JPH0552747A - Device for measuring surface reflectivity of photodiode - Google Patents

Device for measuring surface reflectivity of photodiode

Info

Publication number
JPH0552747A
JPH0552747A JP3217496A JP21749691A JPH0552747A JP H0552747 A JPH0552747 A JP H0552747A JP 3217496 A JP3217496 A JP 3217496A JP 21749691 A JP21749691 A JP 21749691A JP H0552747 A JPH0552747 A JP H0552747A
Authority
JP
Japan
Prior art keywords
light
photodiode
sample
sample photodiode
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3217496A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ono
義弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3217496A priority Critical patent/JPH0552747A/en
Publication of JPH0552747A publication Critical patent/JPH0552747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To calculate the surface reflectivity of a photodiode from the ratio of the reflected light from the photodiode and the direct light from a light source by partially measuring said respective lights using a diffusion light source such as an incandescent electric lamp without using laser beam. CONSTITUTION:A sample photodiode 3 is placed at the position separated from an incandescent electric lamp 1 by a distance S1 so that incident light and reflected light form a definite angle and a reference photodetector 2 is placed at the position separated from the photodiode 3 by a distance S2. The photodetector 2 detects a part of the reflected light from the photodiode 3 and the output I1 of the photodetector 2 in this state is measured. The photodiode 2 is removed and the photodetector 2 is placed at the position separated from the electric lamp 1 by the distance S1+S2. A part of the direct light from the electric lamp 1 is detected by the photodetector 2 and the output I0 thereof is measured. If the outputs I1, I0 can be measured, the surface reflectivity of the sample photodiode 3 is calculated on the basis of I1/I0. The distances S1, S2 are set so as to satisfy the relation of (b-c) S1>(a-b)S2 (wherein a, b and c are the diameters of the incandescent electric lamp 1, the photodiode 3 and the photodetector 2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンホトダイオー
ドの絶対応答度を測定する自己校正法において、重要な
測定項目であるホトダイオードの表面反射率を測定する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the surface reflectance of a photodiode, which is an important measurement item in a self-calibration method for measuring the absolute responsivity of a silicon photodiode.

【0002】[0002]

【従来の技術】光放射の一次標準を作成する基本技術と
してシリコンホトダイオードの自己校正法が実用化され
ている(参考文献1:照明学会誌Vol.75, No.6, 1991,
pp.314-319)。この方法は、シリコンホトダイオードの
表面反射率と内部量子効率を測定することにより、絶対
応答度[A/W]を求める技術である。各波長の単色光に対
して自己校正法を実施することにより、各波長ごとに絶
対応答度が求められ、単色光の放射標準として利用され
ている。
2. Description of the Related Art A self-calibration method for silicon photodiodes has been put to practical use as a basic technique for creating a primary standard for light emission (Reference 1: Journal of Illuminating Engineering Vol. 75, No. 6, 1991,
pp.314-319). This method is a technique for obtaining the absolute responsivity [A / W] by measuring the surface reflectance and internal quantum efficiency of a silicon photodiode. By performing a self-calibration method on monochromatic light of each wavelength, the absolute responsivity is obtained for each wavelength and is used as the emission standard of monochromatic light.

【0003】この自己校正法により、シリコンホトダイ
オードの可視域全域の絶対分光応答度を自己校正し、こ
れに分光透過率が既知の視感度補正フィルタを組み合わ
せることにより測光量(光束:単位[lm])に対する応答
度[A/lm]を求めることができ、測光量の値付けが可能に
なる(参考文献2:照明学会誌Vol.71, No.10, 1987,p
p.618-621)。しかし、この方法においては、可視域全
域にわたる多くの波長の単色光を用いてシリコンホトダ
イオードを自己校正する必要があった。
By this self-calibration method, the absolute spectral responsivity of the silicon photodiode in the entire visible region is self-calibrated, and a luminosity correction filter having a known spectral transmittance is combined with this to measure the amount of light (luminous flux: unit [lm]). ) To [A / lm], and it becomes possible to price the photometric quantity (Reference 2: Journal of the Lighting Society Vol.71, No.10, 1987, p.
p.618-621). However, in this method, it was necessary to self-calibrate the silicon photodiode using monochromatic light of many wavelengths over the entire visible range.

