JPH0445452B2 - - Google Patents

Info

Publication number
JPH0445452B2
JPH0445452B2 JP59080752A JP8075284A JPH0445452B2 JP H0445452 B2 JPH0445452 B2 JP H0445452B2 JP 59080752 A JP59080752 A JP 59080752A JP 8075284 A JP8075284 A JP 8075284A JP H0445452 B2 JPH0445452 B2 JP H0445452B2
Authority
JP
Japan
Prior art keywords
lanthanum
alumina
aluminum
carrier
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59080752A
Other languages
Japanese (ja)
Other versions
JPS60226414A (en
Inventor
Akira Kato
Hisao Yamashita
Mamoru Mizumoto
Shinpei Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP59080752A priority Critical patent/JPS60226414A/en
Publication of JPS60226414A publication Critical patent/JPS60226414A/en
Publication of JPH0445452B2 publication Critical patent/JPH0445452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、ランタンとアルミナよりなる複合酸
化物の製造法に係り、特に1500℃以下の温度域に
おいて安定して使用できる耐熱性担体の製造方法
に関する。 〔発明の背景〕 触媒を用い高温下で反応を行わせる方法として
は、自動車排ガス浄化、高温水蒸気改質などが知
られている。最近、ボイラーやガスタービンなど
へ触媒燃焼技術を応用する動きが起きているが、
これらの方法では反応温度が1000℃以上、条件に
よつては1400〜1500まで達する。このような高温
域で安定に使用できる触媒の開発が望まれている
が、そのためには高温でも高い比表面積を有する
耐熱性担体が必要である。 従来、700℃ないし800℃の比較的高い温度で使
用されている担体は主に活性アルミナである。し
かし活性アルミナは800℃以上、特に1000℃以上
では熱的に不安定で種々の遷移型アルミナを経て
最終的にはα・アルミナへ相変化する。それに伴
い結晶成長も進行し、比表面積が大きく低下す
る。担の比表面積の低下は担体に分散担持されて
いる活性成分の凝集を引き起こし、触媒性能の低
下につながる。 このような活性アルミナの欠点を改良する方法
として、アルミナ粉末とマグネシア粉末との混合
物を高温で焼成したマグネシア・アルミナスピネ
ルを担体とする方法(特公昭57−3419号公報)、
アルミナにクロム、タングステン、セリウム等を
加えた担体(特開昭50−99988号公報)、アルミナ
に高級アルカリ土類と三酸化モリブデン、ジルコ
ニア、シリカ、酸化錫、酸化ランタンとシリカ、
酸化ランタンと酸化すずを加えた担体(特開昭54
−117387号公報)などが知られている。 上記したアルミナの改質法はそれぞれ利点はあ
るが、耐熱性の面で充分ではない。 〔発明の目的〕 本発明の目的は、上記した従来技術の欠点を改
善し、高温度の反応条件下においても高い比表面
積を有する耐熱性担体用材料の製造法を提供する
ことにある。 〔発明の概要〕 一般に活性アルミナは高比表面積を有し、担体
やコーテイング材として多く使用されているが、
800℃以上特に1000℃以上においてはα・アルミ
ナへの相転移及び結晶粒子径の成長などにより比
表面積が低下し、ひいては触媒活性の低下を引き
起こす。 本発明者等は、アルミナの上記の様な熱的不安
定性を改良するために鋭意研究を重ねた結果、酸
化ランタンとアルミナの複合酸化物の1種である
ランタン・β・アルミナ(La2O3・11〜14Al2O3
を主成分とする担体は高温度でも比表面積の低下
が少ないことを見出た。さらにその製造方法を
種々検討した結果、本発明をなすに至つたもので
ある。 活性アルミナにセリウム、ランタン等の希土金
属酸化物を添加し、高温時のアルミナ結晶相転移
を防止する方法については、特開昭48−14600号
公報に記載されているように公知である。しかし
ながらこれら従来法では、1000℃以上の高温下で
用いられる耐熱性担体としては要求される性能を
充分満足し得るものではない。すなわち高温で高
い比表面積を保持することができない。この原因
の一つとして、活性アルミナ担体に硝酸ランタン
のような水溶性塩を含浸する方法においては、焼
成時にアルミナと酸化ランタンが反応し、ペロブ
スカイト型構造をもつランタンアルミネート
(LaAlO3)が主に生成する。この化合物は結晶
成長が進み易く、比表面積も低下することが確認
された。 本発明者らは先に酸化ランタンとアルミナの複
合酸化物の一種であるランタン・β・アルミナ
(La2O3・11〜14Al2O3)を主成分とする担体は高
温でも高い比表面積を持つことを明らかにした。
本発明はこの化合物の製造法を詳細に検討した結
果、到達したものである。 具体的にはアルミニウム塩とランタン塩の水溶
液をランタン/アルミナが原子比で2/98〜20/
80を有するように調製し、この溶液を中和して沈
殿を生成せしめ、その沈殿物よりランタン・β−
アルミナを主成分とする複合酸化物を製造するも
のである。具体的には沈殿物を洗浄、乾燥、焼成
した後成型することにより、ランタン・β−アル
ミナを主成分とするランタンとアルミナの複合酸
化物を製造するものである。この方法における特
徴はアルミニウム塩とランタン塩の水溶液から中
和によりアルミニウムとランタンの水酸化物、塩
基性炭酸塩などの沈殿を生成させる工程を含むこ
とにある。特にこの沈殿を生成させる場合には、
アルミニウムとランタンのそれぞれの水酸化物な
どを別々に沈殿させ、後で混合するよりも、同時
に沈殿を生じせしめる、いわゆる共沈法によるの
が好ましい。共沈法を用いることによりアルミニ
ウムとランタンはミクロのオーダーで良く混合す
るためにランタン・β−アルミナの前駆体を生成
し易く焼成過程でランタン・β−ルミナを容易に
生成する。この共沈法以外ではランタンアルミネ
ート(LaAlO3)が生成し易く、ランタン・β−
アルミナを生成させるためには1500℃以上の高温
が必要でこの場合、多孔質の担体とはなり難い。
共沈法の具体的な方法としては、アルミニウム塩
