JPH0553726B2 - - Google Patents

Info

Publication number
JPH0553726B2
JPH0553726B2 JP63080167A JP8016788A JPH0553726B2 JP H0553726 B2 JPH0553726 B2 JP H0553726B2 JP 63080167 A JP63080167 A JP 63080167A JP 8016788 A JP8016788 A JP 8016788A JP H0553726 B2 JPH0553726 B2 JP H0553726B2
Authority
JP
Japan
Prior art keywords
graphite
water
tank
sieve
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63080167A
Other languages
Japanese (ja)
Other versions
JPH01249615A (en
Inventor
Tokio Uemura
Haruyuki Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUO KASEI KOGYO KK
Nippon Steel Corp
Original Assignee
MATSUO KASEI KOGYO KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUO KASEI KOGYO KK, Sumitomo Metal Industries Ltd filed Critical MATSUO KASEI KOGYO KK
Priority to JP63080167A priority Critical patent/JPH01249615A/en
Publication of JPH01249615A publication Critical patent/JPH01249615A/en
Publication of JPH0553726B2 publication Critical patent/JPH0553726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は天然産の黒鉛含有物または製鉄業等で
発生する副生黒鉛含有物からの黒鉛回収方法に関
する。 〔従来の技術〕 黒鉛は天然に産する他、製鉄業での副生物とし
て発生する。すなわち、製鉄業においては、製鋼
工場の脱硫工程で多量の黒鉛含有物が生じ、有効
利用されないまま産業廃棄物として投棄されるこ
とが多い。近年、高純度黒鉛は潤滑剤、炭素パツ
キン等の原材料として需要が増大してきた。ま
た、黒鉛含有物を投棄する際の発塵は公害の原因
となる。このようなことから、製鉄業では黒鉛含
有物の回収、有効利用が望まれている。 ところで、天然産又は製鉄業発生等の粒状黒鉛
含有物は黒鉛純度が低く、利用価値のある高純度
黒鉛を得るためには、粒状黒鉛含有物より高純度
黒鉛を分離、精製する黒鉛回収方法が必要とな
る。 従来の黒鉛回収方法としては浮遊選鉱による方
法がよく知られている。これは、例えば特開昭58
−223610号公報に示される如く、黒鉛含有ダスト
を水中に懸濁させ、そこへ気泡を注入し、ダスト
−水−空気の3相間に働く表面張力を利用するこ
とにより、水に濡れがたい疏水生物を気泡に付着
させ、その浮力により表面に浮かび上がらせて黒
鉛を回収する方法である。 〔発明が解決しようとする課題〕 この方法では、純度97〜98%の黒鉛を回収率90
%以上で回収できる利点があるが、次の問題点が
ある。 (イ) 気泡剤としてパイン油等の油脂類を使用する
必要があり、処理コストを高める。 (ロ) 浮遊選鉱の下工程で水処理する必要があり、
作業工程が煩雑で処理コストを一層高める。 本発明は斯かる問題点を解決して、黒鉛含有物
より黒鉛を従来法に匹敵する純度および回収率
で、しかも経済性よく回収する方法を提供するこ
とを目的とする。 〔課題を解決するための手段〕 本発明の方法は、粉塵状の黒鉛含有物に水を加
えてスラリー化した後、該スラリーを傾斜を有す
る筒状で軸まわりに回転する篩に通して、その篩
上に前記スラリーより所定の粒径以上の粗粒黒鉛
含有物のみを分離する湿式篩に供し、次で分離さ
れた粗粒黒鉛含有物に対して脱水を行い、不純物
除去のための塩酸添加による酸洗を行つた後、さ
らに脱水、アルカリ洗浄、乾燥を施すことによ
り、前記黒鉛含有物から高純度の黒鉛を回収する
ものである。 本発明の方法を第1図を参照して工程順に説明
する。 Γスラリー化 製鋼工場にて産する補集ダスト等は粉塵状態
の成分を多く含む。それ故、本発明では先ず、
補集ダスト等の黒鉛含有物に注水を行つて粉塵
状態黒鉛分を水中に懸濁させてスラリー化状態
にする。 Γ湿式篩 製鋼工場にて産する代表的な補集ダストの粒
度別成分分布を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for recovering graphite from naturally occurring graphite-containing materials or by-product graphite-containing materials generated in the steel industry. [Prior Art] Graphite is produced naturally as well as as a by-product in the steel industry. That is, in the steel industry, a large amount of graphite-containing materials are generated during the desulfurization process in steel plants, and are often dumped as industrial waste without being effectively utilized. In recent years, demand for high-purity graphite has increased as a raw material for lubricants, carbon packing, etc. In addition, dust generated when graphite-containing materials are dumped causes pollution. For this reason, it is desired in the steel industry to recover and effectively utilize graphite-containing materials. By the way, granular graphite-containing materials produced naturally or in the steel industry have low graphite purity, and in order to obtain high-purity graphite that is useful, a graphite recovery method that separates and refines high-purity graphite from granular graphite-containing materials is necessary. It becomes necessary. As a conventional graphite recovery method, a method using flotation is well known. This is, for example, JP-A-58
- As shown in Publication No. 223610, graphite-containing dust is suspended in water, air bubbles are injected into it, and the surface tension acting between the three phases of dust, water, and air is used to create a canal that is difficult to wet with water. This is a method of collecting graphite by attaching organisms to air bubbles and using their buoyancy to float to the surface. [Problem to be solved by the invention] With this method, graphite with a purity of 97 to 98% can be recovered at a recovery rate of 90%.
Although it has the advantage of being able to recover more than %, it has the following problems. (b) It is necessary to use oils and fats such as pine oil as a foaming agent, which increases processing costs. (b) It is necessary to treat water in the downstream process of flotation.
The work process is complicated, further increasing processing costs. An object of the present invention is to solve these problems and provide a method for recovering graphite from a graphite-containing material at a purity and recovery rate comparable to conventional methods, and moreover economically. [Means for Solving the Problems] The method of the present invention involves adding water to a dust-like graphite-containing material to form a slurry, and then passing the slurry through a slanted cylindrical sieve that rotates around an axis. On the sieve, the slurry is subjected to a wet sieve that separates only the coarse graphite-containing materials with a predetermined particle size or more, and then the separated coarse graphite-containing materials are dehydrated and hydrochloric acid is added to remove impurities. After performing pickling by addition, high-purity graphite is recovered from the graphite-containing material by further performing dehydration, alkaline washing, and drying. The method of the present invention will be explained step by step with reference to FIG. Γ Slurry The collected dust produced at steel mills contains many components in the form of dust. Therefore, in the present invention, first,
Water is poured into the graphite-containing material such as collected dust to suspend the dusty graphite in the water and make it into a slurry. Γ Wet sieve Table 1 shows the component distribution by particle size of typical collected dust produced in steel factories.