【0004】自己校正法による測光量の値付けをさらに
簡単化するため、白色光を用いた自己校正法が考案され
た(参考文献3:平成2年度照明学会全国大会講演論文
集No.110)。この方法により、可視域全域の多くの波長
の単色光を用いる必要なく、白熱電球のような白色光を
用いて、シリコンホトダイオードの表面反射率と内部量
子効率を求めることにより、測光量に対する応答度を直
接求めることが可能になった。
A self-calibration method using white light was devised to further simplify the pricing of the photometric quantity by the self-calibration method (Reference 3: Proceedings of the 1990 Lighting Society National Convention Lecture Collection No. 110). .. By this method, it is not necessary to use monochromatic light of many wavelengths in the entire visible range, and by using white light such as an incandescent lamp, the surface reflectance and internal quantum efficiency of the silicon photodiode are obtained, and the responsivity to the photometric quantity is determined. It became possible to ask directly.

【0005】表面反射率(鏡面反射率)の測定は、単色
光を用いる場合も白色光を用いる場合も、図4(a)に
示すように、まず、レーザ7から放射されるビーム光9
を試料ホトダイオード3に当てて、その反射光を参照受
光器2(ビーム径より十分大きい受光面を有する)で測
定し、次に図4(b)に示すようにビーム光9を同じ参
照受光器2に入射させて測定し、入射光と反射光の測定
値の比から試料ホトダイオード3の表面反射率を求める
方法が一般に用いられてきた。また、垂直入射で測定す
るための方法(参考文献4:照明学会誌Vol.69, No.10,
1985, pp.534)や、参照受光器を用いない測定方法
(参考文献5:昭和63年度電気関係学会関西支部連合大
会講演論文集G13-2)なども知られている。しかしなが
ら、これらの測定方法はすべて、ビーム光を用いる必要
があった。
The measurement of the surface reflectance (specular reflectance) is carried out by using the beam light 9 emitted from the laser 7 as shown in FIG. 4A regardless of whether monochromatic light or white light is used.
Is applied to the sample photodiode 3, and the reflected light is measured by the reference light receiver 2 (having a light receiving surface sufficiently larger than the beam diameter). Then, as shown in FIG. A method has been generally used in which the surface reflectance of the sample photodiode 3 is obtained from the ratio of the measured values of the incident light and the reflected light when the light is incident on the sample 2 and measured. In addition, a method for measurement at normal incidence (Reference 4: Journal of Illuminating Engineering Vol. 69, No. 10,
1985, pp. 534), and a measurement method that does not use a reference photodetector (reference document 5: Proceedings of the 1988 Electrical Association of Japan Kansai Branch Joint Conference Proceedings G13-2). However, all of these measurement methods required the use of light beams.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来知
られている自己校正法の技術においては、表面反射率
(鏡面反射率)の精密測定のために、フレアの少ない細
い平行ビーム光が必要であった。単色光を用いた自己校
正法では、このために主にレーザーが用いられている。
上記の白色光を用いた自己校正法においては、白熱電球
から質の高いビームを作成するのは困難であり、キセノ
ンランプなどが使用されている。その場合でも、質の高
いビーム形成のための光学系の設計や製作が難しくな
り、装置の製作が容易でないという問題があった。ま
た、挿入したレンズや集光ミラーのために白色光源の分
光分布が変わってしまうという問題もあった。(上記の
白色光の自己校正法においては、たとえば2856Kの標準
電球に対する応答度を求めようとすると、同じ分光分布
をもつ白色光源の光をホトダイオードに当てて自己校正
する必要があり、集光光学系によって分光分布が変わっ
た場合は光学フィルタで分光分布を補正する必要があっ
た。)
As described above, in the conventionally known technique of the self-calibration method, a fine parallel beam light with less flare is used for precise measurement of the surface reflectance (specular reflectance). Was needed. Lasers are mainly used for this purpose in the self-calibration method using monochromatic light.
In the above self-calibration method using white light, it is difficult to produce a high quality beam from an incandescent lamp, and a xenon lamp or the like is used. Even in that case, there is a problem that it is difficult to design and manufacture an optical system for forming a high-quality beam, and it is not easy to manufacture the device. There is also a problem that the spectral distribution of the white light source changes due to the inserted lens and the condenser mirror. (In the white light self-calibration method described above, for example, when trying to obtain the responsivity to a standard light bulb of 2856K, it is necessary to apply light from a white light source having the same spectral distribution to a photodiode to perform self-calibration. If the spectral distribution changed depending on the system, it was necessary to correct the spectral distribution with an optical filter.)