とランタン塩の混合水溶液にアンモニア水などを
添加して沈殿を生成せしめるのも良いし、また逆
に、アンモニア水などの沈殿剤中にアルミニウム
塩とランタン塩の水溶液を同時に滴下して沈殿を
生成せしめるのも良い。また、蒸留水中にアンモ
ニア水などの沈殿剤とアルミニウム塩とランタン
塩の水溶液を同時に滴下して沈殿を生成せしめて
も良い。 沈殿を生成させるためのPHは通常7〜12の範囲
が好ましい。PH7以下ではランタンの水酸化物の
沈殿生成が完全には進まず、PH12以上ではアルミ
ニウムの水酸化物がアルミン酸イオンを生成し再
溶解する恐れがある。共沈法により得られた沈殿
は、通常、熟成、洗浄の工程の後で過、乾燥さ
れるが、熟成や洗浄工程はなくとも良い。共沈法
により得られたランタンとアルミニウムの水酸化
物の沈殿は800℃以上、好ましくは900℃以上で焼
成するとランタンβアルミナを生成する。この焼
成工程は沈殿物を種々の形状に成型した後でも良
いし、予め焼成してランタンβアルミナの粉体を
製造した後、成型しても良い。焼成温度の上限は
1500℃とすることが望ましい。 アルミニウム原料としては、可溶性の硝酸塩、
硫酸塩、塩化物などが使用できる。一方、ランタ
ン原料としては、可溶性の硝酸塩、塩化物、シユ
ウ酸塩、酢酸塩などが使用できる。 沈殿剤としては、アルミニウム塩とランタン塩
の溶液のPHを7以上に上げることができる塩基性
の物質であれば良く、アンモニア水、水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム、炭
酸ナトリウム、炭酸カリウム、炭酸水素ナトリウ
ム、炭酸水素カリウムなどが代表的なものとして
挙げられる。また水溶液中で加熱すると分解して
アンモニアを発生する尿素などでも良い。 担体中のランタンとアルミニウムの組成は金属
成分の原子比でLa/Al=2/98〜20/80の範囲
が好ましい。この範囲よりランタンが少ない場合
には、ランタン・β−アルミナ以外にアルミナが
多量に生成し、高温で比表面積が低下する。ま
た、ランタンが多い場合には、ランタン・β−ア
ルミナ以外に、ランタンアルミネートが多量に生
成し、比表面積が低下する。 本発明によつて得られた担体はランタン・β−
アルミナを主成分とするが、主成分以外の成分と
して酸化ランタンとアルミナの他の形態の化合物
を含んでいても良いし、化合しなかつた余剰のア
ルミナおよび/または酸化ランタンを含んでいて
も良い。更にシリカ、マグネシウム、カルシア、
バリア、ベリリア、ジルコニア、チタニア、トリ
ア、酸化すずなどの酸化物、コージエライト、ム
ライト、スポジユメン、チタン酸アルミニウム、
炭化ケイ素、窒化ケイ素などの化合物から選ばれ
た1種以上を含むことが可能である。また、ラン
タン以外の希土類元素、すなわち、セリウム、プ
ラセオジウム、ネオジウム、プロメチウム、サマ
リウム、ユーロピウム、ガドリニウム、テルビウ
ム、ジスプロシウム、ホルミウム、エルビウム、
ツリウム、イツテルビウム、イツトリウム、スカ
ンジウム、ルテチウムなどから選ばれた1種以上
を含むことも可能である。 〔発明の実施例〕 以下、本発明方法を実施例により更に詳細に説
明するが、本発明方法はこれらの実施例により限
定されるものではない。 実施例 1 硝酸アルミニウム1.88Kgと硝酸ランタン114gを
蒸留水10に溶解した。この溶液を撹拌しながら
3Nアンモニア水を滴下しPH8まで中和した。得
られたアルミニウムとランタンの共沈物を過
し、沈殿を蒸留水で充分洗浄した後150℃で一昼
夜乾燥した。次いで800℃の温度で2時間電気炉
で焼成し、得られた粉体をボールミルで粉砕した
後60メツシユ以下に分級した。この微粉末にグラ
フアイト1%を加えてプレス成型機で直径3mm、
長さ3mmの円柱状にした後、最終的に1200℃で3
時間焼成して担体とした。担体の組成比は原子比
でLa/Al=5/95である。この担体の比表面積
はNaガス吸着によるB.E.T.法で測定したところ
58.5m2/gであつた。また、X線回折による結晶
構造解析の結果、ランタン・β−アルミナの回折
ピークが観察された。 比較例 1 実施例1の方法において硝酸ランタンを添加し
ない以外は同様に調製し、アルミナのみから成る
比較例担体1を得た。この担体の比表面積は6.0
m2/gであつた。またX線回折の結果、α−アル
ミナの回折ピークのみが観察された。 比較例 2 直径3mmの球状のγ−アルミナ担体(市販品)
100gを150℃で一昼夜乾燥した後、硝酸ランタン
44.7gを蒸留水に予め溶解した50mlの溶液に含浸
した。次いで150℃で一昼夜乾燥し、引き続き
1100℃で5時間焼成した。この担体の組成比は原
子比でLa/Al=5/95である。比表面積は18
m2/gであつた。またX線回折の結果、ペロブス
カイト構造を持つランタンアルミネート
(LaAlO3)の大きく鋭い回折ピークが主に観察
され、ランタン・β−アルミナの回折ピークは非
常に小さく、本比較例の方法で調製すると主にラ
ンタンアルミネートが生成し、ランタン・β−ア
ルミナは生成しにくいことがわかつた。 実施例 2 硝酸アルミニウムと硝酸ランタンの添加量を変
えた以外は実施例1と全く同様にして調製し、担
体A(La/Al=2/98、原子比、以下同じ)、B
(La/Al=3/97)、C(La/Al=7/93)、D
(La/Al=10/90)、E(La/Al=20/80)を製
造した。 これらの担体を1000℃または1200℃の温度で3
時間焼成した。比表面積の測定結果を図に示す。
また、X線回折を行つて結晶構造を調べた結果を
表に示す。表に示されるように本実施例担体中の
酸化物の形態は主にランタン・β−アルミナ
(La−β−Al2O3)であり、そのほかにAl2O3
LaAlO3を含んでいることが明らかである。
[Field of Application of the Invention] The present invention relates to a method for producing a composite oxide consisting of lanthanum and alumina, and particularly to a method for producing a heat-resistant carrier that can be stably used in a temperature range of 1500° C. or lower. [Background of the Invention] Automobile exhaust gas purification, high-temperature steam reforming, and the like are known as methods for carrying out reactions at high temperatures using catalysts. Recently, there has been a movement to apply catalytic combustion technology to boilers, gas turbines, etc.
