JPH0553877B2 - - Google Patents

Info

Publication number
JPH0553877B2
JPH0553877B2 JP61011893A JP1189386A JPH0553877B2 JP H0553877 B2 JPH0553877 B2 JP H0553877B2 JP 61011893 A JP61011893 A JP 61011893A JP 1189386 A JP1189386 A JP 1189386A JP H0553877 B2 JPH0553877 B2 JP H0553877B2
Authority
JP
Japan
Prior art keywords
lead
base material
electrode
manganese
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61011893A
Other languages
Japanese (ja)
Other versions
JPS62170495A (en
Inventor
Masaharu Doi
Takashi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61011893A priority Critical patent/JPS62170495A/en
Publication of JPS62170495A publication Critical patent/JPS62170495A/en
Publication of JPH0553877B2 publication Critical patent/JPH0553877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解用電極の製造法に関するものであ
り、特に鉛又は鉛合金を基材とし、化学置換法に
より貴金属を析出せしめ、ついでマンガン及び/
又はコバルトの酸化物を被覆して成る電解用電極
の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrode for electrolysis, and in particular, uses lead or a lead alloy as a base material, precipitates a noble metal by a chemical substitution method, and then deposits manganese and a lead alloy as a base material. /
Alternatively, the present invention relates to a method for manufacturing an electrolytic electrode coated with a cobalt oxide.

本発明よりなる電極は、種々の電気化学装置に
於ける電極として適用可能なものであるが、特
に、工業用電解用電極、例えば、硫酸酸性溶液中
の酸素発生陽極としての用途に適し、低い酸素過
電圧特性を示すものである。
The electrode of the present invention is applicable as an electrode in various electrochemical devices, but is particularly suitable for use as an electrode for industrial electrolysis, for example, as an anode for oxygen generation in a sulfuric acid solution, and has a low This shows oxygen overvoltage characteristics.

〔従来の技術〕[Conventional technology]

硫酸酸性電解系、例えば、亜鉛、銅、マンガ
ン、クロム、カドミウム等の工業用電解採取系或
いは、クロム等の硫酸浴メツキ系の陽極として
は、鉛又は鉛を主体とする合金が酸素発生陽極と
して用いられている。
As an anode for a sulfuric acid acid electrolysis system, for example, an industrial electrowinning system for zinc, copper, manganese, chromium, cadmium, etc., or a sulfuric acid bath plating system for chromium, etc., lead or a lead-based alloy is used as an oxygen generating anode. It is used.

しかしながら、この鉛系陽極は耐久性に乏し
く、しかもその酸素過電圧は通常の電解条件下で
は1V前後と極めて高い値を示し、特に近年の電
力単価の上昇と共に省エネルギーの観点から鉛系
陽極の酸素過電圧の低下が強く望まれている。こ
の鉛系陽極を改良するために、例えばチタン上に
酸化イリジウムや酸化ルテニウムを被覆した、い
わゆる貴金属焼結被覆電極を用いることが数多く
提案されている。(例えば、特開昭59―200781号
等々) しかしながら、チタンを基材として用いるこれ
等の電極は、チタン基材の不働態化という問題
や、かなりの量の貴金属のため、得られる効果に
比較して、電極製造に必要なコストが高く、硫酸
浴電解採取系の様な工業電解系に於て実用化され
た例は少ない。
However, this lead-based anode has poor durability, and its oxygen overvoltage shows an extremely high value of around 1V under normal electrolysis conditions.In particular, with the recent rise in electricity prices, the oxygen overvoltage of lead-based anodes has been There is a strong desire for a reduction in In order to improve this lead-based anode, many proposals have been made to use so-called noble metal sintered coated electrodes, for example, titanium coated with iridium oxide or ruthenium oxide. (For example, JP-A No. 59-200781, etc.) However, these electrodes using titanium as a base material have the problem of passivation of the titanium base material and a considerable amount of precious metal, so the effects obtained are not comparable. Therefore, the cost required for electrode production is high, and there are few examples of practical use in industrial electrolytic systems such as sulfuric acid bath electrowinning systems.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明の目的は、貴金属の様な高価な材料を多
量に用いることなく、経済的な方法により、現在
の鉛系陽極の示す1V前後の高い酸素過電圧の低
減をはかる新規な低酸素過電圧電極を提供するこ
とにある。
The purpose of the present invention is to create a new low oxygen overvoltage electrode that aims to reduce the high oxygen overvoltage of around 1V exhibited by current lead-based anodes by an economical method without using large amounts of expensive materials such as precious metals. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、低い酸素過電圧を示しかつ、経
済的な電極の製造法に関し種々検討を重ねた結
果、鉛又は鉛合金を基材とし化学置換法により貴
金属を析出せしめ、ついでマンガン及び/又はコ
バルトの酸化物を被覆することにより、経済的で
かつ低い酸素過電圧を示す電極が得られることを
見いだし本発明を完成するに到つたものである。
As a result of various studies regarding an economical manufacturing method of an electrode that exhibits a low oxygen overvoltage, the present inventors used lead or a lead alloy as a base material to precipitate noble metals by a chemical substitution method, and then deposited precious metals on lead or lead alloys, and then deposited manganese and/or It was discovered that by coating with a cobalt oxide, an electrode that is economical and exhibits a low oxygen overvoltage can be obtained, and the present invention was completed.