【0007】[0007]

【課題を解決するための手段】本発明は、このような従
来の問題を解決し、ビーム光を用いる必要なく、白熱電
球などの拡散光源を用いて、ホトダイオードの表面反射
率測定を実現するため、 (1) 拡散光を放射する光源と、試料ホトダイオード
と、参照受光器とを用い、前記光源から距離S1なる位
置に前記試料ホトダイオードを対面させて、前記試料ホ
トダイオードへの入射光と反射光が一定角度をなすよう
に置き、前記試料ホトダイオードからの反射光が進む方
向に、前記試料ホトダイオードから距離S2なる位置に
前記参照受光器を置いて、前記参照受光器の受光面上の
どの位置からも、試料ホトダイオードの受光面上に光源
全体の像が見えるように光学的に配置して、まず、試料
ホトダイオードからの反射光の一部を参照受光器で測定
し、次いで、試料ホトダイオードを取り除き、前記光源
からS1+S2なる位置に前記参照受光器を対面させて置
いて前記光源からの直射光の一部を前記参照受光器で測
定し、その比から前記試料ホトダイオードの表面反射率
を求める。 (2) (1)の構成において、参照受光器を、ミラーと第2
の参照受光器に置き換え、試料ホトダイオードからの反
射光を、前記ミラーで受け、前記ミラーからの反射光を
前記第2の参照受光器で測定する。 (3) 回転するディスクと、前記ディスク上の周辺の1点
に、光軸をディスクの中心に向けて置いた参照受光器
と、前記参照受光器の受光面の中心とディスクの回転中
心を通る直線の、ディスクの回転中心から引いた垂線上
に、受光面の中心を位置させた試料ホトダイオードと、
前記ディスクの外から前記試料ホトダイオードを照射
し、その反射光が前記参照受光器に達するように置いた
光源とから構成され、前記参照受光器の受光面上のどの
位置からも、試料ホトダイオードの受光面上に光源全体
の像が見えるように光学的に配置して、まず、試料ホト
ダイオードからの反射光の一部を参照受光器で測定し、
次いで、ディスクを180度回転させて、前記光源から
の直射光の一部を前記参照受光器で測定し、その比から
前記試料ホトダイオードの表面反射率を求める。
The present invention solves such a conventional problem and realizes the surface reflectance measurement of a photodiode by using a diffused light source such as an incandescent lamp without using a beam light. (1) Using a light source that emits diffused light, a sample photodiode, and a reference light receiver, the sample photodiode is faced at a position at a distance S 1 from the light source, and incident light and reflected light on the sample photodiode are reflected. At a certain angle, the reference photodetector is placed at a position at a distance S 2 from the sample photodiode in the direction in which the reflected light from the sample photodiode travels, and at which position on the light receiving surface of the reference photodetector Also, the sample photodiode is optically arranged on the light receiving surface of the sample photodiode so that the image of the entire light source can be seen, and first, a part of the reflected light from the sample photodiode is measured with the reference photodetector. , Then removed sample photodiode, measures the part of the direct light from the at so as to face the reference light receiver to the S 1 + S 2 a position of the light source light by the reference light receiver, said from the ratio Obtain the surface reflectance of the sample photodiode. (2) In the configuration of (1), the reference light receiver is a mirror and a second
In place of the reference photodetector, the reflected light from the sample photodiode is received by the mirror, and the reflected light from the mirror is measured by the second reference photodetector. (3) A disc that rotates, a reference photodetector whose optical axis is placed at one point on the periphery of the disc with the optical axis toward the center of the disc, and the center of the light-receiving surface of the reference photodetector and the center of rotation of the disc. A sample photodiode with the center of the light receiving surface located on a straight line, perpendicular to the center of rotation of the disc,
The sample photodiode is irradiated from the outside of the disk, and the reflected light is placed so as to reach the reference photodetector, and the sample photodiode receives light from any position on the light receiving surface of the reference photodetector. Optically arranged so that the image of the entire light source can be seen on the surface, first, measure a part of the reflected light from the sample photodiode with a reference light receiver,
Then, the disk is rotated 180 degrees, a part of the direct light from the light source is measured by the reference light receiver, and the surface reflectance of the sample photodiode is obtained from the ratio.

【0008】[0008]