In these methods, the reaction temperature reaches 1000°C or higher, and depending on the conditions, it reaches 1400-1500°C. There is a desire to develop a catalyst that can be used stably in such a high temperature range, but for this purpose a heat-resistant support that has a high specific surface area even at high temperatures is required. Conventionally, the carrier used at relatively high temperatures of 700°C to 800°C is mainly activated alumina. However, activated alumina is thermally unstable above 800°C, especially above 1000°C, and undergoes a phase change to α-alumina through various transition-type aluminas. Along with this, crystal growth also progresses, and the specific surface area decreases significantly. A decrease in the specific surface area of the carrier causes agglomeration of the active ingredients dispersedly supported on the carrier, leading to a decrease in catalyst performance. As a method to improve such drawbacks of activated alumina, a method using magnesia/alumina spinel prepared by firing a mixture of alumina powder and magnesia powder at high temperature as a carrier (Japanese Patent Publication No. 3419/1983);
A carrier made by adding chromium, tungsten, cerium, etc. to alumina (Japanese Unexamined Patent Publication No. 1988-99988), alumina with higher alkaline earth metals and molybdenum trioxide, zirconia, silica, tin oxide, lanthanum oxide and silica,
Carrier containing lanthanum oxide and tin oxide (Unexamined Japanese Patent Publication No. 1983
-117387) are known. Although each of the above alumina modification methods has advantages, they are not sufficient in terms of heat resistance. [Object of the Invention] An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a method for producing a heat-resistant carrier material that has a high specific surface area even under high-temperature reaction conditions. [Summary of the invention] Activated alumina generally has a high specific surface area and is often used as a carrier or coating material.
At temperatures above 800°C, especially above 1000°C, the specific surface area decreases due to phase transition to α-alumina and growth of crystal particle size, which in turn causes a decrease in catalytic activity. As a result of intensive research to improve the above-mentioned thermal instability of alumina, the present inventors discovered lanthanum-β-alumina (La 2 O 311〜14Al2O3 )
It has been found that the specific surface area of the carrier mainly composed of is less reduced even at high temperatures. Furthermore, as a result of various studies on manufacturing methods, the present invention has been completed. A method of adding rare earth metal oxides such as cerium and lanthanum to activated alumina to prevent alumina crystal phase transition at high temperatures is known as described in Japanese Patent Application Laid-Open No. 14600/1983. However, these