以下、その詳細について説明する。 The details will be explained below.

本発明に用いる金属基体である、鉛又は鉛合金
は、従来の工業電解採取系の陽極として用いられ
ているものを使用することができる。
As the metal substrate used in the present invention, lead or lead alloy, those used as anodes in conventional industrial electrowinning systems can be used.

鉛合金とは、例えば0.1%〜数%の銀、カルシ
ウム、テルル、アンチモン、タリウム、スズ等の
一種以上を含む鉛合金を意味する。
The lead alloy means a lead alloy containing, for example, 0.1% to several% of one or more of silver, calcium, tellurium, antimony, thallium, tin, and the like.

これ等の鉛又は鉛合金は、酸素発生陽極とし
て、経済的な材料であり、さらにチタン、タンタ
ル、ニオブ等のバルブメタルの様に電解の継続に
於て強固な不働態被膜を形成する様な不都合はな
い。
These lead or lead alloys are economical materials for oxygen-generating anodes, and like valve metals such as titanium, tantalum, and niobium, they form a strong passive film during continued electrolysis. There is no inconvenience.

本発明の電極の製造法に於いては、上記鉛又は
鉛合金基材上に化学置換法により貴金属を析出せ
しめ、ついでマンガン及び/又はコバルトの酸化
物を被覆することが必要である。
In the method of manufacturing the electrode of the present invention, it is necessary to precipitate a noble metal on the lead or lead alloy base material by a chemical substitution method, and then coat it with manganese and/or cobalt oxide.

化学置換法とは、貴金属イオンを含む溶液中に
鉛又は鉛合金を浸漬せしめ、基材表面の鉛の一部
を酸化溶解すると共に貴金属を還元析出する方法
である。化学置換法を成立させるための貴金属イ
オンを含む溶液が具備すべき条件は、その溶液中
での貴金属イオンの酸化還元電位が鉛の酸化還元
電位より高い事が必要であるが、例えば貴金属イ
オンとは、白金、イリジウム、ルテニウム、パラ
ジウム、銀、金等のイオンであり溶液種は硝酸、
フツ酸、ホウフツ酸、ケイフツ酸等の溶液である
事が好ましい。貴金属イオンを含む溶液の濃度
は、1mg/以上であれば充分であり、化学置換
を行う時間は特に限定されないが、通常10分〜24
時間の範囲で行われる。
The chemical substitution method is a method in which lead or a lead alloy is immersed in a solution containing noble metal ions to oxidize and dissolve a portion of the lead on the surface of the base material, and at the same time reduce and precipitate the noble metal. The condition that a solution containing noble metal ions must meet in order to establish the chemical substitution method is that the redox potential of the noble metal ions in the solution must be higher than the redox potential of lead. are platinum, iridium, ruthenium, palladium, silver, gold, etc. ions, and the solution types are nitric acid,
A solution of hydrofluoric acid, boric acid, silicic acid, etc. is preferable. It is sufficient that the concentration of the solution containing noble metal ions is 1 mg/min or more, and the time for chemical substitution is not particularly limited, but it is usually 10 minutes to 24 minutes.
takes place over a period of time.

