JPH0553313B2 - - Google Patents
Info
- Publication number
- JPH0553313B2 JPH0553313B2 JP62242211A JP24221187A JPH0553313B2 JP H0553313 B2 JPH0553313 B2 JP H0553313B2 JP 62242211 A JP62242211 A JP 62242211A JP 24221187 A JP24221187 A JP 24221187A JP H0553313 B2 JPH0553313 B2 JP H0553313B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetoresistive element
- magnetic
- linear scale
- thin film
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 30
- 239000000956 alloy Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000010409 thin film Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 230000010363 phase shift Effects 0.000 description 3
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Hall/Mr Elements (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、直線方向の位置制御に適するリニア
スケールに利用する。特に、異方性磁気抵抗効果
を有する強磁性合金薄膜により構成される磁気抵
抗素子と、繰り返し互いに異なる二種類の磁気信
号を発生する直線状の磁気記録媒体とによつて構
成されたリニアスケールに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to a linear scale suitable for position control in a linear direction. In particular, it relates to a linear scale composed of a magnetoresistive element composed of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect, and a linear magnetic recording medium that repeatedly generates two different types of magnetic signals. .
本発明は、直線方向の位置制御に適するリニア
スケールにおいて、
磁気抵抗素子をニツケル80−鉄(20−x)−マ
ンガンx(Ni80−Fe(20−x)−Mn(x))の組成を
有する強磁性合金薄膜で構成することにより、
磁気抵抗素子の全体形状を小型化するようにし
たものである。
The present invention provides a linear scale suitable for position control in a linear direction, in which a magnetoresistive element has a composition of Nickel 80 - Iron (20 - x) - Manganese x (Ni80 - Fe (20 - x) - Mn (x)). The overall shape of the magnetoresistive element is made smaller by constructing it with a ferromagnetic alloy thin film.
第3図は従来例のリニアスケールの平面図であ
り、ニツケル80(重量パーセント)−鉄20(重量パ
ーセント)(Ni80−Fe20)またはニツケル70−コ
バルト30(Ni70−Co30)の合金薄膜を用いた磁気
抵抗素子6および磁気記録媒体1で構成されたリ
ニアスケールを示す。
Figure 3 is a plan view of a conventional linear scale, which uses an alloy thin film of nickel 80 (weight percent) - iron 20 (weight percent) (Ni80 - Fe20) or nickel 70 - cobalt 30 (Ni70 - Co30). A linear scale composed of a magnetoresistive element 6 and a magnetic recording medium 1 is shown.
従来リニアスケールは、第3図に示すように繰
り返し互いに異なる二種類の磁気信号を発生する
直線状の磁気記録媒体に対し、有限の距離を隔て
た位置に異方性磁気抵抗効果を有する強磁性の金
属または合金薄膜よりなる磁気抵抗素子6を配置
した構造のリニアスケールが用いられていた。 Conventional linear scales use ferromagnetic media that has an anisotropic magnetoresistive effect at positions separated by a finite distance from a linear magnetic recording medium that repeatedly generates two different types of magnetic signals as shown in Figure 3. A linear scale having a structure in which a magnetoresistive element 6 made of a metal or alloy thin film is arranged has been used.
(特公昭54−41335号公報照)
〔発明が解決しようとする問題点〕
しかし、このような従来例のリニアスケールで
は、これに用いられる磁気抵抗素子6は、Ni−
Fe合金またはNi−Co合金の特定の組成範囲の合
金に限られている。Ni−FeおよびNi−Coは共に
単一相の固溶体領域を有する合金系であり、Fe
またはCoの組成によつて単位体積当たりの抵抗
率ρは、さほど影響を受けない。このため磁気抵
抗素子用の材料として組成を選択する場合には、
抵抗変化率、磁歪定数、および異方性定数等のフ
アクターは考慮することができるが、抵抗率ρに
関しては、選択の余地がなく、Ni−FeまたはNi
−Coの合金系が材料的に有する値のまま用いら
れていた。しかし実際の使用上の消費電力を小さ
い値に制限するために、磁気抵抗素子全体の抵抗
値を大にする必要が生じてきた。このため従来例
のように磁気抵抗素子を連続的に折り返す構造を
有するものが出現した。しかしこの構造は抵抗値
を大にする効果は認められるが、折り返し回数に
対応して磁気抵抗素子全体に印加される磁界の位
相に誤差が生じることが避けられない欠点があつ
た。また、複数回の折り返しに伴い、磁気抵抗素
子の全体形状を大きくする必要があり小型化の障
害となつていた。
(See Japanese Patent Publication No. 54-41335.) [Problems to be Solved by the Invention] However, in such a conventional linear scale, the magnetoresistive element 6 used therein is made of Ni-
It is limited to alloys in a specific composition range of Fe alloys or Ni-Co alloys. Both Ni-Fe and Ni-Co are alloy systems with a single-phase solid solution region, and Fe
Alternatively, the resistivity ρ per unit volume is not affected much by the composition of Co. Therefore, when selecting the composition of the material for the magnetoresistive element,
Factors such as resistance change rate, magnetostriction constant, and anisotropy constant can be considered, but when it comes to resistivity ρ, there is no choice.