conventional methods cannot sufficiently satisfy the performance required for a heat-resistant carrier used at high temperatures of 1000° C. or higher. That is, it is not possible to maintain a high specific surface area at high temperatures. One of the reasons for this is that in the method of impregnating an activated alumina support with a water-soluble salt such as lanthanum nitrate, alumina and lanthanum oxide react during firing, and lanthanum aluminate (LaAlO 3 ), which has a perovskite structure, is mainly produced. to be generated. It was confirmed that crystal growth of this compound progresses easily and the specific surface area also decreases. The present inventors previously discovered that a carrier whose main component is lanthanum-β-alumina (La 2 O 3 11-14Al 2 O 3 ), which is a type of composite oxide of lanthanum oxide and alumina, has a high specific surface area even at high temperatures. It was revealed that he had.
The present invention was arrived at as a result of detailed studies on the method for producing this compound. Specifically, an aqueous solution of aluminum salt and lanthanum salt is prepared with an atomic ratio of lanthanum/alumina of 2/98 to 20/
80, neutralize this solution to form a precipitate, and from the precipitate, lanthanum and β-
This method produces a composite oxide whose main component is alumina. Specifically, the precipitate is washed, dried, calcined, and then molded to produce a composite oxide of lanthanum and alumina whose main components are lanthanum and β-alumina. A feature of this method is that it includes a step of producing precipitates of aluminum and lanthanum hydroxides, basic carbonates, etc. by neutralization from an aqueous solution of aluminum salt and lanthanum salt. Especially when generating this precipitate,
Rather than precipitating the hydroxides of aluminum and lanthanum separately and mixing them later, it is preferable to use a so-called coprecipitation method in which they are precipitated at the same time. By using the coprecipitation method, aluminum and lanthanum are well mixed on a microscopic scale, so that precursors of lanthanum and β-alumina are easily produced, and lanthanum and β-lumina are easily produced during the firing process. Other than this coprecipitation method, lanthanum aluminate (LaAlO 3 ) is easily generated, and lanthanum/β-
In order to generate alumina, a high temperature of 1500°C or higher is required, and in this case, it is difficult to form a porous carrier.
As a specific method of coprecipitation, it is good to add aqueous ammonia to a mixed aqueous solution of aluminum salt and lanthanum salt to form a precipitate, or conversely, add aluminum salt to a precipitant such as aqueous ammonia. It is also good to drop an aqueous solution of lanthanum salt and lanthanum salt at the same time to form a precipitate. Alternatively, a precipitant such as aqueous ammonia and an aqueous solution of an aluminum salt and a lanthanum salt may be simultaneously