〔作用〕[Effect]

本発明法では、従来の浮遊選鋼法で必要とされ
る油脂類を使用することがなく、しかも湿式篩下
に落ちる篩分水は還流、再使用できるため、全体
の水使用量は僅少であり、そのため低コストであ
る。また、湿式篩を使うことによつてスラリー中
の粒状黒鉛含有物のうち黒鉛物の多い粗粒分を選
別して取り出すことができ、次工程の負担を軽減
する。次工程においても酸洗に塩酸を使い、粗粒
黒鉛含有物より、Fe、CaO、MgO等の不純物を
効率よく除去することができ、最終的には純度98
%の黒鉛が回収できる。 〔実施例〕 次に、本発明法を実プラントで実施するときの
態様を第4図に説明する。 黒鉛含有物はスラリー槽1に入り、注入された
水と混合して濃度(10〜50%)の調整される。調
整のための機構は熊手式またはエアー吹込式が適
切である。スラリー槽1で生成されたスラリーは
ポンプ付配管3を通り第1段湿式篩2に入る。 湿式篩2は第1段、湿式篩4は第2段である。 第1段湿式篩2の篩スラリーは配管5を通つて
第2段湿式篩4に入る。第1段、第2段の篩上の
黒鉛含有物は配管6を通つて脱水器7に入る。第
2段の篩下の黒鉛を除去されたスラリーは配管8
を通り還流槽9に戻される。 第1段、第2段湿式篩2,4は例えば回転速度
20〜50rpm、傾斜角6〜10°で運転される。篩の
網目は黒鉛含有物の粒径を配慮して80〜100メツ
シユである。篩の段数は粒度の大小によるが2〜
3段で十分に分級する。回転速度、傾斜角、網
目、段数は黒鉛の粒度、性状に応じて黒鉛回収率
が高く、かつ設備コストを高めないように適当に
変更される。 還流槽9では、上澄水は水槽10に入り、沈澱
物は配管11を通つて鉄源として排出回収され
る。水槽10の中の水は吸上げられ配管12を通
つて第1段、第2段湿式篩へ篩の目詰まり防止の
ための洗浄水として供給される。 脱水器7は遠心分離器であり黒鉛含有物より水
分を除く。脱水された黒鉛含有物は取上げられ経
路14を経て酸洗槽13に入る。 酸洗槽13は耐酸性容器内に塩酸を入れ空気と
の接触を防止しながら、ボイラー15によつて加
温される装置であり、黒鉛含有物中の不純物は酸
の中に溶解除去される。酸洗槽内の塩酸での不純
物除去をより推進するため、酸洗槽13に撹拌機
を挿入することもできる。 酸洗により分離された黒鉛は配管16を経てア
ルカリ洗浄槽17に入る。アルカリ洗浄槽17は
槽の内部に回転式孔付円筒21を設け、黒鉛をそ
の中に入れて遠心力によつて脱水させ、アルカリ
水をその中に注入することによりアルカリ洗浄さ
せ、更に水をその中に注入して回転させることよ
つて水洗、脱水する構造である。廃液は出口18
より排出される。回転式円筒内部より高純度の含
水黒鉛が回収される。 アルカリ洗浄槽7の代わりに耐酸性遠心分離器
および耐酸性プレスフイルターまたはオリバーフ
イルターの使用も可能である。 回収された含水黒鉛は経路19を経て乾燥装置
20に入り乾燥される。乾燥装置20を第5図
イ,ロの模式図にて次に説明する。 スチーム加熱二重器構造のドラム21内に前記
含水黒鉛を投入口22より入れる。ドラム21の
中心には回転する撹拌羽根26があり、これは回
収黒鉛の乾燥のばらつきを防止する。ドラム内で
発生する水蒸気を排出するためアスピレーター2
4が吸引口25に取付けれる。吸引口25配置内
のフイルター27は黒鉛の飛散を防止する。水蒸
気排出には真空ポンプ方式、圧縮空気利用方式等
が用いれる。ドラム外周二重器に加えられる熱源
は重油燃焼による高温空気を使うことができる。 前記実プラントにおいて本発明法を実際に実施
した結果を次に説明する。 原料ダストは第1表に示す粒度分布、品位分布
のものを使用した。そして下記条件で本発明法を
実施した。 スラリー濃度……35% 回転篩……ドラム直径:50cm ドラム回転速度:35rpm 篩目:80メツシユ 段数:2段 酸 洗……塩酸濃度:20% 加熱温度:80℃ 加熱時間:5時間 得られた回収黒鉛の工程別成分は第2表の通り
であり、最終黒鉛含有量は97.8%に達している。
The method of the present invention does not use the oils and fats required in the conventional steel flotation method, and the sieve water that falls under the wet sieve can be recycled and reused, so the overall amount of water used is minimal. Yes, and therefore low cost. In addition, by using a wet sieve, it is possible to select and remove the coarse particles with a large amount of graphite from among the granular graphite-containing substances in the slurry, thereby reducing the burden on the next process. In the next step, hydrochloric acid is used for pickling, and impurities such as Fe, CaO, and MgO can be efficiently removed from the coarse graphite-containing material, resulting in a final purity of 98%.
% of graphite can be recovered. [Example] Next, an embodiment in which the method of the present invention is implemented in an actual plant will be explained with reference to FIG. The graphite-containing material enters the slurry tank 1 and is mixed with the injected water to adjust the concentration (10-50%). A rake type or air blow type mechanism is suitable for the adjustment mechanism. The slurry produced in the slurry tank 1 passes through a pump-equipped pipe 3 and enters the first stage wet sieve 2. The wet sieve 2 is the first stage, and the wet sieve 4 is the second stage. The sieve slurry from the first stage wet sieve 2 enters the second stage wet sieve 4 through a pipe 5. The graphite-containing materials on the first and second stage sieves enter a dehydrator 7 through a pipe 6. The slurry from which the graphite under the sieve in the second stage has been removed is piped to pipe 8.