【作用】前記の各手段によって、それぞれ次のような作
用効果を得る。 (1) 前記(1)の手段によって、参照受光器の受光面にお
いて、入射する光束を立体角あるいは面積で制限するこ
とにより、従来のようにビーム光源を必要とせず、白熱
電球などの拡散光源を用いてホトダイオードの表面反射
率を測定することが可能になる。 (2) 前記(2)の手段によって、径の小さいミラーで試料
ホトダイオードからの反射光の一部を受けることによ
り、試料ホトダイオードへの入射角を垂直入射に近づけ
ることができる。(受光器の場合は一般に、受光面が小
さくても、受光器全体のサイズはあまり小さくならな
い) (3) 前記(3)の手段によって、前記(1)の測定を再現性よ
く容易に実施でき、実用性の高い装置を実現できる。す
なわち、この種測定装置においては距離が重要な要素と
なるが、本発明のようにディスク上に光源と特定の位置
関係に参照受光器と試料ホトダイオ−ドを配置すると距
離を正確に設定することができ再現性のよい測定が可能
となる。
By the above means, the following operational effects are obtained. (1) By the means of (1), by limiting the incident light flux on the light receiving surface of the reference light receiver by the solid angle or the area, it is not necessary to use a beam light source as in the past, and a diffused light source such as an incandescent light bulb. It becomes possible to measure the surface reflectance of a photodiode using. (2) By the means of the above (2), the angle of incidence on the sample photodiode can be approximated to vertical incidence by receiving a part of the reflected light from the sample photodiode by the mirror having a small diameter. (In the case of a photoreceiver, generally, the size of the entire photoreceiver does not become so small even if the light receiving surface is small.) (3) By the means of (3) above, the measurement of (1) above can be easily performed with good reproducibility. A highly practical device can be realized. That is, in this type of measuring apparatus, the distance is an important factor, but if the reference light receiver and the sample photodiode are arranged in a specific positional relationship with the light source on the disc as in the present invention, the distance can be set accurately. It is possible to perform measurement with good reproducibility.

【0009】[0009]

【実施例】本発明の第1の実施例について図面を用いて
説明する。図1は本発明の第1の実施例におけホトダイ
オード表面反射率測定装置の構成を示したものである。
この実施例は、前記の白色光による自己校正法における
表面反射率測定の例として、光源に白熱電球を用いた例
を示す。図1において、白熱電球1は、径がaなるバル
ブ全体が発光しているものと考える。試料ホトダイオー
ド3は、窓を除去したもので、表面が完全に平坦な鏡面
で、拡散反射成分がないものとする。参照受光器2は試
料ホトダイオード3に比べて受光面が十分小さいホトダ
イオードなどを用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a photodiode surface reflectance measuring apparatus according to the first embodiment of the present invention.
This example shows an example of using an incandescent lamp as a light source as an example of the surface reflectance measurement in the self-calibration method using white light. In the incandescent lamp 1 in FIG. 1, it is considered that the entire bulb having a diameter a emits light. The sample photodiode 3 has a window removed, has a completely flat mirror surface, and has no diffuse reflection component. The reference light receiver 2 uses a photodiode or the like whose light-receiving surface is sufficiently smaller than that of the sample photodiode 3.

【0010】まず、図1(a)に示すように、白熱電球
1から距離S1の位置に試料ホトダイオード3を、入射
光と反射光が一定の角度をなすように置いて、試料ホト
ダイオード3から反射光が進む方向に、試料ホトダイオ
ード3から距離S2の位置に参照受光器2を置く。参照
受光器2は試料ホトダイオード3からの反射光の一部を
受光し、この状態の参照受光器2の出力I1をまず測定
する。次に、図1(b)に示すように、試料ホトダイオ
ード3を取り除き、白熱電球1から距離S1+S2の位置
に参照受光器2を置いて白熱電球1からの直射光の一部
を参照受光器2で受光し、その出力I0を測定する。
1,I0が測定できれば、I1/I0によって、試料ホト
ダイオード3の表面反射率が求められる。
First, as shown in FIG. 1 (a), a sample photodiode 3 is placed at a distance S 1 from the incandescent lamp 1 so that the incident light and the reflected light form a constant angle. The reference photodetector 2 is placed at a distance S 2 from the sample photodiode 3 in the direction in which the reflected light travels. The reference light receiver 2 receives a part of the reflected light from the sample photodiode 3, and first measures the output I 1 of the reference light receiver 2 in this state. Next, as shown in FIG. 1B, the sample photodiode 3 is removed, the reference light receiver 2 is placed at a position S 1 + S 2 from the incandescent lamp 1, and a part of the direct light from the incandescent lamp 1 is referred to. Light is received by the light receiver 2 and its output I 0 is measured.
If I 1 and I 0 can be measured, the surface reflectance of the sample photodiode 3 can be obtained by I 1 / I 0 .