例えば、特に好ましい実施例態様としては、貴
金属イオンとしてイリジウムイオンを含む硝酸溶
液が望ましく、5mg/程度の微量のイリジウム
を含む硝酸溶液中に鉛を30分程度浸漬すると、表
面に微量のイリジウムが析出する。得られた試料
は、鉛基材に比較して、通常の電解条件で数
100mV低い酸素過電圧を示すが、化学置換によ
り得られた被膜は極めて薄いものであり、従つて
長時間の電解の継続と共に被膜が崩壊、脱落し、
電極の耐久性が乏しいものである。
For example, in a particularly preferred embodiment, a nitric acid solution containing iridium ions as a noble metal ion is desirable, and when lead is immersed for about 30 minutes in a nitric acid solution containing a trace amount of iridium (about 5 mg), a trace amount of iridium is deposited on the surface. do. The obtained sample showed that the number of particles under normal electrolytic conditions was
Although it exhibits an oxygen overpotential that is 100 mV lower, the film obtained by chemical substitution is extremely thin, and therefore, as electrolysis continues for a long time, the film collapses and falls off.
The durability of the electrode is poor.

本発明の電極の製造法に於ては、上記化学置換
法により、鉛又は鉛合金上に貴金属を析出せしめ
た後に、さらに、マンガン及び/又はコバルトの
酸化物を被覆することが必要である。マンガン及
び/又はコバルトの酸化物を被覆することによ
り、得られる電極は耐久性の優れたものとなる。
In the method for manufacturing the electrode of the present invention, it is necessary to deposit a noble metal on lead or a lead alloy by the chemical substitution method described above, and then further coat the lead or lead alloy with an oxide of manganese and/or cobalt. By coating with manganese and/or cobalt oxide, the resulting electrode has excellent durability.

マンガン及び/又はコバルトの酸化物の被覆法
としては、湿式電解析出法、溶射法、熱分解被覆
法、CVD法等々あるが、経済的で好ましい実施
態様としては、湿式電解析出法即ち、陽極析出法
及び熱分解被覆法が選ばれる。
Methods for coating manganese and/or cobalt oxides include wet electrolytic deposition, thermal spraying, pyrolysis coating, CVD, etc., but as an economical and preferred embodiment, wet electrolytic deposition, i.e., Anodic deposition and pyrolytic coating methods are chosen.

陽極析出法としては、硫酸塩や硝酸塩等のマン
ガン及び/又はコバルトの塩の溶液を用い、陽極
として鉛又は鉛合金基材上に化学置換法により貴
金属を析出させた被膜を設置して、この上に電解
法によりマンガン及び/又はコバルトの酸化物を
析出する方法である。
The anodic deposition method uses a solution of manganese and/or cobalt salts such as sulfates and nitrates, and a film in which precious metals are deposited by a chemical substitution method is placed on a lead or lead alloy base material as an anode. This is a method in which manganese and/or cobalt oxides are precipitated on the surface by electrolysis.

溶液の組成は、通常0.1mol/〜1mol/の
マンガン及び/又はコバルトイオンを含む水溶液
を用いることができるが、中性以下、通常はPH3
以下の範囲で用いることができる。電流密度は
0.1A/dm2〜10A/dm2の範囲で行うことが好ま
しく、電解温度は室温から95℃の範囲で行うこと
ができる。
Regarding the composition of the solution, an aqueous solution containing 0.1 mol/~1 mol/manganese and/or cobalt ions can be used, but the composition should be below neutral, usually PH3.
It can be used within the following range. The current density is
It is preferable to carry out the electrolysis in the range of 0.1 A/dm 2 to 10 A/dm 2 , and the electrolysis temperature can be carried out in the range of room temperature to 95°C.

