JPH0553313B2 - - Google Patents

Info

Publication number
JPH0553313B2
JPH0553313B2 JP62242211A JP24221187A JPH0553313B2 JP H0553313 B2 JPH0553313 B2 JP H0553313B2 JP 62242211 A JP62242211 A JP 62242211A JP 24221187 A JP24221187 A JP 24221187A JP H0553313 B2 JPH0553313 B2 JP H0553313B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
magnetic
linear scale
thin film
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62242211A
Other languages
Japanese (ja)
Other versions
JPS6483110A (en
Inventor
Hideto Konno
Chikako Inatomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62242211A priority Critical patent/JPS6483110A/en
Publication of JPS6483110A publication Critical patent/JPS6483110A/en
Publication of JPH0553313B2 publication Critical patent/JPH0553313B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直線方向の位置制御に適するリニア
スケールに利用する。特に、異方性磁気抵抗効果
を有する強磁性合金薄膜により構成される磁気抵
抗素子と、繰り返し互いに異なる二種類の磁気信
号を発生する直線状の磁気記録媒体とによつて構
成されたリニアスケールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to a linear scale suitable for position control in a linear direction. In particular, it relates to a linear scale composed of a magnetoresistive element composed of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect, and a linear magnetic recording medium that repeatedly generates two different types of magnetic signals. .

〔概要〕〔overview〕

本発明は、直線方向の位置制御に適するリニア
スケールにおいて、 磁気抵抗素子をニツケル80−鉄(20−x)−マ
ンガンx(Ni80−Fe(20−x)−Mn(x))の組成を
有する強磁性合金薄膜で構成することにより、 磁気抵抗素子の全体形状を小型化するようにし
たものである。
The present invention provides a linear scale suitable for position control in a linear direction, in which a magnetoresistive element has a composition of Nickel 80 - Iron (20 - x) - Manganese x (Ni80 - Fe (20 - x) - Mn (x)). The overall shape of the magnetoresistive element is made smaller by constructing it with a ferromagnetic alloy thin film.

〔従来の技術〕[Conventional technology]

第3図は従来例のリニアスケールの平面図であ
り、ニツケル80(重量パーセント)−鉄20(重量パ
ーセント)(Ni80−Fe20)またはニツケル70−コ
バルト30(Ni70−Co30)の合金薄膜を用いた磁気
抵抗素子6および磁気記録媒体1で構成されたリ
ニアスケールを示す。
Figure 3 is a plan view of a conventional linear scale, which uses an alloy thin film of nickel 80 (weight percent) - iron 20 (weight percent) (Ni80 - Fe20) or nickel 70 - cobalt 30 (Ni70 - Co30). A linear scale composed of a magnetoresistive element 6 and a magnetic recording medium 1 is shown.

従来リニアスケールは、第3図に示すように繰
り返し互いに異なる二種類の磁気信号を発生する
直線状の磁気記録媒体に対し、有限の距離を隔て
た位置に異方性磁気抵抗効果を有する強磁性の金
属または合金薄膜よりなる磁気抵抗素子6を配置
した構造のリニアスケールが用いられていた。
Conventional linear scales use ferromagnetic media that has an anisotropic magnetoresistive effect at positions separated by a finite distance from a linear magnetic recording medium that repeatedly generates two different types of magnetic signals as shown in Figure 3. A linear scale having a structure in which a magnetoresistive element 6 made of a metal or alloy thin film is arranged has been used.

〔先行技術〕[Prior art]