dropped into distilled water to form a precipitate. The pH for forming a precipitate is generally preferably in the range of 7 to 12. If the pH is below 7, precipitation of lanthanum hydroxide will not proceed completely, and if the pH is above 12, aluminum hydroxide may generate aluminate ions and be redissolved. The precipitate obtained by the coprecipitation method is usually filtered and dried after aging and washing steps, but the aging and washing steps may be omitted. When the precipitate of hydroxide of lanthanum and aluminum obtained by the coprecipitation method is calcined at 800°C or higher, preferably 900°C or higher, lanthanum β-alumina is produced. This firing step may be carried out after shaping the precipitate into various shapes, or it may be carried out after the precipitate has been fired to produce lanthanum β-alumina powder. The upper limit of firing temperature is
It is desirable to set it to 1500℃. As aluminum raw materials, soluble nitrate,
Sulfates, chlorides, etc. can be used. On the other hand, soluble nitrates, chlorides, oxalates, acetates, etc. can be used as lanthanum raw materials. The precipitating agent may be any basic substance that can raise the pH of the solution of aluminum salt and lanthanum salt to 7 or higher, such as aqueous ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, and carbonic acid. Representative examples include potassium, sodium hydrogen carbonate, and potassium hydrogen carbonate. Alternatively, urea, which decomposes to generate ammonia when heated in an aqueous solution, may be used. The composition of lanthanum and aluminum in the carrier is preferably in the range of La/Al=2/98 to 20/80 in terms of the atomic ratio of the metal components. When the amount of lanthanum is less than this range, a large amount of alumina is produced in addition to lanthanum and β-alumina, and the specific surface area decreases at high temperatures. Further, when there is a large amount of lanthanum, a large amount of lanthanum aluminate is produced in addition to lanthanum/β-alumina, and the specific surface area is reduced. The carrier obtained by the present invention is lanthanum β-
The main component is alumina, but it may contain other forms of compounds of lanthanum oxide and alumina as components other than the main component, or it may contain uncombined surplus alumina and/or lanthanum oxide. . Furthermore, silica, magnesium, calcia,
Barrier, beryllia, zirconia, titania, thoria, oxides such as tin oxide, cordierite, mullite, spodiume, aluminum titanate,
It is possible to contain one or more selected from compounds such as silicon carbide and silicon nitride. In addition, rare earth elements other than lanthanum, such as cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium,
It is also possible to contain one or more selected from thulium, yzterbium, yttrium, scandium, lutetium, etc. [Examples of the Invention] Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the method of the present invention is not limited to these Examples. Example 1 1.88 kg of aluminum nitrate and 114 g of lanthanum nitrate were dissolved in 10 g of distilled water. While stirring this solution
