JPH0552991A - Reactor feed water controller - Google Patents

Reactor feed water controller

Info

Publication number
JPH0552991A
JPH0552991A JP3213375A JP21337591A JPH0552991A JP H0552991 A JPH0552991 A JP H0552991A JP 3213375 A JP3213375 A JP 3213375A JP 21337591 A JP21337591 A JP 21337591A JP H0552991 A JPH0552991 A JP H0552991A
Authority
JP
Japan
Prior art keywords
flow rate
reactor
water level
feed water
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213375A
Other languages
Japanese (ja)
Inventor
Koichi Sato
孝一 佐藤
Tadashi Fujiwara
藤原  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3213375A priority Critical patent/JPH0552991A/en
Publication of JPH0552991A publication Critical patent/JPH0552991A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a reactor feed water controller having a function of varying the mismatch gain using the signals of recirculation pump runback, recirculation pump trip, feed water pump trip and reactor scram. CONSTITUTION:In a system controlling the liquid level in a boiling water reactor 1 at constant by using main steam flowrate signal 7, feed water flowrate signal 10 and reactor liquid level signal 2, the mismatch gain to convert the steam flowrate and the feed water flowrate signals to liquid level signal is increased by a mismatch gain setter 17 during the occurrence of events such as recirculation pump runback 24, recirculation pump trip 14, feed water pump trip 19 and reactor scram 16 and the feed water flow is reduced lower than in the actual time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は沸騰水型原子力プラント
の原子炉給水制御系に係り、特に、通常運転時には原子
炉水位を安定に運転することを重視すると共に、過渡事
象発生時には原子炉水位の上昇をいち速く抑制し最適な
制御を行う給水制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor water supply control system for a boiling water nuclear power plant, and particularly, it attaches importance to stable operation of the reactor water level during normal operation and also when the transient event occurs. The present invention relates to a water supply control device that suppresses the rise of water quickly and performs optimum control.

【0002】[0002]

【従来の技術】従来の装置は、特開昭56−96298 号公報
に記載の給水ポンプの種類あるいは運転台数によってミ
スマッチゲインを変更するもの、また、特開平1−17890
0 号公報に記載の制御棒の挿入によってミスマッチゲイ
ンを変更するものである。前述の発明は、ミスマッチゲ
インを給水ポンプの種類あるいは運転台数に応じて最適
な値に切り換えるものであり、給水系の状態、あるい
は、状態の変化に対応し、最適な制御を行おうとしたも
のである。後述の発明は、制御棒挿入により減少する主
蒸気流量と制御棒挿入に伴い低下する原子炉水位を抑制
するように増加する給水流量で制御棒挿入以後の原子炉
水位回復時に水位が上昇しすぎないように、ミスマッチ
ゲインを大きくして早めに給水流量を絞り込む方法であ
る。
2. Description of the Related Art A conventional device, which changes the mismatch gain depending on the type of the feed pump or the number of operating pumps, is described in JP-A-56-96298.
The mismatch gain is changed by inserting the control rod described in Japanese Patent No. The above-mentioned invention switches the mismatch gain to an optimal value according to the type of the water supply pump or the number of operating pumps, and is intended to perform the optimum control in response to the state of the water supply system or the change of the state. is there. In the invention described below, the water level rises too much when the reactor water level is restored after the control rod is inserted with the main steam flow rate that decreases due to the insertion of the control rod and the supply water flow rate that increases so as to suppress the reactor water level that decreases with the insertion of the control rod. This is a method of increasing the mismatch gain and narrowing the water supply flow rate early so that there is no such problem.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、給
水制御装置のミスマッチゲインを給水系の状態および制
御棒の挿入によって切り換え原子炉水位を制御している
が、その他の原子炉水位上昇事象に対して考慮されてお
らず、再循環ポンプランバック,再循環ポンプトリッ
プ,原子炉スクラムの各事象が発生した場合にはミスマ
ッチゲインが変更されず原子炉水位が上昇して水位高タ
ービントリップ等に至る可能性があった。
In the above prior art, the mismatch gain of the feed water control device is switched by controlling the state of the feed water system and the insertion of the control rod to control the reactor water level. In the event of a recirculation pump runback, a recirculation pump trip, or a reactor scrum event, the mismatch gain is not changed and the reactor water level rises, resulting in a high water turbine trip, etc. There was a possibility.