is returned to the reflux tank 9. The first stage and second stage wet sieves 2 and 4 have a rotational speed of, for example,
It operates at 20-50 rpm and an inclination angle of 6-10°. The mesh size of the sieve is 80 to 100 mesh, taking into consideration the particle size of the graphite-containing material. The number of stages of the sieve depends on the particle size, but it is 2 to 2.
Three stages are sufficient for classification. The rotational speed, angle of inclination, mesh, and number of stages are appropriately changed depending on the particle size and properties of graphite so as to obtain a high graphite recovery rate and not to increase the equipment cost. In the reflux tank 9, the supernatant water enters a water tank 10, and the precipitate is discharged and recovered as an iron source through a pipe 11. The water in the water tank 10 is sucked up and supplied to the first and second stage wet sieves as washing water to prevent clogging of the sieves through a pipe 12. The dehydrator 7 is a centrifugal separator and removes moisture from the graphite-containing material. The dehydrated graphite-containing material is taken up and enters the pickling tank 13 via a path 14. The pickling tank 13 is a device in which hydrochloric acid is placed in an acid-resistant container and heated by a boiler 15 while preventing contact with air, and impurities in graphite-containing materials are dissolved and removed in the acid. . In order to further promote the removal of impurities with hydrochloric acid in the pickling tank, a stirrer may be inserted into the pickling tank 13. The graphite separated by pickling enters an alkali cleaning tank 17 via a pipe 16. The alkaline cleaning tank 17 has a rotary cylinder 21 with a hole inside the tank, and graphite is placed therein and dehydrated by centrifugal force, alkaline water is injected into the tank to perform alkali cleaning, and then water is added. It has a structure in which water is poured into the container and rotated to wash and dehydrate it. Waste liquid is at outlet 18
more excreted. High-purity hydrated graphite is recovered from inside the rotating cylinder. Instead of the alkali washing tank 7, it is also possible to use an acid-resistant centrifuge and an acid-resistant press filter or an Oliver filter. The recovered hydrous graphite enters a drying device 20 via a path 19 and is dried. The drying device 20 will now be explained with reference to the schematic diagrams in FIGS. 5A and 5B. The hydrated graphite is introduced into a drum 21 having a double steam heating structure through an inlet 22. There is a rotating stirring blade 26 in the center of the drum 21, which prevents uneven drying of the recovered graphite. Aspirator 2 to exhaust water vapor generated inside the drum