-Co alloys were used as they were in terms of their material values. However, in order to limit the power consumption in actual use to a small value, it has become necessary to increase the resistance value of the entire magnetoresistive element. For this reason, a structure in which the magnetoresistive element is continuously folded back as in the conventional example has appeared. However, although this structure has the effect of increasing the resistance value, it has the drawback that an error inevitably occurs in the phase of the magnetic field applied to the entire magnetoresistive element depending on the number of turns. Further, due to the multiple folding, the overall shape of the magnetoresistive element needs to be increased, which is an obstacle to miniaturization.
本発明は上記の欠点を解決するもので、磁気抵
抗素子の全体形状が小型で磁気抵抗素子に印加さ
れる磁界位相のずれの少ないリニアスケールを提
供することを目的とする。 The present invention solves the above-mentioned drawbacks, and aims to provide a linear scale in which the overall shape of the magnetoresistive element is small and the phase shift of the magnetic field applied to the magnetoresistive element is small.
本発明は、繰り返し互いに異なる二種類の磁気
信号を発生する磁気記録媒体と、異方性磁気抵抗
効果を有する強磁性合金薄膜で構成された磁気抵
抗素子をそれぞれ含む一対の強磁体とを備え、上
記磁気抵抗素子は、それぞれの一端に設けられた
電源に接続される入力端子およびその他端が互い
に接続された接続点に設けられた上記磁気信号の
検出電圧を出力する出力端子を含むリニアスケー
ルにおいて、上記強磁性合金薄膜の組成がニツケ
ル80−鉄(20−x)−マンガンxであることを特
徴とする。
The present invention includes a magnetic recording medium that repeatedly generates two different types of magnetic signals, and a pair of ferromagnetic bodies each including a magnetoresistive element made of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect, The above-mentioned magnetoresistive element is a linear scale including an input terminal provided at one end thereof and connected to a power supply, and an output terminal provided at a connection point where the other ends thereof are connected to each other and outputting a detection voltage of the above-mentioned magnetic signal. , the composition of the ferromagnetic alloy thin film is nickel 80-iron(20-x)-manganese x.
本発明は、磁気抵抗素子の周囲に高透磁率磁性
体の薄膜を配置することができる。 In the present invention, a thin film of a high permeability magnetic material can be placed around the magnetoresistive element.
磁気抵抗素子を構成する強磁性合金薄膜の組成
がNi80−Fe(20−x)−Mn(x)(重量パーセント)
でその抵抗率が従来のものに比較してほぼ2倍あ
ることにより、磁気抵抗素子の全体形状を小型に
し、磁気抵抗素子に印加される磁界の位相のずれ
を少なくできる。
The composition of the ferromagnetic alloy thin film that constitutes the magnetoresistive element is Ni80−Fe(20−x)−Mn(x) (weight percent)
Since the resistivity is approximately twice that of the conventional one, the overall shape of the magnetoresistive element can be made smaller and the phase shift of the magnetic field applied to the magnetoresistive element can be reduced.
本発明の実施例について図面を参照して説明す
る。
Embodiments of the present invention will be described with reference to the drawings.