【0004】また、上記従来技術では給水ポンプトリッ
プ時の水位制御性についても考慮されておらず、水位の
低下が大きくなる傾向があった。
Further, in the above-mentioned prior art, the water level controllability at the time of trip of the water supply pump is not taken into consideration, and there is a tendency that the water level is greatly lowered.

【0005】本発明の目的は、制御棒の挿入以外の過渡
事象が発生した場合にも水位の上昇を抑制すると共に、
給水ポンプトリップ時の水位低下量を抑制することによ
って不要なプラント停止及び原子炉隔離を防ぎ、プラン
トの稼働率向上,運転員の負担軽減を目的とした原子炉
給水制御装置を提供することにある。
The object of the present invention is to suppress the rise of the water level even when a transient event other than the insertion of the control rod occurs, and
An object of the present invention is to provide a reactor water supply control device for the purpose of preventing unnecessary plant shutdown and reactor isolation by suppressing the amount of water level drop at the time of trip of the water supply pump, improving the plant operation rate, and reducing the burden on operators. ..

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、給水制御系のミスマッチゲインに着目し、主蒸気流
量と給水流量のミスマッチにより水位が上昇又は低下す
る事象時にはミスマッチゲインを大きくし、それ以外の
通常運転時には原子炉水位の応答を重視するようミスマ
ッチゲインを小さくする機能を給水制御装置に持たせ
た。
[Means for Solving the Problems] In order to achieve the above object, focusing on the mismatch gain of the feed water control system, the mismatch gain is increased when the water level rises or falls due to the mismatch between the main steam flow rate and the feed water flow rate. During normal operation other than that, the feedwater control system has a function to reduce the mismatch gain so that the response of the reactor water level is emphasized.

【0007】ここで、まず、ミスマッチゲインを大きく
すると主蒸気流量と給水流量の偏差(ミスマッチ)によ
り生じる水位の変化を抑制できるかどうかを簡単に説明
する。
First, it will be briefly described whether or not the change in water level caused by the deviation (mismatch) between the main steam flow rate and the feed water flow rate can be suppressed by increasing the mismatch gain.

【0008】原子炉の水位は、いわゆる、原子炉内の水
の量であり原子炉から出て行く蒸気の量(主蒸気流量)
と原子炉に入ってくる水の量(給水流量)のバランスに
密接に関係している。そして、主蒸気流量が給水流量よ
り少なくなると原子炉水位は上昇し、逆に、主蒸気流量
が給水流量より多くなると原子炉水位は低下する。
The water level of the reactor is the so-called amount of water in the reactor, and the amount of steam that exits the reactor (main steam flow rate).
It is closely related to the balance of the amount of water entering the reactor (supply flow rate). When the main steam flow rate is lower than the feed water flow rate, the reactor water level rises, and conversely, when the main steam flow rate is higher than the feed water flow rate, the reactor water level decreases.

【0009】ミスマッチゲインとはこの関係を利用し、
給水流量と主蒸気流量の偏差を原子炉水位信号に換える
もので、原子炉の水位変化を先行的に予測して制御しよ
うという機能である。このため、ミスマッチゲインを大
きくすると主蒸気流量と給水流量の偏差に対する原子炉
水位変化信号が大きくなり先行的な制御能力が強くな
る。これにより、主蒸気流量と給水流量が大きく変化
し、その結果、主蒸気流量と給水流量に偏差が生じ水位
が変化する事象時には、ミスマッチゲインが大きい方が
先行的な制御能力が強いため水位変化も小さくなるので
ある。しかし、通常の運転状態のように主蒸気流量と給
水流量があまり変化しない状態では、ミスマッチゲイン
を大きくして運転すると原子炉水位の変化に対する応答
が遅くなる。これは、水位変化に対し給水流量を変化さ
せた時に、主蒸気流量と給水流量にミスマッチが生じこ
の給水流量の変化を抑制する方向に制御系が働くため
で、ミスマッチゲインが大きいとこの効果が強く水位の
変化に対する応答が逆に遅くなるのである。
This relationship is used with the mismatch gain,
It is a function that predicts and controls changes in the reactor water level in advance, by changing the deviation between the feed water flow rate and the main steam flow rate into a reactor water level signal. For this reason, when the mismatch gain is increased, the reactor water level change signal with respect to the deviation between the main steam flow rate and the feed water flow rate becomes large, and the control capability in advance is strengthened. As a result, the main steam flow rate and feed water flow rate change significantly, and as a result, when the water level changes due to deviation between the main steam flow rate and the feed water flow rate, the water level changes as the mismatch gain is larger because the control capability is stronger. Also becomes smaller. However, in a state where the main steam flow rate and the feed water flow rate do not change so much as in the normal operation state, when the operation is performed with a large mismatch gain, the response to the change in the reactor water level becomes slow. This is because when the feed water flow rate is changed with respect to the water level change, a mismatch occurs between the main steam flow rate and the feed water flow rate, and the control system works to suppress this change in the feed water flow rate. On the contrary, the response to the change in the water level becomes slower.