4 is attached to the suction port 25. A filter 27 within the suction port 25 arrangement prevents scattering of graphite. Vacuum pump methods, compressed air methods, etc. are used to discharge water vapor. The heat source applied to the drum outer circumferential duplexer can be high-temperature air generated by burning heavy oil. The results of actually implementing the method of the present invention in the actual plant will be explained below. The raw material dust used had a particle size distribution and quality distribution shown in Table 1. The method of the present invention was then carried out under the following conditions. Slurry concentration...35% Rotating sieve...Drum diameter: 50cm Drum rotation speed: 35rpm Sieve size: 80 mesh Number of stages: 2 stages Pickling...Hydrochloric acid concentration: 20% Heating temperature: 80℃ Heating time: 5 hours Obtained The components of the recovered graphite by process are shown in Table 2, and the final graphite content reached 97.8%.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明は高純
度の黒鉛を簡単な工程で経済性よく回収し、従来
放棄されていた製鋼ダスト等を炭素パツキン、炭
素潤滑剤等の高価値用途の原料として活用させる
とともに、粉塵飛散防止により公害防止にも寄与
するものである。
As is clear from the above explanation, the present invention enables economical recovery of high-purity graphite through a simple process, and converts steelmaking dust, etc., which had previously been abandoned, into a raw material for high-value applications such as carbon packing and carbon lubricants. In addition to being utilized, it also contributes to pollution prevention by preventing dust scattering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を示す工程図、第2図は
塩酸濃度と黒鉛純度との関係を示した線図、第3
図は硫酸と黒鉛純度との関係を示した線図、第4
図は本発明の実施に通した装置を示す模式図、第
5図イ,ロは第4図装置に用いられる乾燥装置の
説明図で、イは斜視図、ロはA−A断面矢視図で
ある。第6図は湿式篩を模式的に説明する図で、
イは縦断側面図、ロはイのA−A断面図である。 図中、1:スラリー槽、2,4:湿式篩、7:
脱水器、9:還流槽、10:水槽、13:酸洗
槽、17:アルカリ洗浄槽、20:乾燥装置、2
1:回転式孔付円筒。
Figure 1 is a process diagram showing the method of the present invention, Figure 2 is a diagram showing the relationship between hydrochloric acid concentration and graphite purity, and Figure 3 is a diagram showing the relationship between hydrochloric acid concentration and graphite purity.
The figure is a diagram showing the relationship between sulfuric acid and graphite purity.
The figure is a schematic diagram showing the apparatus used to carry out the present invention. Figures 5A and 5B are explanatory views of the drying device used in the apparatus shown in Figure 4, where A is a perspective view and B is a cross-sectional view taken along line A-A. It is. Figure 6 is a diagram schematically explaining a wet sieve.
A is a vertical side view, and B is a sectional view taken along line A-A of A. In the figure, 1: slurry tank, 2, 4: wet sieve, 7:
Dehydrator, 9: Reflux tank, 10: Water tank, 13: Pickling tank, 17: Alkali cleaning tank, 20: Drying device, 2
1: Cylinder with rotary hole.