(特公昭54−41335号公報照) 〔発明が解決しようとする問題点〕 しかし、このような従来例のリニアスケールで
は、これに用いられる磁気抵抗素子6は、Ni−
Fe合金またはNi−Co合金の特定の組成範囲の合
金に限られている。Ni−FeおよびNi−Coは共に
単一相の固溶体領域を有する合金系であり、Fe
またはCoの組成によつて単位体積当たりの抵抗
率ρは、さほど影響を受けない。このため磁気抵
抗素子用の材料として組成を選択する場合には、
抵抗変化率、磁歪定数、および異方性定数等のフ
アクターは考慮することができるが、抵抗率ρに
関しては、選択の余地がなく、Ni−FeまたはNi
−Coの合金系が材料的に有する値のまま用いら
れていた。しかし実際の使用上の消費電力を小さ
い値に制限するために、磁気抵抗素子全体の抵抗
値を大にする必要が生じてきた。このため従来例
のように磁気抵抗素子を連続的に折り返す構造を
有するものが出現した。しかしこの構造は抵抗値
を大にする効果は認められるが、折り返し回数に
対応して磁気抵抗素子全体に印加される磁界の位
相に誤差が生じることが避けられない欠点があつ
た。また、複数回の折り返しに伴い、磁気抵抗素
子の全体形状を大きくする必要があり小型化の障
害となつていた。
(See Japanese Patent Publication No. 54-41335.) [Problems to be Solved by the Invention] However, in such a conventional linear scale, the magnetoresistive element 6 used therein is made of Ni-
It is limited to alloys in a specific composition range of Fe alloys or Ni-Co alloys. Both Ni-Fe and Ni-Co are alloy systems with a single-phase solid solution region, and Fe
Alternatively, the resistivity ρ per unit volume is not affected much by the composition of Co. Therefore, when selecting the composition of the material for the magnetoresistive element,
Factors such as resistance change rate, magnetostriction constant, and anisotropy constant can be considered, but when it comes to resistivity ρ, there is no choice.
-Co alloys were used as they were in terms of their material values. However, in order to limit the power consumption in actual use to a small value, it has become necessary to increase the resistance value of the entire magnetoresistive element. For this reason, a structure in which the magnetoresistive element is continuously folded back as in the conventional example has appeared. However, although this structure has the effect of increasing the resistance value, it has the drawback that an error inevitably occurs in the phase of the magnetic field applied to the entire magnetoresistive element depending on the number of turns. Further, due to the multiple folding, the overall shape of the magnetoresistive element needs to be increased, which is an obstacle to miniaturization.

本発明は上記の欠点を解決するもので、磁気抵
抗素子の全体形状が小型で磁気抵抗素子に印加さ
れる磁界位相のずれの少ないリニアスケールを提
供することを目的とする。
The present invention solves the above-mentioned drawbacks, and aims to provide a linear scale in which the overall shape of the magnetoresistive element is small and the phase shift of the magnetic field applied to the magnetoresistive element is small.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、繰り返し互いに異なる二種類の磁気
信号を発生する磁気記録媒体と、異方性磁気抵抗
効果を有する強磁性合金薄膜で構成された磁気抵
抗素子をそれぞれ含む一対の強磁体とを備え、上
記磁気抵抗素子は、それぞれの一端に設けられた
電源に接続される入力端子およびその他端が互い
に接続された接続点に設けられた上記磁気信号の
検出電圧を出力する出力端子を含むリニアスケー
ルにおいて、上記強磁性合金薄膜の組成がニツケ
ル80−鉄(20−x)−マンガンxであることを特
徴とする。
The present invention includes a magnetic recording medium that repeatedly generates two different types of magnetic signals, and a pair of ferromagnetic bodies each including a magnetoresistive element made of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect, The above-mentioned magnetoresistive element is a linear scale including an input terminal provided at one end thereof and connected to a power supply, and an output terminal provided at a connection point where the other ends thereof are connected to each other and outputting a detection voltage of the above-mentioned magnetic signal. , the composition of the ferromagnetic alloy thin film is nickel 80-iron(20-x)-manganese x.

本発明は、磁気抵抗素子の周囲に高透磁率磁性
体の薄膜を配置することができる。
In the present invention, a thin film of a high permeability magnetic material can be placed around the magnetoresistive element.

〔作用〕[Effect]

磁気抵抗素子を構成する強磁性合金薄膜の組成
がNi80−Fe(20−x)−Mn(x)(重量パーセント)
でその抵抗率が従来のものに比較してほぼ2倍あ
ることにより、磁気抵抗素子の全体形状を小型に
し、磁気抵抗素子に印加される磁界の位相のずれ
を少なくできる。
The composition of the ferromagnetic alloy thin film that constitutes the magnetoresistive element is Ni80−Fe(20−x)−Mn(x) (weight percent)
Since the resistivity is approximately twice that of the conventional one, the overall shape of the magnetoresistive element can be made smaller and the phase shift of the magnetic field applied to the magnetoresistive element can be reduced.