【0011】ここで、参照受光器2が、試料ホトダイオ
ード3からの反射光の一部と白熱電球1からの直射光の
一部とを同じ条件で測定することが必要である。すなわ
ち、 (1) 反射光測定の時図1(a)と直射光測定の時図1
(b)とで、白熱電球1から参照受光器2までの光路の
距離が等しくなければならない。これは、白熱電球1が
拡散光源であり、単位面積あたりの光束が距離の2乗に
反比例するからである。 (2) 試料ホトダイオード3の表面は完全な鏡面であるた
め、参照受光器2から見ると、試料ホトダイオード3の
表面に白熱電球1の像が写って見える。この像が、参照
受光器2の受光面上のどの点から見ても像の全体が見え
なければならない。 上記の条件(2)については、図1(a)および(b)に
示すように距離S1とS2を設定することにより満足させ
ることができる。条件(2)については、白熱電球1の径
a、試料ホトダイオード3の径b、参照受光器2の径
c、白熱電球1から試料ホトダイオード3までの距離S
1、試料ホトダイオード3から参照受光器2までの距離
2を、
Here, it is necessary for the reference light receiver 2 to measure a part of the reflected light from the sample photodiode 3 and a part of the direct light from the incandescent lamp 1 under the same conditions. That is, (1) Fig. 1 (a) when measuring reflected light and Fig. 1 when measuring direct light.
In (b), the distances of the optical paths from the incandescent lamp 1 to the reference light receiver 2 must be equal. This is because the incandescent light bulb 1 is a diffuse light source and the luminous flux per unit area is inversely proportional to the square of the distance. (2) Since the surface of the sample photodiode 3 is a perfect mirror surface, the image of the incandescent lamp 1 is visible on the surface of the sample photodiode 3 when viewed from the reference light receiver 2. This image must be entirely visible from any point on the light receiving surface of the reference light receiver 2. The above condition (2) can be satisfied by setting the distances S 1 and S 2 as shown in FIGS. 1 (a) and 1 (b). Regarding the condition (2), the diameter a of the incandescent lamp 1, the diameter b of the sample photodiode 3, the diameter c of the reference light receiver 2, and the distance S from the incandescent lamp 1 to the sample photodiode 3
1 , the distance S 2 from the sample photodiode 3 to the reference photodetector 2 ,

【0012】[0012]

【数3】 [Equation 3]

【0013】なる関係を満足するように設定することに
より満足させることができる。(式3)を満たすために
は、できるだけ、白熱電球1の径aは小さく、試料ホト
ダイオード3の径bは大きく、参照受光器2の径cは小
さく選ぶのが好ましいといえる。このようにa,b,
c,S1,S2を設定することにより、本実施例に示すホ
トダイオード表面反射率測定装置を実現することができ
る。
It is possible to satisfy the following relation by setting the relation. In order to satisfy (Equation 3), it is preferable that the diameter a of the incandescent lamp 1 is as small as possible, the diameter b of the sample photodiode 3 is large, and the diameter c of the reference light receiver 2 is small. Thus, a, b,
By setting c, S 1 and S 2 , the photodiode surface reflectance measuring device shown in this embodiment can be realized.

【0014】本発明の第2の実施例について図面を用い
て説明する。図2は本発明の第2の実施例におけるホト
ダイオード表面反射率測定装置の構成を示したものであ
る。本実施例は、第1の実施例を示す図1における参照
受光器2を、ミラー4と参照受光器5に置き換えたもの
であり、測定原理は第1の実施例と同様である。図2
(b)において、試料ホトダイオード3からの反射光の
一部をミラー4で反射させ、その反射光束全体を参照受
光器5で受ける。したがって、参照受光器5の受光面の
径は、ミラー4から反射される光束の径より十分大きな
ものであるものとする。
A second embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows the configuration of a photodiode surface reflectance measuring apparatus according to the second embodiment of the present invention. In this embodiment, the reference light receiver 2 in FIG. 1 showing the first embodiment is replaced with a mirror 4 and a reference light receiver 5, and the measurement principle is the same as that of the first embodiment. Figure 2
In (b), a part of the reflected light from the sample photodiode 3 is reflected by the mirror 4, and the entire reflected light flux is received by the reference light receiver 5. Therefore, the diameter of the light receiving surface of the reference light receiver 5 is assumed to be sufficiently larger than the diameter of the light beam reflected from the mirror 4.