【特許請求の範囲】[Claims]

1 (i) ハロゲンシランと (ii) 周期律表第〜族遷移元素金属のハロゲン
化物と有機マグネシウム化合物から成る触媒も
しくは周期律表第〜族遷移元素金属のハロ
ゲン化物と水素化マグネシウムから成る触媒の
存在下で、マグネシウムと水素を反応させるこ
とによつて得られる水素化マグネシウムとを、 触媒も活性化剤も使用することなく溶媒中で反応
させることを特徴とする珪素水素化合物の製造方
法。 2 珪素水素化合物がシラン(SiH4)である第
1項記載の方法。 3 ハロゲンシランがテトラクロルシランである
第1項記載の方法。 4 溶媒として鎖状もしくは環状のモノエーテル
もしくはポリエーテルを使用する第1項〜第3項
いずれかに記載の方法。 5 溶媒がテトラヒドロフランまたはグリコール
ジメチルエーテルである第4項記載の方法。 6 ハロゲンシランと水素化マグネシウムの反応
を0〜150℃でおこなう第1項〜第5項いずれか
1 (i) a halogen silane and (ii) a catalyst consisting of a halide of a metal of a transition element in Groups ~ of the Periodic Table and an organomagnesium compound, or a catalyst consisting of a halide of a metal of a transition element of Groups ~ of the Periodic Table and magnesium hydride. 1. A method for producing a silicon-hydrogen compound, which comprises reacting magnesium hydride obtained by reacting magnesium with hydrogen in the presence of hydrogen in a solvent without using a catalyst or an activator. 2. The method according to item 1, wherein the silicon hydrogen compound is silane (SiH 4 ). 3. The method according to item 1, wherein the halogensilane is tetrachlorosilane. 4. The method according to any one of items 1 to 3, wherein a chain or cyclic monoether or polyether is used as the solvent. 5. The method according to item 4, wherein the solvent is tetrahydrofuran or glycol dimethyl ether. 6 Any of Items 1 to 5 in which the reaction between halogen silane and magnesium hydride is carried out at 0 to 150°C.