【0010】以上のことより、ミスマッチゲインを大き
くするのは、主蒸気流量と給水流量のミスマッチにより
水位が変化するプラントの異常な過渡変化事象時だけと
する。このため異常な過渡変化事象の信号として、再循
環ポンプランバック信号,再循環ポンプトリップ信号,
給水ポンプトリップ信号,原子炉スクラム信号の各信号
を原子炉給水制御装置に取り込み、ミスマッチゲインを
変更(大きく)する。
From the above, the mismatch gain is increased only when an abnormal transient change event occurs in the plant where the water level changes due to the mismatch between the main steam flow rate and the feed water flow rate. Therefore, the signals of abnormal transient change events are recirculation pump runback signal, recirculation pump trip signal,
The feedwater pump trip signal and the reactor scrum signal are imported to the reactor feedwater control device, and the mismatch gain is changed (increased).

【0011】[0011]

【作用】まず、原子炉スクラム時には、原子炉スクラム
により炉心内のボイドがつぶれて原子炉水位が低下し給
水流量は増加する。一方、主蒸気流量はスクラムによる
原子炉出力低下で減少する。このため原子炉水位が上昇
するがミスマッチゲインを大きくすることによって、先
行的な制御能力が強くなり、図3に示すように給水流量
の絞り込みが早くなり原子炉水位の上昇を抑制すること
ができる。
First, during the reactor scram, the reactor scrum crushes the voids in the core, lowering the reactor water level and increasing the feed water flow rate. On the other hand, the main steam flow rate decreases as the reactor power decreases due to scrum. For this reason, the reactor water level rises, but by increasing the mismatch gain, the advanced control capability is strengthened, and as shown in FIG. 3, the feedwater flow rate is narrowed down quickly and the reactor water level rise can be suppressed. ..

【0012】次に、給水ポンプトリップ時であるが、本
事象時には給水ポンプトリップにより給水流量が減少し
原子炉水位が低下する。しかし、この事象時にもミスマ
ッチゲインを大きくすることによって給水流量を増加さ
せる方向となるため原子炉水位の低下量も、図4に示す
ように小さく抑制できる。
Next, at the time of the water supply pump trip, at this event, the water supply flow rate is reduced by the water supply pump trip and the reactor water level is lowered. However, even in this event, increasing the mismatch gain tends to increase the feedwater flow rate, so that the decrease in the reactor water level can be suppressed to a small level as shown in FIG.