【0015】シリコンホトダイオードの自己校正法にお
いては、表面反射率は垂直入射の値が必要であり、第1
の実施例においては参照受光器2が白熱電球1と試料ホ
トダイオード3を結ぶ光路を遮らないために、参照受光
器2をその光路からはずして置く必要があり、このため
垂直入射の条件では測定できない。したがって、一定角
度入射の条件での測定値が得られ、それを垂直入射の条
件に補正しなければならない。このとき、測定値の入射
角度が小さい(垂直に近い)ほど補正量が少なく、補正
の誤差を小さくできる。図1において、(式3)の条件
から、距離S2はあまり長く設定できないため、参照受
光器2のサイズが大きい場合、入射角度αを大きくとら
ざるを得ないことになる。参照受光器2としては受光面
積の小さいホトダイオードなどが利用できるが、受光器
全体のサイズが十分小さくならない場合がある。そこ
で、図2(a)のようにサイズの小さいミラーを用いる
ことにより、ミラーの位置を白熱電球1からの光路に十
分近づけることができ、垂直入射に近い条件で表面反射
率を測定することができる。直射光は図2(b)のよう
に同じミラ−を用いて測定する。
In the self-calibration method of a silicon photodiode, the surface reflectance needs to have a value of normal incidence.
In this embodiment, since the reference light receiver 2 does not block the optical path connecting the incandescent lamp 1 and the sample photodiode 3, the reference light receiver 2 needs to be placed away from the optical path, and therefore measurement cannot be performed under the conditions of vertical incidence. .. Therefore, the measurement value under the condition of the constant angle incidence is obtained, and it must be corrected to the condition of the normal incidence. At this time, the smaller the incident angle of the measured value (closer to vertical), the smaller the correction amount and the smaller the correction error. In FIG. 1, the distance S 2 cannot be set too long from the condition of (Equation 3). Therefore, when the size of the reference photodetector 2 is large, the incident angle α must be large. A photodiode or the like having a small light receiving area can be used as the reference light receiver 2, but the size of the entire light receiver may not be sufficiently small. Therefore, by using a mirror having a small size as shown in FIG. 2A, the position of the mirror can be brought sufficiently close to the optical path from the incandescent light bulb 1, and the surface reflectance can be measured under conditions close to vertical incidence. it can. Direct light is measured using the same mirror as shown in FIG.

【0016】本発明の第3の実施例について図面を用い
て説明する。図3は本発明における第3の実施例である
ホトダイオード表面反射率測定装置の構成を示したもの
である。図3において、第1の実施例で用いた参照受光
器2と試料ホトダイオード3をディスク6上に固定し、
ディスク6を回転させることにより試料ホトダイオード
3からの反射光の測定図3aと白熱電球1からの直射光
の測定図3(b)を容易に切り換えられる構造を実現し
たものである。
A third embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows the configuration of a photodiode surface reflectance measuring apparatus according to the third embodiment of the present invention. In FIG. 3, the reference photodetector 2 and the sample photodiode 3 used in the first embodiment are fixed on the disk 6,
By rotating the disk 6, a structure in which the measurement of the reflected light from the sample photodiode 3 and the measurement of the direct light from the incandescent lamp 1 shown in FIG. 3A can be easily switched is realized.

【0017】図3(a)において、参照受光器2は、デ
ィスク6上の一端に、受光面の光軸をディクス6の回転
中心に向けて固定されている。試料ホトダイオード3
は、参照受光器2の受光面の中心とディスク6の回転中
心を通る直線の、ディスク6の回転中心から引いた垂線
上の一点に、受光面を参照受光器2の方向に向けて固定
されている。ディスク6の外側に白熱電球1があり、白
熱電球1からの光を試料ホトダイオード3の受光面に導
く。この状態で、白熱電球1から試料ホトダイオード3
に達する光路8を遮らない範囲で、参照受光器2ができ
るだけ光路8に近づくように(試料ホトダイオード3へ
の入射角ができるだけ小さくなるように)ディスク6の
回転角度を決めて固定する。この状態で、白熱電球1か
らの光が試料ホトダイオード3に当たって、その反射光
束の中心が参照受光器2の受光面の中心に当たるよう
に、試料ホトダイオード3の受光面の角度を決めて固定
する。この状態で参照受光器2の出力I1を測定するこ
とにより、試料ホトダイオード3からの反射光の強度を
測定できる。
In FIG. 3A, the reference photodetector 2 is fixed to one end of the disk 6 with the optical axis of the photodetection surface facing the rotation center of the disc 6. Sample photodiode 3
Is fixed to a point on a perpendicular line drawn from the rotation center of the disk 6 on a straight line passing through the center of the light reception surface of the reference light receiver 2 and the rotation center of the disk 6, with the light reception surface facing the direction of the reference light receiver 2. ing. The incandescent lamp 1 is located outside the disk 6, and the light from the incandescent lamp 1 is guided to the light receiving surface of the sample photodiode 3. In this state, incandescent lamp 1 to sample photodiode 3
The rotation angle of the disk 6 is determined and fixed so that the reference photodetector 2 is as close as possible to the optical path 8 (so that the incident angle on the sample photodiode 3 is as small as possible) within a range that does not block the optical path 8 reaching the point. In this state, the light from the incandescent lamp 1 strikes the sample photodiode 3, and the angle of the light receiving surface of the sample photodiode 3 is determined and fixed so that the center of the reflected light flux strikes the center of the light receiving surface of the reference light receiver 2. By measuring the output I 1 of the reference photodetector 2 in this state, the intensity of the reflected light from the sample photodiode 3 can be measured.