JP63080167A 1988-03-30 1988-03-30 Method for recovering graphite from graphite-containing material Granted JPH01249615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080167A JPH01249615A (en) 1988-03-30 1988-03-30 Method for recovering graphite from graphite-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080167A JPH01249615A (en) 1988-03-30 1988-03-30 Method for recovering graphite from graphite-containing material

Publications (2)

Publication Number Publication Date
JPH01249615A JPH01249615A (en) 1989-10-04
JPH0553726B2 true JPH0553726B2 (en) 1993-08-10

Family

ID=13710765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080167A Granted JPH01249615A (en) 1988-03-30 1988-03-30 Method for recovering graphite from graphite-containing material

Country Status (1)

Country Link
JP (1) JPH01249615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928618B2 (en) 2004-05-06 2015-01-06 Apple Inc. Multipoint touchscreen
US9025090B2 (en) 2010-12-22 2015-05-05 Apple Inc. Integrated touch screens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880923B1 (en) * 2006-12-13 2009-02-04 한국지질자원연구원 High purity purification method of natural crystalline graphite using pressurization and low expansion technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928618B2 (en) 2004-05-06 2015-01-06 Apple Inc. Multipoint touchscreen
US9025090B2 (en) 2010-12-22 2015-05-05 Apple Inc. Integrated touch screens

Also Published As

Publication number Publication date
JPH01249615A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
CN105846005B (en) The broken apart disposable energy-saving reclaiming process of waste and old lead acid accumulator
CN101033066B (en) Method of recovering silicon carbide micro-powder
US5056541A (en) Method and apparatus for removing pollutants from contaminated soil
CN101391794B (en) Novel method for preparing light calcium carbonate by recovering solid white slime through alkaline pulping
CN106315585B (en) The purifying technique of waste liquid caused by carbonization abrading with boron sapphire
JP6252653B1 (en) Method and system for treating chlorine-containing ash
TW200416211A (en) Cement kiln chlorine sulfur bypass system
CN102787011A (en) Comprehensive treatment technology of waste mortar processing by crystalline silicon with no sewage and solid waste discharge
JP7084883B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
CN108906316B (en) Method for preparing desulfurizer by using carbide slag
CN104692391A (en) Dry-process recycling method for chloro-silicane-containing slurry in polycrystalline silicon production process
CN104530243A (en) Tapioca starch clean production method
CN102390832A (en) Method for treating waste silicon powder produced in trichlorosilane synthesis process
JPH0553726B2 (en)
JP6431979B2 (en) Briquette manufacturing method and briquette manufactured using the same
CN214809557U (en) Multi-point position dust collecting and removing system of ceramic tile production line
CN112678830B (en) Quartz sand purification system without washing process
CN111453741B (en) Method for extracting and recovering silicon dioxide in fluorine-containing silicon-containing waste slag by wet method
JP6198651B2 (en) Method and apparatus for converting incinerated ash into cement raw material
CN1210206C (en) Method for recycling fine calcium fluoride powder
JP3717869B2 (en) Waste stabilization treatment method and waste stabilization treatment product
JP4452337B2 (en) Cement wet manufacturing apparatus and method
CN205500807U (en) Aluminium cell waste residue integrated processing system
CN217230576U (en) Innocent treatment system of phosphogypsum preparation gesso
CN212467339U (en) Dry device that mixes of sediment thick liquid filter residue