上記の様にして、鉛又は鉛合金基材上に化学置
換法により貴金属を析出させた被膜上にマンガン
及び/又はコバルトの酸化物を被覆することがで
きるが、被覆物は通常、水分を含む低級酸化物の
状態であるため、電子伝導性に欠ける場合もあ
り、従つて、陽極析出の後に熱処理を行うことが
望ましい。熱処理を施すことにより、得られる電
極は電子伝導性が良好となり、又、耐久性の優れ
たものとなる。
As described above, manganese and/or cobalt oxides can be coated on a film in which precious metals are deposited by chemical substitution on a lead or lead alloy base material, but the coating usually contains moisture. Since it is in the state of a lower oxide, it may lack electronic conductivity, and therefore it is desirable to perform heat treatment after anodic deposition. By applying heat treatment, the resulting electrode has good electronic conductivity and excellent durability.

熱処理の温度は、100℃〜300℃の範囲で実施さ
れるが、熱処理温度が300℃を越えると、基材の
鉛又は鉛合金の融解が生じ、100℃未満の場合は、
熱処理の効果が表われない。熱処理の時間は、特
に限定されないが、通常30分〜24時間の範囲で行
われる。
The heat treatment temperature is carried out in the range of 100℃ to 300℃, but if the heat treatment temperature exceeds 300℃, the lead or lead alloy of the base material will melt, and if the temperature is lower than 100℃,
The effect of heat treatment is not visible. The heat treatment time is not particularly limited, but is usually carried out in a range of 30 minutes to 24 hours.

本発明の電極の製造法において、マンガン及
び/又はコバルト酸化物の被覆法として、今一つ
の好ましい実施態様の一つは、熱分解被覆法であ
る。
In the method for producing an electrode of the present invention, another preferred embodiment of the method for coating manganese and/or cobalt oxide is a pyrolysis coating method.

熱分解被覆法としては、鉛又は鉛合金基材上に
化学置換法により貴金属を析出せしめ、さらに、
この上にマンガン及び/又はコバルトの硝酸塩等
の比較的低温で熱分解可能な塩の溶液を、塗布、
浸漬等の様な手段で付着せしめ、100℃〜300℃の
温度で熱分解することにより、マンガン及び/又
はコバルトの酸化物を被覆する方法である。
The pyrolysis coating method involves depositing precious metals on a lead or lead alloy base material by a chemical substitution method, and further,
On top of this, a solution of salts that can be thermally decomposed at relatively low temperatures, such as manganese and/or cobalt nitrates, is applied.
This is a method of coating manganese and/or cobalt oxides by depositing them by means such as dipping and thermally decomposing them at a temperature of 100°C to 300°C.

溶液の組成としては、0.5mol/〜5mol/
のマンガンイオン及び/又はコバルトイオンを含
む水溶液、例えば硝酸塩溶液を用いることができ
るが、この中にブタノールやイソプロパノール等
の有機溶媒を加えることもできる。これ等の溶液
を鉛又は鉛合金上に化学置換法により、貴金属を
析出させた皮膜上に付着させ、100℃〜300℃の温
度で熱分解することにより、鉛又は鉛合金基材上
に、化学置換法により貴金属を析出させた被膜上
にマンガン及び/又はコバルトの酸化物を形成す
ることができる。熱分解の温度は100℃〜300℃の
範囲で実施されるが、熱処理温度が300℃を越え
ると基材の鉛又は鉛合金の融解が生じ、100℃未
満の場合は、熱処理の効果が表われない。熱処理
の時間は、特に限定されないが通常30分〜24時間
の範囲で行われる。
The composition of the solution is 0.5mol/~5mol/
An aqueous solution containing manganese ions and/or cobalt ions, such as a nitrate solution, can be used, but an organic solvent such as butanol or isopropanol can also be added thereto. These solutions are deposited on a film in which precious metals are precipitated on lead or lead alloy by chemical displacement method, and then thermally decomposed at a temperature of 100℃ to 300℃, to form a coating on lead or lead alloy substrate. Manganese and/or cobalt oxides can be formed on a film in which a noble metal is deposited by a chemical substitution method. The temperature of thermal decomposition is carried out in the range of 100℃ to 300℃, but if the heat treatment temperature exceeds 300℃, the base material lead or lead alloy will melt, and if the temperature is lower than 100℃, the effect of heat treatment will not be visible. It won't happen. The heat treatment time is not particularly limited, but is usually performed for 30 minutes to 24 hours.