第1図は本発明一実施例リニアスケールの平面
図である。第1図において、リニアスケールは、
繰り返し互いに異なる二種類の磁気信号を発生す
る直線状の磁気記録媒体1と、Ni80−Fe(20−
x)−Mn(x)の合金薄膜により構成された磁気抵
抗素子2と、図外の電源に接続される入力端子3
と、磁気信号の検出電圧が出力される出力端子4
とを備える。二つの磁気抵抗素子2は常に180°異
なる磁界中に置かれ、磁気抵抗素子2と磁気記録
媒体1とが相対的に磁気記録媒体1に沿つて位置
を変化するとき出力端子4に繰返し磁気信号の2
倍の周波数の出力電圧が得られる。Ni80−Fe(20
−x)−Mn(x)合金の抵抗率は、28.6μΩcmであり、
従来例のNi80−Fe20の14.9μΩcm、またはNi70−
Fe30の11.3μΩcmに比べ、ほぼ2倍の値を示す。
したがつて、第1図に示すように、本実施例の合
金組成では従来例の組成に比して、折り返しの回
数は1/2で十分であり、同一の抵抗値を得るため
のに必要な最小の寸法も小さくすることができ
る。 FIG. 1 is a plan view of a linear scale according to an embodiment of the present invention. In Figure 1, the linear scale is
A linear magnetic recording medium 1 that repeatedly generates two different types of magnetic signals and a Ni80−Fe (20−
x) - A magnetoresistive element 2 composed of a Mn(x) alloy thin film, and an input terminal 3 connected to a power source (not shown)
and an output terminal 4 from which the detection voltage of the magnetic signal is output.
Equipped with. The two magnetoresistive elements 2 are always placed in magnetic fields that differ by 180°, and when the magnetoresistive elements 2 and the magnetic recording medium 1 change their positions relative to each other along the magnetic recording medium 1, a magnetic signal is repeatedly applied to the output terminal 4. 2
An output voltage with twice the frequency can be obtained. Ni80−Fe(20
-x)-Mn(x) alloy has a resistivity of 28.6μΩcm,
14.9μΩcm of conventional Ni80−Fe20, or Ni70−
This value is almost twice that of Fe30, which is 11.3μΩcm.
Therefore, as shown in Fig. 1, in the alloy composition of this example, it is sufficient to have 1/2 the number of turns as compared to the conventional composition, and the number of turns is sufficient to obtain the same resistance value. The smallest dimension can also be reduced.
第2図は本発明の他の実施例リニアスケールの
平面図である。第2図において、磁気抵抗素子2
の両側に短冊状高透磁性薄膜5が配置され、磁気
記録媒体1の磁気信号の磁場強度が弱いときに可
逆磁場を低減することができる。 FIG. 2 is a plan view of a linear scale according to another embodiment of the present invention. In FIG. 2, the magnetoresistive element 2
A strip-shaped highly permeable thin film 5 is disposed on both sides of the magnetic recording medium 1, and the reversible magnetic field can be reduced when the magnetic field strength of the magnetic signal of the magnetic recording medium 1 is weak.
以上説明したように、本発明は、磁気抵抗素子
の、抵抗率が従来のものに比較しほぼ2倍以上あ
り、抵抗変化率も優れており、小型化が可能で磁
気抵抗素子に印加される磁界の移相のずれが少な
くできる優れた効果がある。
As explained above, the present invention has a magnetoresistive element that has a resistivity that is approximately twice as high as that of conventional magnetoresistive elements, a resistance change rate that is excellent, and can be miniaturized. This has the excellent effect of reducing the phase shift of the magnetic field.
第1図は本発明一実施例リニアスケールの平面
図。第2図は本発明の他の実施例リニアスケール
の平面図。第3図は従来例のリニアスケールの平
面図。
1……磁気記録媒体、2……磁気抵抗素子
(Ni80−Fe(20−x)−Mn(x))、3……入力端子、
4……出力端子、6……磁気抵抗素子(Ni80−
Fe20、Ni70−Co30など)。
FIG. 1 is a plan view of a linear scale according to an embodiment of the present invention. FIG. 2 is a plan view of a linear scale according to another embodiment of the present invention. FIG. 3 is a plan view of a conventional linear scale. 1... Magnetic recording medium, 2... Magnetoresistive element (Ni80-Fe(20-x)-Mn(x)), 3... Input terminal,
4...Output terminal, 6...Magnetic resistance element (Ni80-
Fe20, Ni70−Co30, etc.).