【0018】次に、図3(b)は、図3(a)の状態か
らディスク6を180度回転させた状態を示したもの
で、参照受光器2が白熱電球1からの直射光を受ける位
置に来る。試料ホトダイオード3は、白熱電球1から参
照受光器2までの光路からはずれた位置に退避される。
この状態で参照受光器2の出力I0を測定すると、白熱
電球1からの直射光の強度を測定できる。このようにし
てI1,I0が測定できれば、I1/I0により試料ホトダ
イオード3の表面反射率を求めることができる。白熱電
球1、試料ホトダイオード3、参照受光器2のそれぞ
れ、大きさと位置関係は、第1の実施例に示した式1の
条件を満足するように設計する。
Next, FIG. 3B shows a state in which the disc 6 is rotated 180 degrees from the state of FIG. 3A, and the reference light receiver 2 receives the direct light from the incandescent lamp 1. Come to position. The sample photodiode 3 is retracted to a position deviated from the optical path from the incandescent lamp 1 to the reference light receiver 2.
When the output I 0 of the reference light receiver 2 is measured in this state, the intensity of the direct light from the incandescent lamp 1 can be measured. If I 1 and I 0 can be measured in this way, the surface reflectance of the sample photodiode 3 can be obtained from I 1 / I 0 . The incandescent light bulb 1, the sample photodiode 3, and the reference photodetector 2 are designed so that their size and positional relationship satisfy the condition of Expression 1 shown in the first embodiment.

【0019】本実施例の構成により、反射光測定時と直
射光測定時の、白熱電球1と参照受光器2との距離を等
しく保つことができ、さらに、参照受光器2への入射角
度も等しく保つことができるので、第1の実施例と同様
の動作を実現でき、実用的な表面反射率測定装置を実現
できる。
With the configuration of this embodiment, the distance between the incandescent lamp 1 and the reference photodetector 2 can be kept equal during the measurement of reflected light and the measurement of direct light, and the angle of incidence on the reference photodetector 2 can also be maintained. Since they can be kept equal, the same operation as in the first embodiment can be realized and a practical surface reflectance measuring device can be realized.

【0020】以上示した第1〜第3の各実施例は、本発
明を、白色光による自己校正法における表面反射率測定
に利用した例を示したが、分光器からの出射光やレーザ
の出力などの単色光についても、透過拡散板などを用い
て2次的な拡散光源を形成することにより、本発明を利
用することができる。
In each of the first to third embodiments shown above, the present invention is applied to the measurement of the surface reflectance in the self-calibration method with white light. For monochromatic light such as output, the present invention can be used by forming a secondary diffused light source using a transmissive diffuser plate or the like.

【0021】さらに、第1〜第3の各実施例において、
光源が拡散光を発するものであるため、白熱電球1に対
して試料ホトダイオード3や参照受光器2の位置設定が
正確に行われにくい場合が考えられる。この場合は、白
熱電球1の中心点から試料ホトダイオード3または参照
受光器2の受光面の中心点に向かう光軸上にハーフミラ
ーなどを用いてレーザ光を重畳させ、光軸調整時のみレ
ーザ光を点灯することにより、容易に光軸合わせを行な
うことができる。
Furthermore, in each of the first to third embodiments,
Since the light source emits diffused light, it may be difficult to accurately set the positions of the sample photodiode 3 and the reference light receiver 2 with respect to the incandescent lamp 1. In this case, a laser beam is superposed on the optical axis extending from the center point of the incandescent lamp 1 to the center point of the light receiving surface of the sample photodiode 3 or the reference light receiver 2 using a half mirror or the like, and the laser beam is adjusted only when the optical axis is adjusted. By turning on, the optical axis can be easily aligned.