以上の様な手法により得られる電極は、従来の
鉛系陽極に比較して、通常の工業電解条件下に於
て、数100mV低い酸素過電圧を示し、耐久性の
優れたものである。
The electrode obtained by the method described above exhibits an oxygen overvoltage several 100 mV lower than that of conventional lead-based anodes under normal industrial electrolysis conditions, and has excellent durability.

〔本発明の効果〕[Effects of the present invention]

以上述べた様に、本発明の電極の製造法に於て
は、安価な鉛又は鉛を主体とする合金を基材と
し、化学置換法により、該基材上に微量の貴金属
を析出せしめ、ついでマンガン及び/又はコバル
トの酸化物を被覆するという経済的な手法により
数100mVの酸素過電圧の低減をはかることが可
能となり、本発明の工業的価値は極めて大きなも
のである。
As described above, in the method of manufacturing the electrode of the present invention, an inexpensive lead or an alloy mainly composed of lead is used as a base material, and a small amount of precious metal is deposited on the base material by a chemical substitution method. Then, by an economical method of coating with manganese and/or cobalt oxides, it is possible to reduce the oxygen overvoltage by several hundred mV, and the industrial value of the present invention is extremely large.

〔実施例〕〔Example〕

以下、実施例を述べるが、本発明はこれに限定
されるものではない。
Examples will be described below, but the present invention is not limited thereto.

実施例1,比較例1 電極基材として、1cm×1cmの面積の鉛基材を
用い、その周囲を樹脂で被覆した。この基材を、
脱脂、酸洗等の前処理を施した後に、表1に示す
イリジウムイオンを含む硝酸溶液中に1時間浸漬
し、化学置換法により、表面にイリジウムを析出
させた。 表1 置換液組成 IrC4 1mg 2%HNO3 100ml その後、表2に示す硫酸マンガン水溶液を用
い、二酸化マンガンを陽極析出させた。
Example 1, Comparative Example 1 A lead base material with an area of 1 cm x 1 cm was used as an electrode base material, and its periphery was covered with a resin. This base material
After performing pretreatment such as degreasing and pickling, it was immersed in a nitric acid solution containing iridium ions shown in Table 1 for 1 hour, and iridium was deposited on the surface by a chemical substitution method. Table 1 Substitution liquid composition IrC 4 1 mg 2% HNO 3 100 ml Thereafter, manganese dioxide was anodically deposited using the manganese sulfate aqueous solution shown in Table 2.

表2 電解液組成及び電解条件 電解液組成 電解条件 MnSO4 25g/ 電流密度 1A/dm2 H2SO4 25g/ 電解温度 80℃ 電解時間 60分 この試料をさらに150℃の温度で2時間熱処理
を行い電極を作成した。
Table 2 Electrolyte composition and electrolysis conditions Electrolyte composition Electrolysis conditions MnSO 4 25g / Current density 1A/dm 2 H 2 SO 4 25g / Electrolysis temperature 80℃ Electrolysis time 60 minutes This sample was further heat treated at a temperature of 150℃ for 2 hours. and created an electrode.

得られた電極の酸素過電圧特性を測定するため
に、1MH2SO4中での酸素発生に関する電流―電
位曲線を測定した。結果を図1に示す。なお、比
較例1として、従来の鉛陽極のグラフも同時に図
1に示す。
In order to measure the oxygen overvoltage characteristics of the obtained electrode, a current-potential curve regarding oxygen evolution in 1MH 2 SO 4 was measured. The results are shown in Figure 1. Incidentally, as Comparative Example 1, a graph of a conventional lead anode is also shown in FIG. 1 at the same time.