〔実施例〕〔Example〕

本発明の実施例について図面を参照して説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明一実施例リニアスケールの平面
図である。第1図において、リニアスケールは、
繰り返し互いに異なる二種類の磁気信号を発生す
る直線状の磁気記録媒体1と、Ni80−Fe(20−
x)−Mn(x)の合金薄膜により構成された磁気抵
抗素子2と、図外の電源に接続される入力端子3
と、磁気信号の検出電圧が出力される出力端子4
とを備える。二つの磁気抵抗素子2は常に180°異
なる磁界中に置かれ、磁気抵抗素子2と磁気記録
媒体1とが相対的に磁気記録媒体1に沿つて位置
を変化するとき出力端子4に繰返し磁気信号の2
倍の周波数の出力電圧が得られる。Ni80−Fe(20
−x)−Mn(x)合金の抵抗率は、28.6μΩcmであり、
従来例のNi80−Fe20の14.9μΩcm、またはNi70−
Fe30の11.3μΩcmに比べ、ほぼ2倍の値を示す。
したがつて、第1図に示すように、本実施例の合
金組成では従来例の組成に比して、折り返しの回
数は1/2で十分であり、同一の抵抗値を得るため
のに必要な最小の寸法も小さくすることができ
る。
FIG. 1 is a plan view of a linear scale according to an embodiment of the present invention. In Figure 1, the linear scale is
A linear magnetic recording medium 1 that repeatedly generates two different types of magnetic signals and a Ni80−Fe (20−
x) - A magnetoresistive element 2 composed of a Mn(x) alloy thin film, and an input terminal 3 connected to a power source (not shown)
and an output terminal 4 from which the detection voltage of the magnetic signal is output.
Equipped with. The two magnetoresistive elements 2 are always placed in magnetic fields that differ by 180°, and when the magnetoresistive elements 2 and the magnetic recording medium 1 change their positions relative to each other along the magnetic recording medium 1, a magnetic signal is repeatedly applied to the output terminal 4. 2
An output voltage with twice the frequency can be obtained. Ni80−Fe(20
-x)-Mn(x) alloy has a resistivity of 28.6μΩcm,
14.9μΩcm of conventional Ni80−Fe20, or Ni70−
This value is almost twice that of Fe30, which is 11.3μΩcm.
Therefore, as shown in Fig. 1, in the alloy composition of this example, it is sufficient to have 1/2 the number of turns as compared to the conventional composition, and the number of turns is sufficient to obtain the same resistance value. The smallest dimension can also be reduced.

第2図は本発明の他の実施例リニアスケールの
平面図である。第2図において、磁気抵抗素子2
の両側に短冊状高透磁性薄膜5が配置され、磁気
記録媒体1の磁気信号の磁場強度が弱いときに可
逆磁場を低減することができる。
FIG. 2 is a plan view of a linear scale according to another embodiment of the present invention. In FIG. 2, the magnetoresistive element 2
A strip-shaped highly permeable thin film 5 is disposed on both sides of the magnetic recording medium 1, and the reversible magnetic field can be reduced when the magnetic field strength of the magnetic signal of the magnetic recording medium 1 is weak.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、磁気抵抗素子
の、抵抗率が従来のものに比較しほぼ2倍以上あ
り、抵抗変化率も優れており、小型化が可能で磁
気抵抗素子に印加される磁界の移相のずれが少な
くできる優れた効果がある。
As explained above, the present invention has a magnetoresistive element that has a resistivity that is approximately twice as high as that of conventional magnetoresistive elements, a resistance change rate that is excellent, and can be miniaturized. This has the excellent effect of reducing the phase shift of the magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例リニアスケールの平面
図。第2図は本発明の他の実施例リニアスケール
の平面図。第3図は従来例のリニアスケールの平
面図。 1……磁気記録媒体、2……磁気抵抗素子
(Ni80−Fe(20−x)−Mn(x))、3……入力端子、
4……出力端子、6……磁気抵抗素子(Ni80−
Fe20、Ni70−Co30など)。
FIG. 1 is a plan view of a linear scale according to an embodiment of the present invention. FIG. 2 is a plan view of a linear scale according to another embodiment of the present invention. FIG. 3 is a plan view of a conventional linear scale. 1... Magnetic recording medium, 2... Magnetoresistive element (Ni80-Fe(20-x)-Mn(x)), 3... Input terminal,
4...Output terminal, 6...Magnetic resistance element (Ni80-
Fe20, Ni70−Co30, etc.).