【0013】最後に再循環ポンプトリップ及び再循環ポ
ンプランバック時であるが、本事象時には原子炉出力の
低下により主蒸気流量が減少し、給水流量とのミスマッ
チで原子炉水位が上昇する。この場合も、ミスマッチゲ
インを大きくすることによって先行的な制御能力が強く
なり、図5に示すように、給水流量の絞り込みが早くな
り原子炉水位の上昇を抑制することができる。
Finally, during the recirculation pump trip and the recirculation pump runback, at this event, the main steam flow rate decreases due to the decrease in the reactor output, and the reactor water level rises due to the mismatch with the feed water flow rate. Also in this case, by increasing the mismatch gain, the advanced control capability is strengthened, and as shown in FIG. 5, the feedwater flow rate can be narrowed down quickly and the rise in the reactor water level can be suppressed.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1により説明す
る。本図は本発明の原子炉給水制御装置を備えた沸騰水
型原子力プラント例の概要図である。原子炉1内の水位
制御は、下記の方法で行われる。まず、原子炉水位信号
2を水位設定器3によって設定された水位設定信号4と
比較し、その差である水位偏差信号5に、主蒸気流量と
給水流量の偏差にミスマッチゲインを乗じて求めた水位
偏差予測信号20を加算した後の信号である水位偏差補
正信号2を、水位制御器18に入力する。そしてこの水
位制御器の出力信号(給水流量要求信号22)で給水ポ
ンプの回転数または給水調整弁の開度を調節し、給水流
量を調整することで原子炉水位を一定に保っている。ま
た、蒸気流量信号7は主蒸気配管6に取りつけられた主
蒸気流量計から取り込み、給水流量信号10は給水配管
9に取りつけられた給水流量系計から取り込む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. This figure is a schematic diagram of an example of a boiling water nuclear power plant equipped with the reactor feedwater control device of the present invention. The water level control in the nuclear reactor 1 is performed by the following method. First, the reactor water level signal 2 was compared with the water level setting signal 4 set by the water level setting device 3, and the difference between the water level deviation signals 5 was calculated by multiplying the deviation between the main steam flow rate and the feed water flow rate by the mismatch gain. The water level deviation correction signal 2 which is a signal after adding the water level deviation prediction signal 20 is input to the water level controller 18. Then, the output signal of the water level controller (feed water flow rate request signal 22) is used to adjust the rotation speed of the water feed pump or the opening degree of the water feed adjustment valve, and the feed water flow rate is adjusted to keep the reactor water level constant. Further, the steam flow rate signal 7 is taken in from the main steam flow meter attached to the main steam pipe 6, and the feed water flow rate signal 10 is taken in from the feed water flow rate system meter attached to the water supply pipe 9.

【0015】ここで原子炉スクラム,給水トリップ,再
循環ポンプトリップ及び再循環ポンプランバック時に
は、原子炉スクラム信号16,給水ポンプトリップ信号
19,再循環ポンプトリップ信号14,再循環ポンプラ
ンバック信号24を安全保護系15,給水ポンプ8,再
循環ポンプ11及び再循環流量制御装置13からミスマ
ッチゲイン設定装置17に取り込み、ミスマッチゲイン
を変更して水位の変動を抑制する。ミスマッチゲインを
変更するロジックを図2に示す。ミスマッチゲイン設定
装置17は主蒸気流量と給水流量のミスマッチ量信号2
5を取り込み、それにミスマッチゲインを乗じて水位偏
差予測信号20を出力する装置である。ここで安全保護
系15からの原子炉スクラム信号16,給水ポンプ8か
らの給水ポンプトリップ信号19,再循環ポンプ11か
らの再循環ポンプトリップ信号14,再循環流量制御装
置13からの再循環ポンプランバック信号24をミスマ
ッチゲイン設定装置17に取り込み、これらの信号をO
R回路からの出力信号(ミスマッチゲイン変更信号2
1)により、水位偏差予測信号20がミスマッチゲイン
K1の出力信号からミスマッチゲインK2の出力信号に
切換わる。これにより原子炉スクラム,給水ポンプトリ
ップ,再循環ポンプトリップ及びランバック時にミスマ
ッチゲインが変更されることになる。
Here, at the time of reactor scrum, feed water trip, recirculation pump trip and recirculation pump runback, reactor scrum signal 16, feedwater pump trip signal 19, recirculation pump trip signal 14, recirculation pump runback signal 24. Is taken into the mismatch gain setting device 17 from the safety protection system 15, the water supply pump 8, the recirculation pump 11 and the recirculation flow rate control device 13, and the mismatch gain is changed to suppress the fluctuation of the water level. The logic for changing the mismatch gain is shown in FIG. The mismatch gain setting device 17 is a mismatch amount signal 2 for the main steam flow rate and the feed water flow rate.
5 is a device for outputting the water level deviation prediction signal 20 by multiplying it by a mismatch gain. Here, the reactor scrum signal 16 from the safety protection system 15, the feed pump trip signal 19 from the feed pump 8, the recirculation pump trip signal 14 from the recirculation pump 11, the recirculation pump run from the recirculation flow controller 13 The back signal 24 is taken into the mismatch gain setting device 17, and these signals
Output signal from R circuit (mismatch gain change signal 2
According to 1), the water level deviation prediction signal 20 is switched from the output signal of the mismatch gain K1 to the output signal of the mismatch gain K2. This will change the mismatch gain during reactor scrum, feed pump trip, recirculation pump trip and runback.