図1より明らかな様に、本発明より得られる電
極は、従来の鉛陽極に比較して、400〜500mV低
い酸素過電圧を示す。
As is clear from FIG. 1, the electrode obtained according to the present invention exhibits an oxygen overpotential that is 400 to 500 mV lower than that of a conventional lead anode.

実施例 2 電極基材として、5cm×5cmの面積の鉛を用い
実施例1と同様の条件で電極を作成した。
Example 2 An electrode was created under the same conditions as in Example 1 using lead with an area of 5 cm x 5 cm as an electrode base material.

得られた電極の耐久性を測定するため、1MH2
SO4中電流密度10A/dm2で7日間水電解を行い
重量減少法により消耗速度を測定した。結果を表
3に示す。
To measure the durability of the obtained electrode, 1MH 2
Water electrolysis was carried out for 7 days at a current density of 10 A/dm 2 in SO 4 and the consumption rate was measured by the weight loss method. The results are shown in Table 3.

尚、比較のため従来の鉛陽極の消耗速度も表3
に示す。
For comparison, the consumption rate of conventional lead anodes is also shown in Table 3.
Shown below.

表3 電極の耐久性 試料 消耗速度(mg/AH) 発明電極 0.1 従来の鉛陽極 10.5 表3より明らかな様に得られた電極は、従来の
鉛陽極と比較して100倍以上耐久性に優れている。
Table 3 Durability of electrode Sample Wearing rate (mg/AH) Invented electrode 0.1 Conventional lead anode 10.5 As is clear from Table 3, the obtained electrode is more than 100 times more durable than the conventional lead anode. ing.

実施例 3 電極基材として、1cm×1cmの面積の鉛合金
(鉛99%、銀1%)を用い、その周囲を樹脂で被
覆した。
Example 3 A lead alloy (99% lead, 1% silver) with an area of 1 cm x 1 cm was used as an electrode base material, and its periphery was covered with resin.

この基材を脱脂、酸洗等の前処理を施した後
に、表4に示す硝酸銀の化学置換液に30分浸漬
し、表面に銀を析出させた。
After performing pretreatment such as degreasing and pickling, this base material was immersed for 30 minutes in a chemical substitution solution of silver nitrate shown in Table 4 to deposit silver on the surface.

表4 置換液組成 AgNO3 5mg 2%HNO3 100ml その後、表5に示すコバルトを含む水溶液を塗
布し200℃の温度で1時間熱処理を行つた。この
塗布―熱処理の工程を5回繰り返し電極を作成し
た。
Table 4 Substitution liquid composition AgNO 3 5 mg 2% HNO 3 100 ml Thereafter, an aqueous solution containing cobalt shown in Table 5 was applied and heat treated at a temperature of 200° C. for 1 hour. This coating-heat treatment process was repeated five times to create an electrode.

表5 塗布液組成 硝酸コバルト 50g イソプロパノール 50mg 水 50mg 得られた電極を1MH2SO4中10A/dm2の電流
密度で陽極として用い、その酸素発生電位を測定
した所、1.6VvsSCEであり、従来の鉛系陽極に
比較して300mV以上低い酸素過電圧を示した。
Table 5 Coating solution composition Cobalt nitrate 50g Isopropanol 50mg Water 50mg The obtained electrode was used as an anode at a current density of 10A/ dm2 in 1MH2SO4 , and the oxygen evolution potential was measured, and it was 1.6V vs SCE, which was the same as that of the conventional one . The oxygen overvoltage was more than 300mV lower than that of lead-based anodes.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の実施例1及び比較例1で得られ
た電流―電位曲線を示すものである。図1中(1)は
本発明の実施例品、(2)は比較例品の曲線を表わ
す。
FIG. 1 shows current-potential curves obtained in Example 1 of the present invention and Comparative Example 1. In FIG. 1, (1) represents the curve of the example product of the present invention, and (2) represents the curve of the comparative example product.

