JPH0553542B2 - - Google Patents

Info

Publication number
JPH0553542B2
JPH0553542B2 JP60140747A JP14074785A JPH0553542B2 JP H0553542 B2 JPH0553542 B2 JP H0553542B2 JP 60140747 A JP60140747 A JP 60140747A JP 14074785 A JP14074785 A JP 14074785A JP H0553542 B2 JPH0553542 B2 JP H0553542B2
Authority
JP
Japan
Prior art keywords
alumina
lanthanum
carrier
catalyst carrier
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60140747A
Other languages
Japanese (ja)
Other versions
JPS621454A (en
Inventor
Nobue Tejima
Yasuyoshi Kato
Kunihiko Konishi
Shogo Nagamine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60140747A priority Critical patent/JPS621454A/en
Publication of JPS621454A publication Critical patent/JPS621454A/en
Publication of JPH0553542B2 publication Critical patent/JPH0553542B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐熱性触媒担体の製造法に係り、特に
耐熱性に優れるβ−アルミナを含浸、混練法によ
り製造する方法に関するものである。 (従来の技術) 近年、触媒を用いて燃焼を促進させる、いわゆ
る触媒燃焼法をガスタービンを初めとする各種燃
焼器に適応して高効率化かつコンパクトなものに
しようとする研究開発が進められている。これら
の燃焼器に使用する触媒は、通常1000℃以上の高
温で使用されるため、焼結しにくく、また熱衝撃
によつても亀裂が生じないような耐熱性担体が必
要となる。 従来、耐熱性に優れた担体として、共沈法によ
り製造されたLa−β−Al2O3担体が知られている
(特開昭59−080752号公報)。このLa−β−Al2O3
担体が耐熱性に優れているのは、第4図A,Bに
示すように、β−アルミナ構造が、Al2O3層とLa
−Al2O3のスピネル層とが4層ごとに繰返される
ラミネート構造となつており、このためLa−
AlO3層がAl2O3層の結晶成長を阻害するためと考
えられる。 一方、アルミナ水和物とランタン化合物の熱的
変化および反応性については、アルミナ水和物の
1種であるギブサイト(Al2O3・3H2O)は200〜
400℃でγ−Al2O3またはχ−Al2O3に変わり、さ
らに900〜1000℃でγ−Al2O3に、そして1100〜
1200℃でα−Al2O3に相転移を起こしつつ焼結が
進行する。一方、ランタン化合物の1例として硝
酸ランタン(La(NO33・6H2O)の場合は700℃
で分解し、酸化ランタン(La2O3)に変わる。さ
らにまた、このLa2O3とAl2O3との反応は1300℃
以上で起こる。 このため、水酸化アルミニウム担体またはγ−
Al2O3担体に硝酸ランタンを含浸してアルミナ水
和物とした後、焼成してβ−Al2O3を得ようとす
る、いわゆる含浸法の場合、第5図に示すように
焼成過程でγ−Al2O3またはχ−Al2O3とLa2O3
の粒塊が生成し、1000℃以上では、γ−Al2O3
大半はα−Al2O3の大きな粒子に成長するため、
良好なβ−Al2O3は得られない。従つて前述した
La−β−Al2O3の理想構造であるラミネート構造
が得られない。 同様に、アルミナ水和物またはγ−Al2O3とラ
ンタン化合物とを混練法によつて得ようとした場
合も、上述した現象と同様の現象が生ずる。すな
わち、β−アルミナが形成される前に、γ−
Al2O3からα−Al2O3の転移を伴う焼結により比
表面積の高い担体が得られず、高活性、耐熱性燃
焼触媒用担体の製造法には利用できない。 このため、酸化ランタンとアルミナとを分子レ
ベルで混合させるため、硝酸ランタンと硝酸アル
ミニウムとの混合溶液にアルカリを添加して共沈
させるという方法が提案されている。(特開昭59
−080752号公報)。 (発明が解決しようとする問題点) しかしながら、本発明者らが、この共沈法によ
り製造された担体についてさらに研究を行なつて
みると、十分に優れた耐熱性を持つに到つていな
いということがわかつた。この原因として、第6
図に示すようにアルカリ(NH3水溶液)の添加
によるPH変化では、水酸化アルミニウム(Al
(OH)3)と水酸化ランタン(La(OH)3)の沈澱
生成領域が異なり、アルカリを添加していくと、
まず水酸化アルミニウムの沈澱が生成し、次いで
水酸化ランタンの沈澱が生成することがわかつ
た。この結果、水酸化アルミニウムと水酸化ラン
タンとの分子レベルでの混合は行なわれず、耐熱
性に優れたβ−アルミナ構造を有する担体を得る
には不十分であることがわかつた。このため、分
子レベルでのランタンとアルミニウムとの混合が
可能な触媒担体の製造方法が望まれていた。 本発明の目的は、上記した従来技術の問題点を
解決し、耐熱性に優れたβ−アルミナ構造を有す
る担体の製造方法を提供することにある。 (問題点を解決するための手段) 要するに本発明は、再水和可能なアルミナに、
バリウム(Ba)および/またはランタン(La)
の化合物を含有する溶液を含浸もしくは混練によ
つて添加後、焼成することを特徴とする。 本発明の触媒担体は、さらにパラジウム等の酸
化触媒を担持させ、燃焼用触媒としてガスタービ
ン等の各種燃焼器に利用される。 先ず本発明の原理について説明する。 アルミナ水和物の1種であるギブサイト
Al2O3・3H2Oを真空で250℃で加熱または急激
に、例えば約1000℃で数秒間加熱することにより
脱水を行なうとρ−アルミナ(Al2O3・0.4H2O)
が得られる。このρ−アルミナは急激に脱水され
たため、ギブサイト構造を保持したまま脱水さ
れ、Al2O3分子はそのままギブサイト構造時の位
置に残つていると考えてよいものである。このた
めAl2O3分子同士は離れた状態、水分子の抜けた
空隙を有する構造となつている。このため、ρ−
アルミナは非常に微粒子で、Al2O3は、分子レベ
ルに近い粒子として存在しており、N2吸着では
比表面積を測定することができないほど、高比表
面積を有している。このρ−アルミナは水を加え
ることにより再水和を起こし、バリライト
(Al2O3・3H2O)に変わる。この再水和は室温で
も起こり、その速度はあまり速くない。 そこで、この再水和前のρ−アルミナとランタ
ン化合物の水溶液を混合すると、ρ−アルミナが
再水和する前にランタン化合物が、ρ−アルミナ
の空隙にとり込まれ、ランタンとアルミナとの分
子レベルでの均一混合が可能となる。前述したよ
うにρ−アルミナの再水和速度は室温ではあまり
大きくなく、またアルミナは酸性で、溶液中のラ
ンタンイオン(La3+)を吸着しやすいことを利
用して、ランタンを均一に分散させることを可能
とした点が本発明の特色である。本混合物を焼成
すれば、Al2O3層とLaAlO3層とが4層ごとに繰
返されるβ−アルミナ構造をもつ耐熱性に優れた
担体が得られる。 具体的には、本発明の触媒担体は、ρ−アルミ
ナ等の再水和可能なアルミナに、バリウムおよ
び/またはランタンの化合物を含有する溶液を含
浸または混練によつて添加後、焼成するという簡
単な方法で製造することができる。 ここで、再水和可能なアルミナとは、ρ−アル
ミナ、またはアルミナ水和物を急熱脱水により再
水和可能ならしめたアルミナを指す。また、バリ
ウムおよび/またはランタンの化合物としては、
焼成により酸化物または炭酸塩を生ずるものであ
れば、どのようなものであつても良い。前述の炭
酸塩は部分分解により酸化物を生じるため、酸化
物の場合と同様な効果を有する。 触媒担体の組成としては、バリウムまたはラン
タンの元素が、アルミニウムに対して0を超えて
15原子%以内、望ましくは2〜7原子%に選定す
るのがよい。焼成温度は一般的に700℃以上が好