3N ammonia water was added dropwise to neutralize the pH to 8. The resulting coprecipitate of aluminum and lanthanum was filtered, and the precipitate was thoroughly washed with distilled water and then dried at 150°C for one day. Next, it was fired in an electric furnace at a temperature of 800°C for 2 hours, and the resulting powder was ground in a ball mill and then classified into 60 meshes or less. Add 1% graphite to this fine powder and use a press molding machine to make it 3mm in diameter.
After making it into a cylindrical shape with a length of 3 mm, it was finally heated to 3 mm at 1200℃.
It was baked for a period of time to form a carrier. The composition ratio of the carrier is La/Al=5/95 in atomic ratio. The specific surface area of this carrier was measured using the BET method using Na gas adsorption.
It was 58.5m 2 /g. Furthermore, as a result of crystal structure analysis by X-ray diffraction, diffraction peaks of lanthanum and β-alumina were observed. Comparative Example 1 Comparative example carrier 1 consisting only of alumina was obtained by preparing in the same manner as in Example 1 except that lanthanum nitrate was not added. The specific surface area of this carrier is 6.0
m 2 /g. Further, as a result of X-ray diffraction, only the diffraction peak of α-alumina was observed. Comparative Example 2 Spherical γ-alumina carrier with a diameter of 3 mm (commercial product)
After drying 100g at 150℃ for a day and night, lanthanum nitrate
44.7 g was impregnated in 50 ml of a pre-dissolved solution in distilled water. Next, dry at 150℃ for a day and night, and then continue
It was baked at 1100°C for 5 hours. The composition ratio of this carrier is La/Al=5/95 in atomic ratio. Specific surface area is 18
m 2 /g. Furthermore, as a result of X-ray diffraction, a large and sharp diffraction peak of lanthanum aluminate (LaAlO 3 ) having a perovskite structure was mainly observed, and the diffraction peak of lanthanum/β-alumina was very small. It was found that lanthanum aluminate was mainly produced, and lanthanum/β-alumina was less likely to be produced. Example 2 It was prepared in exactly the same manner as in Example 1 except that the amounts of aluminum nitrate and lanthanum nitrate were changed, and carriers A (La/Al=2/98, atomic ratio, same below), B
(La/Al=3/97), C (La/Al=7/93), D
(La/Al=10/90) and E (La/Al=20/80) were produced. These carriers were incubated at a temperature of 1000°C or 1200°C.
Baked for an hour. The measurement results of specific surface area are shown in the figure.
In addition, the results of examining the crystal structure by X-ray diffraction are shown in the table. As shown in the table, the form of the oxide in the carrier of this example is mainly lanthanum β-alumina (La-β-Al 2 O 3 ), and in addition, Al 2 O 3 and
It is clear that it contains LaAlO3 .