Claims (1)
生する磁気記録媒体と、 異方性磁気抵抗効果を有する強磁性合金薄膜で
構成された磁気抵抗素子をそれぞれ含む一対の強
磁体と を備え、 上記磁気抵抗素子は、それぞれの一端に設けら
れた電源に接続される入力端子およびその他端が
互いに接続された接続点に設けられた上記磁気信
号の検出電圧を出力する出力端子を含む リニアスケールにおいて、 上記強磁性合金薄膜の組成がニツケル80(重量
パーセント)−鉄(20−x)(重量パーセント)−
マンガンx(重量パーセント)である ことを特徴とするリニアスケール。 2 強磁性体は磁気抵抗素子の周囲に高透磁率磁
性体の薄膜を配置した特許請求の範囲第1項に記
載のリニアスケール。[Scope of Claims] 1. A magnetic recording medium that repeatedly generates two different types of magnetic signals, and a pair of ferromagnetic materials each including a magnetoresistive element each made of a ferromagnetic alloy thin film having an anisotropic magnetoresistive effect. The magnetoresistive element includes an input terminal provided at one end thereof and connected to a power source, and an output terminal provided at a connection point where the other ends thereof are connected to each other and outputs a detection voltage of the magnetic signal. On a linear scale, the composition of the ferromagnetic alloy thin film is Nickel 80 (weight percent) - Iron (20-x) (weight percent) -
A linear scale characterized by manganese x (weight percent). 2. The linear scale according to claim 1, wherein the ferromagnetic material is a thin film of high magnetic permeability magnetic material arranged around the magnetoresistive element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62242211A JPS6483110A (en) | 1987-09-25 | 1987-09-25 | Linear scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62242211A JPS6483110A (en) | 1987-09-25 | 1987-09-25 | Linear scale |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6483110A JPS6483110A (en) | 1989-03-28 |
JPH0553313B2 true JPH0553313B2 (en) | 1993-08-09 |
Family
ID=17085899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62242211A Granted JPS6483110A (en) | 1987-09-25 | 1987-09-25 | Linear scale |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6483110A (en) |
-
1987
- 1987-09-25 JP JP62242211A patent/JPS6483110A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6483110A (en) | 1989-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4361805A (en) | Magnetoresistive displacement sensor arrangement | |
US5891586A (en) | Multilayer thin-film for magnetoresistive device | |
US6640652B2 (en) | Rotation angle sensor capable of accurately detecting rotation angle | |
US5159513A (en) | Magnetoresistive sensor based on the spin valve effect | |
JP3574186B2 (en) | Magnetoresistance effect element | |
EP1770371B1 (en) | Magnetic encoder | |
JPH0261572A (en) | Magnetic field sensor using ferromagnetic thin-film | |
JPH06181349A (en) | Magnetoresistance effect-type weak magnetic-field sensor | |
EP0432890A2 (en) | Magnetoresistive sensor | |
JPH04247607A (en) | Magnetoresistance effect element | |
KR960705187A (en) | Magnetoresistive linear displacement sensor, angular displacement sensor and variable resistance | |
JPWO2020137558A1 (en) | Exchange bond film and magnetoresistive sensor and magnetic detector using this | |
US5747997A (en) | Spin-valve magnetoresistance sensor having minimal hysteresis problems | |
JP3466470B2 (en) | Thin film magnetoresistive element | |
JPH0553313B2 (en) | ||
EP0677750A2 (en) | A giant magnetoresistive sensor with an insulating pinning layer | |
JP5006339B2 (en) | Magnetic detector | |
JPS6040197B2 (en) | Magnetoelectric conversion device | |
JPS6360326B2 (en) | ||
JPH0376536B2 (en) | ||
WO2019065690A1 (en) | Exchange coupled film, and magnetoresistance effect element and magnetism detection device using same | |
JP3555412B2 (en) | Magnetoresistive sensor | |
JP2002094143A5 (en) | ||
JPS63255979A (en) | Magnetoresistance element | |
JPH1138108A (en) | Multihead magnetic field sensor |