Claims (1)

【特許請求の範囲】 1 鉛又は鉛を主体とする合金を基材とし、化学
置換法により、該基材上に貴金属を析出せしめ、
ついでマンガン及び/又はコバルトの酸化物を被
覆して成る電解用電極の製造法。 2 鉛又は鉛を主体とする合金を基材とし、化学
置換法により該基材上に貴金属を析出せしめ、さ
らにその被膜上にマンガンイオン及び/又はコバ
ルトイオンを含む水溶液よりマンガン及び/又は
コバルトの酸化物を陽極析出法により被覆せし
め、ついで100℃〜300℃の温度で熱処理を施すこ
とを特徴とする電解用電極の製造法。 3 鉛又は鉛を主体とする合金を基材とし、化学
置換法により該基材上に貴金属を析出せしめ、さ
らにその被膜上にマンガンイオン及び/又はコバ
ルトイオンを含む溶液を表面に付着せしめ100℃
〜300℃の温度で熱分解することによりマンガン
及び/又はコバルトの酸化物を被覆することを特
徴とする電解用電極の製造法。
[Scope of Claims] 1. Using lead or a lead-based alloy as a base material, depositing a precious metal on the base material by a chemical substitution method,
A method for manufacturing an electrode for electrolysis, which is then coated with an oxide of manganese and/or cobalt. 2 Using lead or an alloy mainly composed of lead as a base material, depositing a precious metal on the base material by a chemical substitution method, and then depositing manganese and/or cobalt on the film from an aqueous solution containing manganese ions and/or cobalt ions. 1. A method for producing an electrode for electrolysis, which comprises coating an oxide by an anodic deposition method, and then heat-treating at a temperature of 100°C to 300°C. 3 Using lead or an alloy mainly composed of lead as a base material, depositing a precious metal on the base material by a chemical substitution method, and then depositing a solution containing manganese ions and/or cobalt ions on the surface of the film at 100°C.
A method for producing an electrode for electrolysis, characterized in that it is coated with manganese and/or cobalt oxide by thermal decomposition at a temperature of ~300°C.
JP61011893A 1986-01-24 1986-01-24 Production of electrode for electrolysis Granted JPS62170495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61011893A JPS62170495A (en) 1986-01-24 1986-01-24 Production of electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61011893A JPS62170495A (en) 1986-01-24 1986-01-24 Production of electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPS62170495A JPS62170495A (en) 1987-07-27
JPH0553877B2 true JPH0553877B2 (en) 1993-08-11

Family

ID=11790408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61011893A Granted JPS62170495A (en) 1986-01-24 1986-01-24 Production of electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPS62170495A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118159B (en) * 2005-10-21 2007-07-31 Outotec Oyj Method for forming an electrocatalytic surface of an electrode and electrode
JP6443901B2 (en) * 2016-03-09 2018-12-26 国立大学法人弘前大学 Method for producing electrode for water electrolysis

Also Published As

Publication number Publication date
JPS62170495A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US4072586A (en) Manganese dioxide electrodes
US6527939B1 (en) Method of producing copper foil with an anode having multiple coating layers
US6251254B1 (en) Electrode for chromium plating
CS209834B2 (en) Electrode and method of making the same
SE440240B (en) CATHOD FOR USE IN A REACTION WHICH VETGAS DEVELOPED AT THE CATHOD, SET TO MANUFACTURE THE CATHOD AND ELECTROLY CELL INCLUDING THE CATHOD
CN106283125A (en) Metal electro-deposition coated titanium electrode and preparation method thereof
PH12014501346B1 (en) Anode for oxygen generation and manufacturing method for the same
CN103827360A (en) Positive electrode for electrolytic plating and electrolytic plating method using positive electrode
US4051000A (en) Non-contaminating anode suitable for electrowinning applications
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
CN109576733B (en) Preparation method of carbon fiber loaded chlorine evolution catalytic electrode
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP2000110000A (en) Oxygen generating anode for electrolytic process
CN103981541A (en) Preparation method of non-noble metallic oxide coated electrode
JPS6330996B2 (en)
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPH0553877B2 (en)
JPH0257159B2 (en)
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
Wen et al. Cyclic Voltammetric Investigation of PdO‐Coated Titanium Electrode in H 2 SO 4
JPH02179891A (en) Anode for generate oxygen and production thereof
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPS62142798A (en) Production of anode having low oxygen overvoltage