ましい。 以下、本発明を実施例を用いて詳述する。 実施例 1 ギブサイト(Al2O3・3H2O)を250℃で真空脱
気して得た、ρ−アルミナ粉末50gと、硝酸ラン
タン(La(NO33・6H2O)22.4gとに蒸留水30ml
を加えて混練し、得られたペーストを180℃で乾
燥し、さらに700℃で焼成した。これをハンマミ
ルを用いて粉砕した後、油圧プレスにより5φ×
5L(単位mm)に成形し、700℃で焼成し触媒担体
とした。これらの工程を第1図Aに示した。 実施例 2 実施例1における硝酸ランタンに替えて、酢酸
バリウム(Ba(CH3COO)2)13.2gを加え、同様
の手順で触媒担体を得た。 実施例 3 実施例1のρ−アルミナ粉末を油圧プレスによ
り5φ×5Lに成形したρ−アルミナ成形品50gに
硝酸ランタン水溶液(La濃度0.29g/ml)を25ml
含浸し、700℃で焼成し、触媒担体とした。これ
らの工程を第1図Bに示した。 実施例 4 実施例1のρ−アルミナに替えて、市販の再水
和可能なアルミナ(住友アルミ精練(株)製 BK−
103)を用い、同様の手順で触媒担体を得た。 実施例 5〜8 実施例1の硝酸ランタン量を22.4gから、それ
ぞれ4.5g(実施例5)、13.4g(実施例6)、44.7
g(実施例7)、67.1g(実施例8)に替えて、
同様の手順で触媒担体を得た。 比較例 1 実施例1における再水和可能なアルミナに替え
て、アルミナ水和物を用いて同様な手順で触媒担
体を得た。 比較例 2 硝酸アルミニウム(Al(NO33・9H2O)350g
と硝酸ランタン(La(NO33・6H2O)21gを蒸
留水3.7に溶解し、室温で撹拌して得られた溶
液に、撹拌を続けながら、5Mのアンモニア水を
PH7になるまで徐々に1時間以上かけて加え、共
沈物を得た。この沈澱物を1回当たり500mlの蒸
留水で3〜5回デカンテーシヨンを行なうことに
より洗浄した。得られた沈澱物を吸引ろ過した
後、180℃で乾燥し、さらに700℃で焼成した。こ
られの工程を第7図に示した。 比較例 3 実施例1における硝酸ランタンの添加を省略
し、他は同様の手順で触媒担体を得た。 試験例 1 実施例1〜4、比較例1〜2で得られた担体を
1300℃で2時間熱処理した。このものの比表面積
をBET法により測定した。 第1表に実施例1〜4および比較例1、2の担
体についての結果を示した。
(Industrial Application Field) The present invention relates to a method for producing a heat-resistant catalyst carrier, and particularly to a method for producing a heat-resistant catalyst carrier by impregnating and kneading β-alumina. (Prior Art) In recent years, research and development efforts have been underway to apply the so-called catalytic combustion method, which uses a catalyst to promote combustion, to make it more efficient and compact by applying it to various types of combustors, including gas turbines. ing. Since the catalysts used in these combustors are usually used at high temperatures of 1000°C or higher, they require heat-resistant carriers that are difficult to sinter and do not crack even when subjected to thermal shock. Conventionally, a La-β-Al 2 O 3 carrier produced by a coprecipitation method has been known as a carrier with excellent heat resistance (Japanese Patent Laid-Open No. 59-080752). This La−β−Al 2 O 3
The reason why the carrier has excellent heat resistance is that the β-alumina structure is composed of three Al 2 O layers and La
- It has a laminate structure in which the spinel layer of Al 2 O 3 is repeated every four layers, and therefore the La-
This is thought to be because the AlO 3 layer inhibits the crystal growth of the Al 2 O 3 layer. On the other hand, regarding the thermal changes and reactivity of alumina hydrate and lanthanum compounds, gibbsite (Al 2 O 3 3H 2 O), a type of alumina hydrate, has a
It changes to γ- Al2O3 or χ- Al2O3 at 400℃, further changes to γ- Al2O3 at 900~ 1000 , and then from 1100~
Sintering progresses at 1200°C while undergoing a phase transition to α-Al 2 O 3 . On the other hand, in the case of lanthanum nitrate (La( NO 3 ) 3.6H 2 O), which is an example of a lanthanum compound, the temperature is 700℃.
It decomposes into lanthanum oxide (La 2 O 3 ). Furthermore, this reaction between La 2 O 3 and Al 2 O 3 is carried out at 1300°C.
It happens above. For this reason, aluminum hydroxide supports or γ-
In the case of the so-called impregnation method, in which an Al 2 O 3 carrier is impregnated with lanthanum nitrate to form an alumina hydrate and then fired to obtain β-Al 2 O 3 , the firing process is as shown in Figure 5. with γ-Al 2 O 3 or χ- Al 2 O 3 and La 2 O 3
At temperatures above 1000℃, most of the γ-Al 2 O 3 grows into large particles of α-Al 2 O 3 .
Good β-Al 2 O 3 cannot be obtained. Therefore, the above
A laminate structure, which is the ideal structure of La-β-Al 2 O 3, cannot be obtained. Similarly, when attempting to obtain alumina hydrate or γ-Al 2 O 3 and a lanthanum compound by a kneading method, the same phenomenon as described above occurs. That is, before β-alumina is formed, γ-