【0016】なお、ミスマッチゲイン変更信号はある決
められた時間が経過した後でリセット可能となり自動的
に又は手動押ボタンでリセットし、ミスマッチゲインは
通常の小さな値に再設定される。
The mismatch gain change signal can be reset after a predetermined time has elapsed, and is reset automatically or by a manual push button, and the mismatch gain is reset to a normal small value.

【0017】次に、ミスマッチゲインを変更すること
で、どのように水位変動が抑制できるかをスクラム時の
プラント挙動と給水ポンプトリップ時のプラント挙動を
例にして以下説明する。
Next, how the water level fluctuation can be suppressed by changing the mismatch gain will be described below by taking the plant behavior at the time of scrum and the plant behavior at the time of trip of the feed pump as an example.

【0018】まず、スクラム時のプラント挙動とミスマ
ッチゲイン変更による制御信号の動きから水位変動(上
昇)がどのように抑制されるか図3を用いて説明する。
First, how the water level fluctuation (rise) is suppressed by the plant behavior during scrum and the movement of the control signal due to the mismatch gain change will be described with reference to FIG.

【0019】スクラム時には、まず、制御棒の全挿入に
より出力が低下すると共に炉心内のボイドがつぶれて水
位が減少する。このため、給水制御系の働きで給水流量
が増加し水位の低下を抑制するが、出力の低下により主
蒸気流量が減少しているため、給水流量と主蒸気流量の
ミスマッチゲインで原子炉水位は上昇する。この時、給
水流量は水位の上昇と共に絞り込まれるが、この絞り込
み開始時間及び絞り込み量がミスマッチゲインによって
異なる。ミスマッチゲインを大きくするとミスマッチ量
に対する水位偏差予測信号が大きくなるため、主蒸気流
量<給水流量の条件では給水流量要求信号の絞り込みは
早く、しかも大きくなる。このため図に示すようにミス
マッチゲインが大きい方が制御信号及び給水流量の絞り
込みが早くなり、水位の上昇も小さく抑えられる。
At the time of scram, first, the power is lowered by the full insertion of the control rods, and the voids in the core are crushed to reduce the water level. For this reason, the feedwater control system works to increase the feedwater flow rate and suppress the decrease in water level.However, because the main steam flow rate is decreasing due to the decrease in output, the reactor water level is reduced by the mismatch gain between the feedwater flow rate and the main steam flow rate. To rise. At this time, the feed water flow rate is narrowed down as the water level rises, but the narrowing start time and the narrowing amount differ depending on the mismatch gain. When the mismatch gain is increased, the water level deviation prediction signal with respect to the mismatch amount increases, so that the feedwater flow rate request signal is narrowed down quickly and large under the condition of main steam flowrate <feedwater flowrate. Therefore, as shown in the figure, when the mismatch gain is large, the control signal and the feed water flow rate are narrowed down quickly, and the rise in the water level can be suppressed to a small level.

【0020】次に、給水ポンプトリップのプラント挙動
とミスマッチゲイン変更による制御信号の動きから水位
変動(下降)がどのように抑制されるか図4を用いて説
明する。給水ポンプトリップ時には、まず、給水ポンプ
のトリップにより給水流量が減少し原子炉水位が低下す
る。このため、給水制御系の働きで給水流量が増加する
が、この時の増加割合がミスマッチゲインによって異な
る。ミスマッチゲインを大きくするとミスマッチ量に対
する水位偏差信号が大きくなるため、主蒸気流量>給水
流量の条件では給水流量要求信号の増加が早く、しかも
大きくなる。このため図4に示すように、ミスマッチゲ
インが大きい方が制御信号及び給水流量の増加が早くな
り水位の低下を小さく抑えられる。
Next, how the water level fluctuation (fall) is suppressed by the plant behavior of the feed water pump trip and the movement of the control signal due to the mismatch gain change will be described with reference to FIG. When the feed pump trips, the feed water flow is reduced and the reactor water level is lowered. For this reason, the water supply flow rate increases due to the function of the water supply control system, but the rate of increase at this time differs depending on the mismatch gain. When the mismatch gain is increased, the water level deviation signal with respect to the mismatch amount increases, so that the supply water flow rate request signal increases faster and increases under the condition of main steam flow rate> supply water flow rate. Therefore, as shown in FIG. 4, the larger the mismatch gain, the faster the control signal and the water supply flow rate increase, and the lowering of the water level can be suppressed.