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上、述べてきたように本発明の方法によれば
高温においても高比表面積を有するランタン・β
−アルミナを主成分とする耐熱性担体が製造で
き、その結果本担体を高温で用いる触媒または吸
着剤に応用することができる。
As described above, according to the method of the present invention, lanthanum and β, which have a high specific surface area even at high temperatures.
- A heat-resistant carrier containing alumina as a main component can be produced, and as a result, this carrier can be applied as a catalyst or adsorbent used at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

図は担体の組成および焼成温度と比表面積の関
係を示す特性図である。
The figure is a characteristic diagram showing the relationship between the composition of the carrier, the firing temperature, and the specific surface area.

Claims (1)

【特許請求の範囲】 1 アルミニウム塩とランタン塩をランタン/ア
ルミニウムが原子比で2/98〜20/80の範囲内と
なるように混合した溶液を中和してランタンとア
ルミニウムを沈殿させ、この沈殿物を焼成してラ
ンタン・β−アルミナを含むランタンとアルミニ
ウムとの複合酸化物を製造することを特徴とする
ランタン・アルミナ系複合酸化物の製造法。 2 特許請求の範囲第1項において、前記混合溶
液にアンモニア水を添加して中和させることを特
徴とするランタン・アルミナ系複合酸化物の製造
法。 3 特許請求の範囲第1項において、前記混合溶
液を中和してPH7〜12とすることを特徴とするラ
ンタン・アルミナ系複合酸化物の製造法。
[Claims] 1. A solution in which aluminum salt and lanthanum salt are mixed so that the lanthanum/aluminum atomic ratio is within the range of 2/98 to 20/80 is neutralized to precipitate lanthanum and aluminum, and the lanthanum and aluminum are precipitated. 1. A method for producing a lanthanum-alumina composite oxide, which comprises producing a composite oxide of lanthanum and aluminum containing lanthanum and β-alumina by calcining a precipitate. 2. The method for producing a lanthanum-alumina composite oxide according to claim 1, characterized in that aqueous ammonia is added to the mixed solution to neutralize it. 3. The method for producing a lanthanum-alumina composite oxide according to claim 1, characterized in that the mixed solution is neutralized to a pH of 7 to 12.
JP59080752A 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide Granted JPS60226414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080752A JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080752A JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Publications (2)

Publication Number Publication Date
JPS60226414A JPS60226414A (en) 1985-11-11
JPH0445452B2 true JPH0445452B2 (en) 1992-07-24

Family

ID=13727134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080752A Granted JPS60226414A (en) 1984-04-20 1984-04-20 Production of lanthanum-alumina based compound oxide

Country Status (1)

Country Link
JP (1) JPS60226414A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242917A (en) * 1987-03-27 1988-10-07 Agency Of Ind Science & Technol Production of heat resistant alumina complex oxide
JPH02245239A (en) * 1989-03-20 1990-10-01 Ube Ind Ltd High-active nickel catalyser and its production
FR2663319B1 (en) * 1990-06-13 1993-08-13 Rhone Poulenc Chimie POROUS MATRIX MATERIAL CONTAINING A SECOND ELEMENT IN A DISPERSE FORM AND METHOD OF MANUFACTURE.
FR2697832B1 (en) * 1992-11-12 1994-12-30 Rhone Poulenc Chimie Alumina stabilized by lanthanum and its preparation process.
KR100388030B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Method for preparing lanthanum-containing thermal stabilized alumina by electrodeposition precipitation
US20060083791A1 (en) 2002-05-24 2006-04-20 Moerck Rudi E Rare earth metal compounds methods of making, and methods of using the same
US20040161474A1 (en) * 2002-05-24 2004-08-19 Moerck Rudi E. Rare earth metal compounds methods of making, and methods of using the same
TWI446916B (en) 2010-05-12 2014-08-01 Spectrum Pharmaceuticals Inc Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
EP3492431B1 (en) 2016-07-29 2023-11-22 Sumitomo Chemical Company Limited Alumina and method for producing automotive catalyst using same

Also Published As

Publication number Publication date
JPS60226414A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
JP2818171B2 (en) Catalyst for steam reforming reaction of hydrocarbon and method for producing the same
KR920000149B1 (en) High temperature stable catalyst and method for using thereof
KR100354470B1 (en) Mixed cerium and zirconium oxide substrate compositions, preparation methods and uses
US4959339A (en) Heat-resistant noble metal catalyst and method of producing the same
US4788174A (en) Heat resistant catalyst and method of producing the same
KR20000011064A (en) Composition having cerium oxide and zirconium oxide as substrate, producing method thereof and its use as catalyst
US4711872A (en) Catalyst for combustion and process for producing same
JPH0445452B2 (en)
JPH0230740B2 (en)
KR970001520B1 (en) Carrier material for a catalyst and a process for making such a carrier material
JP2886867B2 (en) Manufacturing method of catalyst carrier
KR20070028975A (en) Metal oxide with high thermal stability and preparing method thereof
JPH064133B2 (en) Zirconia carrier
JPS60238146A (en) Heat resistant carrier composition
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JPH0925119A (en) Production of heat resistant transition alumina
JPS6138626A (en) Carrier for catalyst
JPH0435220B2 (en)
JPH0417910B2 (en)
JPH0435219B2 (en)
JP2000051700A (en) Exhaust emission purifying catalyst and its production
EP0808800A2 (en) Praseodymium-zirconium-oxides for catalyst and washcoat
JPS62176542A (en) Preparation of heat resistant carrier
JP2559718B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JP2957552B2 (en) Composition for washcoat slurry

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term