A support with a high specific surface area cannot be obtained by sintering accompanied by a transition from Al 2 O 3 to α-Al 2 O 3 , and it cannot be used in a method for producing a highly active, heat-resistant support for a combustion catalyst. Therefore, in order to mix lanthanum oxide and alumina at the molecular level, a method has been proposed in which an alkali is added to a mixed solution of lanthanum nitrate and aluminum nitrate to cause coprecipitation. (Unexamined Japanese Patent Publication 1983)
−080752). (Problems to be Solved by the Invention) However, when the present inventors conducted further research on the carrier produced by this coprecipitation method, it was found that the carrier did not have sufficiently excellent heat resistance. That's what I found out. The reason for this is the 6th
As shown in the figure, when the pH changes due to the addition of alkali (NH 3 aqueous solution), aluminum hydroxide (Al
(OH) 3 ) and lanthanum hydroxide (La(OH) 3 ) have different precipitate formation regions, and as alkali is added,
It was found that first a precipitate of aluminum hydroxide was formed, and then a precipitate of lanthanum hydroxide was formed. As a result, it was found that aluminum hydroxide and lanthanum hydroxide were not mixed at the molecular level, which was insufficient to obtain a support having a β-alumina structure with excellent heat resistance. Therefore, there has been a desire for a method for producing a catalyst carrier that allows mixing of lanthanum and aluminum at the molecular level. An object of the present invention is to solve the problems of the prior art described above and to provide a method for manufacturing a carrier having a β-alumina structure with excellent heat resistance. (Means for Solving the Problems) In short, the present invention provides rehydratable alumina with
Barium (Ba) and/or Lanthanum (La)
It is characterized by adding a solution containing the compound by impregnation or kneading, and then firing. The catalyst carrier of the present invention further supports an oxidation catalyst such as palladium, and is used as a combustion catalyst in various combustors such as gas turbines. First, the principle of the present invention will be explained. Gibbsite, a type of alumina hydrate
When Al 2 O 3 3H 2 O is dehydrated by heating it in a vacuum at 250°C or rapidly, for example at about 1000°C for several seconds, it becomes ρ-alumina (Al 2 O 3 0.4H 2 O).
is obtained. Since this ρ-alumina was rapidly dehydrated, it can be considered that it was dehydrated while retaining the gibbsite structure, and the Al 2 O 3 molecules remained in the same position as they were in the gibbsite structure. Therefore, the Al 2 O 3 molecules are separated from each other and have a structure with voids through which water molecules have escaped. Therefore, ρ−
Alumina is extremely fine particles, and Al 2 O 3 exists as particles close to the molecular level, and has a specific surface area so high that it cannot be measured by N 2 adsorption. This ρ-alumina undergoes rehydration by adding water and turns into baryrite (Al 2 O 3 .3H 2 O). This rehydration occurs even at room temperature and is not very fast. Therefore, when this unrehydrated ρ-alumina and an aqueous solution of a lanthanum compound are mixed, the lanthanum compound is incorporated into the pores of ρ-alumina before the ρ-alumina is rehydrated, and the lanthanum and alumina are bonded at the molecular level. Uniform mixing is possible. As mentioned above, the rehydration rate of ρ-alumina is not very high at room temperature, and alumina is acidic and easily adsorbs lanthanum ions (La 3+ ) in the solution. The feature of the present invention is that it makes it possible to do this. By firing this mixture, a support with excellent heat resistance