Claims (1)

【特許請求の範囲】 1 繰り返し互いに異なる二種類の磁気信号を発
生する磁気記録媒体と、 異方性磁気抵抗効果を有する強磁性合金薄膜で
構成された磁気抵抗素子をそれぞれ含む一対の強
磁体と を備え、 上記磁気抵抗素子は、それぞれの一端に設けら
れた電源に接続される入力端子およびその他端が
互いに接続された接続点に設けられた上記磁気信
号の検出電圧を出力する出力端子を含む リニアスケールにおいて、 上記強磁性合金薄膜の組成がニツケル80(重量
パーセント)−鉄(20−x)(重量パーセント)−
マンガンx(重量パーセント)である ことを特徴とするリニアスケール。 2 強磁性体は磁気抵抗素子の周囲に高透磁率磁
性体の薄膜を配置した特許請求の範囲第1項に記
載のリニアスケール。
[Scope of Claims] 1. A magnetic recording medium that repeatedly generates two different types of magnetic signals, and a pair of ferromagnetic materials each including a magnetoresistive element each made of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect. The magnetoresistive element includes an input terminal provided at one end thereof and connected to a power source, and an output terminal provided at a connection point where the other ends thereof are connected to each other and outputs a detection voltage of the magnetic signal. On a linear scale, the composition of the ferromagnetic alloy thin film is Nickel 80 (weight percent) - Iron (20-x) (weight percent) -
A linear scale characterized by manganese x (weight percent). 2. The linear scale according to claim 1, wherein the ferromagnetic material is a thin film of high magnetic permeability magnetic material arranged around the magnetoresistive element.
JP62242211A 1987-09-25 1987-09-25 Linear scale Granted JPS6483110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62242211A JPS6483110A (en) 1987-09-25 1987-09-25 Linear scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62242211A JPS6483110A (en) 1987-09-25 1987-09-25 Linear scale

Publications (2)

Publication Number Publication Date
JPS6483110A JPS6483110A (en) 1989-03-28
JPH0553313B2 true JPH0553313B2 (en) 1993-08-09

Family

ID=17085899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62242211A Granted JPS6483110A (en) 1987-09-25 1987-09-25 Linear scale

Country Status (1)

Country Link
JP (1) JPS6483110A (en)

Also Published As

Publication number Publication date
JPS6483110A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
US6452765B1 (en) CoNbTi as high resistivity SAL material for high-density MR
US4361805A (en) Magnetoresistive displacement sensor arrangement
US5891586A (en) Multilayer thin-film for magnetoresistive device
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
US5159513A (en) Magnetoresistive sensor based on the spin valve effect
EP1770371B1 (en) Magnetic encoder
JP3574186B2 (en) Magnetoresistance effect element
JPH0261572A (en) Magnetic field sensor using ferromagnetic thin-film
JPH06181349A (en) Magnetoresistance effect-type weak magnetic-field sensor
JPH04247607A (en) Magnetoresistance effect element
KR960705187A (en) Magnetoresistive linear displacement sensor, angular displacement sensor and variable resistance
JPH04358310A (en) Magnetic reluctance sensor utilizing spin valve effect
US5747997A (en) Spin-valve magnetoresistance sensor having minimal hysteresis problems
JPH04321913A (en) Magnetic field sensor having ferromagnetic thin film
JPWO2020137558A1 (en) Exchange bond film and magnetoresistive sensor and magnetic detector using this
JP3640230B2 (en) Thin film magnetic field sensor
JPH0553313B2 (en)
EP0677750A2 (en) A giant magnetoresistive sensor with an insulating pinning layer
JP5006339B2 (en) Magnetic detector
JP3243078B2 (en) Magnetoresistive head
JPS6040197B2 (en) Magnetoelectric conversion device
JPS6360326B2 (en)
JPH0376536B2 (en)
WO2019065690A1 (en) Exchange coupled film, and magnetoresistance effect element and magnetism detection device using same
JP4487252B2 (en) Magnetic position rotation detection element