エ
ネルギーを掘削式周囲の地盤中に凍土および氷として蓄
冷熱させることができるとと乙に、掘削穴の床下部の氷
蓄熱槽内に水として貯蔵することができ、逆に温暖な春
季および夏季などに面記畜冷熱を利用して掘削穴内を低
温に保つことかできるので、イニシャルコストおよびラ
ンニングコストに浸れた低温貯蔵庫を提供することがで
きる。また、ヒートパイプによる蓄冷熱の不足を氷蓄熱
槽によって補足する構造としているので、ヒートパイプ
を利用した低温貯蔵庫に対する適用性を向上することが
できる。さらに、本発明によれば、地盤をその表面から
掘削して、この掘削穴内にヒートパイプを設置する構造
であるから、ヒートパイプの設置が容易であるといった
利点がある。
``Effects of the Invention'' As explained above, according to the present invention, supercooled outside air energy can be stored in the ground around the excavation hole as frozen soil and ice in the winter. Water can be stored as water in the ice storage tank, and conversely, during the warm spring and summer months, the inside of the drilling hole can be kept at a low temperature by using the cold water, so the initial cost and running cost can be reduced. Cold storage can be provided. Furthermore, since the structure is such that the lack of cold storage heat caused by the heat pipe is supplemented by the ice heat storage tank, the applicability to low-temperature storage using heat pipes can be improved. Further, according to the present invention, the structure is such that the ground is excavated from the surface and the heat pipe is installed in the excavated hole, so there is an advantage that the heat pipe can be easily installed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る低温貯蔵庫の一実施
例を示す乙ので、第1図は低温貯蔵庫の構成を示す側断
面図、第2図はその平面図である。 G・・・・・・地盤、1・・・・・・掘削穴、2・・・
・・・底版、3・・・・側版、・1・・・・・盛土、5
・・・・・・屋根、6・・・・・基礎部、7・・・・・
メンブレン、8・・・・・・支持壁、9 ・・・・冷却
ダクト、jO・・・・・・水蓄熟槽、15・・・・・・
ヒートパイプ、16・・気密容器。
1 and 2 show an embodiment of the low temperature storage according to the present invention, so FIG. 1 is a side sectional view showing the structure of the low temperature storage, and FIG. 2 is a plan view thereof. G...Ground, 1...Drilling hole, 2...
...Bottom plate, 3...Side plate, 1...Embankment, 5
...Roof, 6...Foundation, 7...
Membrane, 8...Supporting wall, 9...Cooling duct, jO...Water storage tank, 15...
Heat pipe, 16...airtight container.

Claims (1)

【特許請求の範囲】[Claims] 地盤の表面に掘削した外気に開口する掘削穴を貯蔵場所
として、該掘削穴の周囲の地盤に埋設したヒートパイプ
により地盤を凍結させて、前記掘削穴内を冷却させる低
温貯蔵庫であって、前記掘削穴の床下部に氷蓄熱槽が設
けられるとともに、掘削穴の周囲の地盤上には掘削穴の
上面を覆う屋根が配置され、かつ、前記ヒートパイプは
、その下端が氷蓄熱槽の内部に達した状態で掘削穴の周
囲に埋設されていることを特徴とする低温貯蔵庫。
A low-temperature storage facility is a low-temperature storage facility that is used as a storage location in a borehole that is opened to the outside air and that is drilled on the surface of the ground, and that cools the inside of the borehole by freezing the ground using a heat pipe buried in the ground around the borehole. An ice heat storage tank is provided at the bottom of the floor of the hole, a roof is placed on the ground around the hole to cover the top surface of the hole, and the lower end of the heat pipe reaches inside the ice heat storage tank. A low-temperature storage facility characterized by being buried around an excavation hole in a state of
JP28512185A 1985-12-18 1985-12-18 Cryogenic storage shed Pending JPS62142973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28512185A JPS62142973A (en) 1985-12-18 1985-12-18 Cryogenic storage shed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28512185A JPS62142973A (en) 1985-12-18 1985-12-18 Cryogenic storage shed

Publications (1)

Publication Number Publication Date
JPS62142973A true JPS62142973A (en) 1987-06-26

Family

ID=17687387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28512185A Pending JPS62142973A (en) 1985-12-18 1985-12-18 Cryogenic storage shed

Country Status (1)

Country Link
JP (1) JPS62142973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227566A (en) * 2010-04-15 2011-11-10 Fujikura Ltd Auxiliary cooling device for data center
JP2011227829A (en) * 2010-04-22 2011-11-10 Fujikura Ltd Cooling system for data center
JP2012177530A (en) * 2011-02-28 2012-09-13 Fujikura Ltd Auxiliary cooling device for data center
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
JP2011227566A (en) * 2010-04-15 2011-11-10 Fujikura Ltd Auxiliary cooling device for data center
JP2011227829A (en) * 2010-04-22 2011-11-10 Fujikura Ltd Cooling system for data center
JP2012177530A (en) * 2011-02-28 2012-09-13 Fujikura Ltd Auxiliary cooling device for data center

Similar Documents

Publication Publication Date Title
US4139321A (en) Rock channel heat storage
US3828845A (en) Permafrost structural support with internal heat pipe means
US5618134A (en) Self-refrigeration keel-type foundation system
US3840068A (en) Permafrost structural support with heat pipe stabilization
US3935900A (en) Permafrost structural support with integral heat pipe means
US3902547A (en) Permafrost structural support with compatible heat pipe means
CA1124093A (en) Method for preventing damage to a refrigerated gas pipeline due to excessive frost heaving
US4793146A (en) Cold storage structure
CN111910621A (en) Structure for cooling frozen soil by combining cast-in-place bored concrete pile in perennial frozen soil area with heat pipe
JPS62142973A (en) Cryogenic storage shed
SK7401Y1 (en) Earth heat accumulator
JP2004101115A (en) Underground heat exchange system using underground continuous wall
RU2157872C2 (en) Mechanical design of cooled fill footing of structures and method for temperature control of permafrost soils
JPS62142974A (en) Cryogenic storage shed
JPH0573849B2 (en)
RU141110U1 (en) SYSTEM OF TEMPERATURE STABILIZATION OF SOILS OF BASES OF BUILDINGS AND STRUCTURES
JPS62223583A (en) Cold storage
JPH0413586Y2 (en)
JPS62223585A (en) Method of executing cold storage
RU2250302C1 (en) Heated pile
CN210315513U (en) Structure for cooling frozen soil by combining cast-in-place bored concrete pile in perennial frozen soil area with heat pipe
JPH0554030B2 (en)
JP4289849B2 (en) Heat exchange pile
JPH06136738A (en) Ground freezing construction method
WO2019000098A1 (en) One phase liquid filled thermosyphon with forced circulation