【0021】最後に、通常の運転時であるが、通常の運
転状態では主蒸気流量及び給水流量が大きく変動するこ
とがない。このため、ミスマッチゲインを大きい状態の
ままに設定して置くと、原子炉水位変化時の給水流量の
応答が遅くなる。この理由を以下で説明する。まず、原
子炉水位が変動(上昇)すると給水制御系の働きで給水
流量が減少し原子炉水位の変動を抑制しようとする。こ
こでミスマッチゲインが大きいと、給水流量と主蒸気流
量の間に偏差が生じ(給水流量<主蒸気流量)水位偏差
予測信号が大きくなり給水流量の減少を抑制する。
Finally, during normal operation, the main steam flow rate and feed water flow rate do not fluctuate significantly in normal operation conditions. Therefore, if the mismatch gain is set to a large value, the response of the feed water flow rate when the reactor water level changes will be delayed. The reason for this will be described below. First, when the reactor water level fluctuates (rises), the feedwater control system acts to reduce the feedwater flow rate and try to suppress fluctuations in the reactor water level. Here, if the mismatch gain is large, a deviation occurs between the feed water flow rate and the main steam flow rate (feed water flow rate <main steam flow rate), and the water level deviation prediction signal increases to suppress the decrease in the feed water flow rate.

【0022】このため、原子炉水位上昇量及び原子炉水
位の通常水位への復帰が遅くなる。これにより通常運転
時はミスマッチゲインが小さい方が制御性が良いことが
わかる。
Therefore, the amount of rise in the reactor water level and the return of the reactor water level to the normal water level are delayed. This shows that the controllability is better when the mismatch gain is smaller during normal operation.

【0023】本発明による給水制御装置を採用すること
により、原子炉スクラム時,給水ポンプトリップ等の異
常な過渡変化時の水位変動が抑制され、通常運転時の水
位制御性も維持できる。
By adopting the water supply control device according to the present invention, the water level fluctuation at the time of an abnormal transient change such as a reactor scrum or a water supply pump trip can be suppressed, and the water level controllability during normal operation can be maintained.

【0024】[0024]

【発明の効果】本発明によれば、沸騰水型原子力プラン
トにおいて、原子炉スクラム信号,給水ポンプトリップ
信号,再循環ポンプトリップ信号,再循環ポンプランバ
ック信号によってミスマッチゲインを変更することで、
不要な警報やトリップの発生を最小限に抑えることが可
能となり、原子炉水位の静定時間を短縮することが可能
となるため、運転員の負担軽減,プラントの稼働率向上
を図ることが出来る。
According to the present invention, in a boiling water nuclear power plant, the mismatch gain is changed by the reactor scrum signal, feed water pump trip signal, recirculation pump trip signal, and recirculation pump runback signal.
It is possible to minimize the occurrence of unnecessary alarms and trips, and to shorten the settling time of the reactor water level, thus reducing the burden on operators and improving the plant operating rate. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例であるミスマッチゲイン変更機
能を備えた原子力プラントの系統図。
FIG. 1 is a system diagram of a nuclear power plant having a mismatch gain changing function according to an embodiment of the present invention.

【図2】ミスマッチゲインを変更するためのミスマッチ
ゲイン設定装置の説明図。
FIG. 2 is an explanatory diagram of a mismatch gain setting device for changing the mismatch gain.

【図3】原子炉スクラム信号によってミスマッチゲイン
を変更した場合とそうでない場合のプラント挙動の比較
説明図。
FIG. 3 is a comparative explanatory diagram of plant behavior when the mismatch gain is changed by the reactor scrum signal and when it is not.

【図4】給水ポンプトリップ信号によってミスマッチゲ
インを変更した場合とそうでない場合のプラント挙動の
比較説明図。
FIG. 4 is a comparative explanatory diagram of plant behavior when the mismatch gain is changed by the feed pump trip signal and when it is not.

【図5】再循環ポンプトリップ信号,再循環ポンプラン
バック信号によってミスマッチゲインを変更した場合と
そうでない場合のプラント挙動の比較説明図。
FIG. 5 is a comparative explanatory diagram of plant behavior when the mismatch gain is changed by the recirculation pump trip signal and the recirculation pump runback signal and when the mismatch gain is not changed.