and a β-alumina structure in which three layers of Al 2 O and three layers of LaAlO are repeated every four layers can be obtained. Specifically, the catalyst support of the present invention can be prepared by simply adding a solution containing a barium and/or lanthanum compound to a rehydratable alumina such as ρ-alumina by impregnation or kneading, and then calcination. It can be manufactured by any method. Here, the rehydratable alumina refers to ρ-alumina or alumina obtained by making an alumina hydrate rehydrated by rapid thermal dehydration. In addition, barium and/or lanthanum compounds include:
Any material may be used as long as it produces an oxide or carbonate upon firing. Since the carbonates mentioned above produce oxides through partial decomposition, they have the same effects as those of oxides. The composition of the catalyst carrier is such that the element barium or lanthanum is more than 0 relative to aluminum.
It is preferably selected within 15 atomic %, preferably 2 to 7 atomic %. The firing temperature is generally preferably 700°C or higher. Hereinafter, the present invention will be explained in detail using Examples. Example 1 50 g of ρ-alumina powder obtained by vacuum degassing gibbsite (Al 2 O 3 3H 2 O) at 250°C and 22.4 g of lanthanum nitrate (La(NO 3 ) 3 6H 2 O). 30ml of distilled water
was added and kneaded, and the resulting paste was dried at 180°C and further calcined at 700°C. After crushing this using a hammer mill, 5φ×
It was molded to 5L (unit: mm) and fired at 700℃ to form a catalyst carrier. These steps are shown in FIG. 1A. Example 2 In place of lanthanum nitrate in Example 1, 13.2 g of barium acetate (Ba(CH 3 COO) 2 ) was added and a catalyst carrier was obtained in the same manner. Example 3 25 ml of lanthanum nitrate aqueous solution (La concentration 0.29 g/ml) was added to 50 g of the ρ-alumina molded product obtained by molding the ρ-alumina powder of Example 1 into a size of 5φ x 5 L using a hydraulic press.
It was impregnated and calcined at 700°C to form a catalyst carrier. These steps are shown in FIG. 1B. Example 4 In place of the ρ-alumina in Example 1, commercially available rehydratable alumina (BK- manufactured by Sumitomo Aluminum Refining Co., Ltd.) was used.
103), a catalyst support was obtained in the same manner. Examples 5 to 8 The amount of lanthanum nitrate in Example 1 was changed from 22.4 g to 4.5 g (Example 5), 13.4 g (Example 6), and 44.7 g, respectively.
g (Example 7), 67.1 g (Example 8),
A catalyst carrier was obtained using the same procedure. Comparative Example 1 A catalyst carrier was obtained in the same manner as in Example 1 except that hydrated alumina was used in place of the rehydratable alumina. Comparative example 2 Aluminum nitrate (Al(NO 3 ) 3・9H 2 O) 350g
and 21 g of lanthanum nitrate (La(NO 3 ) 3 6H 2 O) were dissolved in 3.7 g of distilled water and stirred at room temperature. To the resulting solution, 5M ammonia water was added while stirring.
The mixture was gradually added over an hour or more until the pH reached 7, and a coprecipitate was obtained. The precipitate was washed by decanting three to five times with 500 ml of distilled water each time. The obtained precipitate was suction filtered, dried at 180°C, and further calcined at 700°C. These steps are shown in FIG. Comparative Example 3 A catalyst carrier was obtained in the same manner as in Example 1 except that the addition of lanthanum nitrate was omitted. Test Example 1 The carriers obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were
Heat treatment was performed at 1300°C for 2 hours. The specific surface area of this material was measured by the BET method. Table 1 shows the results for the carriers of Examples 1 to 4 and Comparative Examples 1 and 2.