【符号の説明】[Explanation of symbols]

1…原子炉、3…水位設定器、6…主蒸気流量、8…給
水ポンプ、9…給水流量、11…再循環ポンプ、12…
再循環流量、13…再循環流量制御装置、15…安全保
護系、17…ミスマッチゲイン設定装置、18…水位制
御器。
1 ... Reactor, 3 ... Water level setter, 6 ... Main steam flow rate, 8 ... Water supply pump, 9 ... Water supply flow rate, 11 ... Recirculation pump, 12 ...
Recirculation flow rate, 13 ... Recirculation flow rate control device, 15 ... Safety protection system, 17 ... Mismatch gain setting device, 18 ... Water level controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子力プラントにおいて、再循環
ポンプランバック,再循環ポンプトリップ,給水ポンプ
トリップおよび原子炉スクラム等のプラントの異常状態
発生時に、主蒸気流量と給水流量のミスマッチ量を原子
炉水位に換算する補正定数であるミスマッチゲインを変
更することを特徴とする原子炉給水制御装置。
1. In a boiling water nuclear power plant, when an abnormal state of a plant such as a recirculation pump runback, a recirculation pump trip, a feedwater pump trip, and a reactor scram occurs, the amount of mismatch between the main steam flow rate and the feedwater flow rate is adjusted to A reactor water supply control device characterized by changing a mismatch gain, which is a correction constant converted into a reactor water level.
JP3213375A 1991-08-26 1991-08-26 Reactor feed water controller Pending JPH0552991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213375A JPH0552991A (en) 1991-08-26 1991-08-26 Reactor feed water controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213375A JPH0552991A (en) 1991-08-26 1991-08-26 Reactor feed water controller

Publications (1)

Publication Number Publication Date
JPH0552991A true JPH0552991A (en) 1993-03-02

Family

ID=16638152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213375A Pending JPH0552991A (en) 1991-08-26 1991-08-26 Reactor feed water controller

Country Status (1)

Country Link
JP (1) JPH0552991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907301A (en) * 2017-11-10 2018-04-13 中国科学院近代物理研究所 A kind of high temperature and pressure water flow bulk effect simulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696298A (en) * 1979-12-28 1981-08-04 Tokyo Shibaura Electric Co Nuclear reactor feedwater control device
JPH01178900A (en) * 1988-01-08 1989-07-17 Hitachi Ltd Feed-water flow-rate controller for nuclear reactor
JPH01180500A (en) * 1988-01-12 1989-07-18 Hitachi Ltd Feed water control device for atomic power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696298A (en) * 1979-12-28 1981-08-04 Tokyo Shibaura Electric Co Nuclear reactor feedwater control device
JPH01178900A (en) * 1988-01-08 1989-07-17 Hitachi Ltd Feed-water flow-rate controller for nuclear reactor
JPH01180500A (en) * 1988-01-12 1989-07-18 Hitachi Ltd Feed water control device for atomic power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907301A (en) * 2017-11-10 2018-04-13 中国科学院近代物理研究所 A kind of high temperature and pressure water flow bulk effect simulator
CN107907301B (en) * 2017-11-10 2020-03-24 中国科学院近代物理研究所 High-temperature high-pressure water-gas fluid effect simulation device

Similar Documents

Publication Publication Date Title
US4337118A (en) Nuclear reactor power monitoring system
JPS6253797B2 (en)
JPS6146799B2 (en)
JPH0552991A (en) Reactor feed water controller
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JP2799068B2 (en) Reactor power control method and apparatus
JP2899489B2 (en) Water supply control device
JP3011451B2 (en) Reactor power control system for boiling water nuclear power plant
JPH0456957B2 (en)
JPS5828689A (en) Method and device for controlling reactor power at load loss
JP2720032B2 (en) Turbine control device
JP5352375B2 (en) Reactor power controller
JPH076605B2 (en) Reactor feedwater flow controller
JPS5833002A (en) Controller for feedwater of steam generator
JPS6128881B2 (en)
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPS60174404A (en) Controller for feedwater to nuclear reactor
JPS60117002A (en) Controller for feedwater to nuclear reactor
JPS623920B2 (en)
JPH0241720B2 (en)
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPH0843590A (en) Controlling method for boiling water reactor power plant
JPH0637843B2 (en) Turbine controller
JPH01195397A (en) Controller for water level of nuclear reactor
JPH02244000A (en) Method and device for controlling nuclear power plant