【表】 第1表の結果から、本発明になる触媒担体は、
比較例に比べ1300℃という高温においても、高比
表面積を得ることができることがわかる。 また、実施例1および5〜8、比較例3の結果
をランタンの添加量に対してプロツトした結果を
第2図に示す。本図より、本発明におけるランタ
ンの添加量は0を超えて15原子%以内、特に2〜
7原子%の間が適当であることがわかる。 試験2 実施例1、2および比較例2で得られた担体を
1300℃で2時間熱処理し、これらについてX線回
析を行なつた。 第3図に、その結果を示す。本図からわかるよ
うに、比較例の担体はLaAlO3やα−Al2O3の明
らかなピークが見られ、結晶成長が起こつている
が、本発明になる触媒担体では鋭いピークは見ら
れず、結晶成長が起こつていないことがわかる。 実施例9、10および比較例4、5 実施例1および2、ならびに比較例1および2
で得られた触媒担体に、硝酸パラジウムを0.5wt
%担持し、1000℃および1300℃で2時間焼成し
た。得られた触媒の燃焼試験を次の条件で実施
し、燃焼開始温度とガス予熱温度を500℃一定の
場合のメタン燃焼率を測定した。 条件 SV:30000h-1 CH4:3% O2:8% H2:残部 得られた結果を第2表に示した。
[Table] From the results in Table 1, the catalyst carrier of the present invention is
It can be seen that a high specific surface area can be obtained even at a high temperature of 1300°C compared to the comparative example. Further, the results of Examples 1 and 5 to 8 and Comparative Example 3 are plotted against the amount of lanthanum added, and the results are shown in FIG. From this figure, the amount of lanthanum added in the present invention is more than 0 and less than 15 at%, especially 2 to 15 at%.
It can be seen that a range of 7 atomic % is appropriate. Test 2 The carriers obtained in Examples 1 and 2 and Comparative Example 2 were
They were heat treated at 1300°C for 2 hours and subjected to X-ray diffraction. Figure 3 shows the results. As can be seen from this figure, clear peaks of LaAlO 3 and α-Al 2 O 3 are seen in the comparative example carrier, indicating crystal growth, but no sharp peaks are observed in the catalyst carrier of the present invention. , it can be seen that no crystal growth occurs. Examples 9 and 10 and Comparative Examples 4 and 5 Examples 1 and 2 and Comparative Examples 1 and 2
Add 0.5wt of palladium nitrate to the catalyst carrier obtained in
% and calcined at 1000°C and 1300°C for 2 hours. A combustion test of the obtained catalyst was conducted under the following conditions, and the methane combustion rate was measured when the combustion start temperature and gas preheating temperature were constant at 500°C. Conditions SV: 30000h -1 CH 4 : 3% O 2 : 8% H 2 : Balance The results obtained are shown in Table 2.

【表】 本表から、本発明になる担体は、高比表面積を
維持し、高温で使用する触媒の担体として優れた
ものであることがわかる。 (発明の効果) 本発明によれば、ランタンまたはバリウム化合
物とアルミナとの分子レベルでの混合が可能とな
り、β−アルミナ構造を有する耐熱性に優れた触
媒担体、すなわち高温で燃焼を行なわせる触媒等
の高温用耐熱触媒担体を簡便な工程で得ることが
できる。また従来の共沈法による製造では、製造
フローが複雑で、沈澱層、ろ過装置等の設備が多
く必要であつたが、本発明の製造法では、それら
の設備の多くは必要なく、またフローも簡単で製
造技術の実用化が容易に図れるようになつた。
[Table] From this table, it can be seen that the carrier of the present invention maintains a high specific surface area and is excellent as a carrier for a catalyst used at high temperatures. (Effects of the Invention) According to the present invention, it is possible to mix a lanthanum or barium compound and alumina at the molecular level, and a catalyst carrier with excellent heat resistance having a β-alumina structure, that is, a catalyst that allows combustion to occur at high temperatures. It is possible to obtain a heat-resistant catalyst carrier for high temperatures using a simple process. In addition, in production using the conventional coprecipitation method, the production flow was complicated and required a lot of equipment such as precipitation layers and filtration equipment, but the production method of the present invention does not require much of such equipment, and the flow It has become easy to put the manufacturing technology into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図AおよびBは、それぞれ本発明の耐熱性
触媒担体の製造工程を示すブロツク図、第2図
は、本発明の実施例の結果を示す図、第3図は、
本発明の実施例におけるX線回析の結果を示す
図、第4図AおよびBは、従来の共沈法による
La−β−Al2O3担体の分子構造の模式図および断
面図、第5図は、従来の含浸法によるAl2O3
La2O3担体の生成を模式的に説明する図、第6図
は、Al(OH)3とLa(OH)3の沈澱生成領域の相違
を説明する図、第7図は、従来の耐熱性触媒担体
の製造工程を示す図である。
FIGS. 1A and 1B are block diagrams showing the manufacturing process of a heat-resistant catalyst carrier of the present invention, FIG. 2 is a diagram showing the results of an example of the present invention, and FIG.
Figures 4A and 4B, which show the results of X-ray diffraction in the example of the present invention, are obtained by the conventional coprecipitation method.
A schematic diagram and a cross-sectional view of the molecular structure of the La-β-Al 2 O 3 carrier, Figure 5 shows the Al 2 O 3
Figure 6 is a diagram schematically explaining the formation of La 2 O 3 carrier, Figure 6 is a diagram explaining the difference in the precipitate formation region of Al(OH) 3 and La(OH) 3 , Figure 7 is a diagram schematically explaining the formation of La 2 O 3 carrier. FIG.

Claims (1)

【特許請求の範囲】 1 再水和可能なアルミナに、バリウムおよび/
またはランタンの化合物を、アルミニウムに対し
て0を超えて15原子%以内で含有する水溶液を含
浸または混練によつて添加後、焼成することを特
徴とする耐熱性触媒担体の製造法。 2 特許請求の範囲第1項記載の再水和可能なア
ルミナが、ρ−アルミナ(Al2O3・0.4H2O)およ
び/または高温で急速脱水処理により再水和可能
ならしめたアルミナであることを特徴とする耐熱
性触媒担体の製造法。
[Claims] 1. Rehydratable alumina containing barium and/or
Or, a method for producing a heat-resistant catalyst carrier, which comprises adding an aqueous solution containing a lanthanum compound in an amount of more than 0 and less than 15 atomic % based on aluminum by impregnation or kneading, and then firing. 2. The rehydratable alumina according to claim 1 is ρ-alumina (Al 2 O 3・0.4H 2 O) and/or alumina made rehydrated by rapid dehydration treatment at high temperature. A method for producing a heat-resistant catalyst carrier, characterized by the following.
JP60140747A 1985-06-27 1985-06-27 Preparation of heat resistant catalyst carrier Granted JPS621454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140747A JPS621454A (en) 1985-06-27 1985-06-27 Preparation of heat resistant catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140747A JPS621454A (en) 1985-06-27 1985-06-27 Preparation of heat resistant catalyst carrier

Publications (2)

Publication Number Publication Date
JPS621454A JPS621454A (en) 1987-01-07
JPH0553542B2 true JPH0553542B2 (en) 1993-08-10

Family

ID=15275787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140747A Granted JPS621454A (en) 1985-06-27 1985-06-27 Preparation of heat resistant catalyst carrier

Country Status (1)

Country Link
JP (1) JPS621454A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143704A (en) * 1987-11-30 1989-06-06 Sumitomo Electric Ind Ltd Controlled rolling method for bar steel
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
JP6222038B2 (en) * 2014-10-24 2017-11-01 トヨタ自動車株式会社 Method for producing α-alumina carrier for exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPS621454A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
US7504085B2 (en) Alumina-based perovskite catalysts and catalyst supports
JP2818171B2 (en) Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
KR100354470B1 (en) Mixed cerium and zirconium oxide substrate compositions, preparation methods and uses
KR0185483B1 (en) Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
KR102580600B1 (en) Cerium- and zirconium-based mixed oxides
KR100723846B1 (en) Composition based on cerium and zirconium oxides having a specific surface which is stable between 900 ℃ and 1000 ℃, method for the production and use thereof as a catalyst
RU2509725C2 (en) Composition based on cerium oxide and zirconium oxide having specific porosity, method of production and use in catalysis
JPH0852352A (en) Oxidative catalyst withstanding high temperature,method for preparation thereof and method for combustion using said catalyst
CA2381411C (en) Micro-crystalline boehmites containing additives and shaped particles and catalyst compositions comprising such micro-crystalline boehmite
KR20080096678A (en) A carrier for olefin oxidation catalyst, preparation method and application thereof
EP0234745A1 (en) Catalysts
EP2223905A1 (en) Novel zirconia ceria compositions
JP2005231951A (en) Multiple oxide and catalyst for purification of exhaust gas
CA1265119A (en) Catalyst for combustion and process for producing same
EP1625097B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
EP2781487B1 (en) Composite oxide
CN112076740A (en) Element gradient distributed cerium-zirconium based composite oxide and preparation method thereof
KR970001520B1 (en) Carrier material for a catalyst and a process for making such a carrier material
JPH0553542B2 (en)
JPH0445452B2 (en)
JP6630305B2 (en) Core-shell type oxide material, exhaust gas purification catalyst using the same, and exhaust gas purification method
CN107224971B (en) Oxygen-occluding material and method for producing same
JP2019217464A (en) Core shell type oxygen absorption and emission material, manufacturing method therefor, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP7237048B2 (en) Oxygen storage material and its manufacturing method
EP0808800A2 (en) Praseodymium-zirconium-oxides for catalyst and washcoat

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term