【0022】[0022]

【発明の効果】以上のように、本発明により、従来のよ
うに質の高いビーム光を発生させるための特別な光学系
を構成する必要なく、入手の容易な白熱電球などの拡散
光源をそのまま用いてシリコンホトダイオードの表面反
射率の測定が可能になり、シリコンホトダイオードの自
己校正法、特に、白色光を用いた自己校正法の実用化に
大きな効果をもたらすものである。
As described above, according to the present invention, a diffused light source such as an incandescent light bulb which is easily available can be used as it is without the need to construct a special optical system for generating a high quality beam light as in the conventional case. It becomes possible to measure the surface reflectance of the silicon photodiode by using it, and it brings a great effect to the practical application of the self-calibration method of the silicon photodiode, especially the self-calibration method using white light.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例におけるホトダ
イオード表面反射率測定装置の構成図 (b)は本発明の第1の実施例におけるホトダイオード
表面反射率測定装置の構成図
FIG. 1A is a configuration diagram of a photodiode surface reflectance measuring device according to a first embodiment of the present invention, and FIG. 1B is a configuration diagram of a photodiode surface reflectance measuring device according to a first embodiment of the present invention.

【図2】(a)は本発明の第2の実施例におけるホトダ
イオード表面反射率測定装置の構成図 (b)は本発明の第2の実施例におけるホトダイオード
表面反射率測定装置の構成図
FIG. 2A is a configuration diagram of a photodiode surface reflectance measuring device according to a second embodiment of the present invention. FIG. 2B is a configuration diagram of a photodiode surface reflectance measuring device according to a second embodiment of the present invention.

【図3】(a)は本発明の第3の実施例におけるホトダ
イオード表面反射率測定装置の構成図 (b)は本発明の第3の実施例におけるホトダイオード
表面反射率測定装置の構成図
FIG. 3A is a configuration diagram of a photodiode surface reflectance measuring device according to a third embodiment of the present invention, and FIG. 3B is a configuration diagram of a photodiode surface reflectance measuring device according to a third embodiment of the present invention.

【図4】(a)は従来例におけるホトダイオード表面反
射率測定装置の構成図 (b)は従来例におけるホトダイオード表面反射率測定
装置の構成図
FIG. 4A is a configuration diagram of a photodiode surface reflectance measuring device in a conventional example, and FIG. 4B is a configuration diagram of a photodiode surface reflectance measuring device in a conventional example.

【符号の説明】[Explanation of symbols]

1 白熱電球 2 参照受光器 3 試料ホトダイオード 4 ミラー 5 参照受光器 6 ディスク 7 レーザ 8 光路 9 ビーム光 1 incandescent bulb 2 reference light receiver 3 sample photodiode 4 mirror 5 reference light receiver 6 disk 7 laser 8 optical path 9 beam light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】拡散光を放射する発光面の径がaなる光源
と、受光面の径がbなる試料ホトダイオードと、受光面
の径がcなる参照受光器とを用い、前記光源から距離S
1なる位置に前記試料ホトダイオードを対面させて、前
記試料ホトダイオードへの入射光と反射光が一定角度を
なすように置き、前記試料ホトダイオードからの反射光
が進む方向に、前記試料ホトダイオードから距離S2
る位置に前記参照受光器を置いて、 【数1】 なる条件を満たすようにa,b,c,S1,S2を設定し
て測定した前記参照受光器の出力と、前記光源からS1
+S2なる位置に前記参照受光器を対面させて置いて測
定した前記参照受光器の出力から、前記試料ホトダイオ
ードの表面反射率を求めることを特徴とするホトダイオ
ード表面反射率測定装置。
1. A light source having a light emitting surface having a diameter of a, which emits diffused light, a sample photodiode having a light receiving surface having a diameter of b, and a reference light receiving device having a light receiving surface having a diameter of c, are used, and a distance S from the light source is used.
The sample photodiode is faced at a position 1 so that the incident light and the reflected light on the sample photodiode are placed at a constant angle, and the distance S 2 from the sample photodiode is in the direction in which the reflected light from the sample photodiode advances. Place the reference photodetector at the position The output of the reference photodetector measured by setting a, b, c, S 1 and S 2 so as to satisfy the following condition and S 1 from the light source.
A photodiode surface reflectance measuring device, wherein the surface reflectance of the sample photodiode is obtained from the output of the reference light receiver, which is measured by placing the reference light receiver facing each other at + S 2 .
【請求項2】請求項1において、参照受光器を、ミラー
と第2の参照受光器に置き換え、試料ホトダイオードか
らの反射光の一部を、前記ミラーで受け、前記ミラーか
らの反射光を前記第2の参照受光器で測定することを特
徴とするホトダイオード表面反射率測定装置。
2. The reference light receiver according to claim 1, wherein the mirror and the second reference light receiver are replaced, and a part of the reflected light from the sample photodiode is received by the mirror, and the reflected light from the mirror is received. A photodiode surface reflectance measuring device characterized in that the measurement is performed by a second reference light receiver.
【請求項3】回転するディスクと、前記ディスク上の周
辺の1点に、光軸をディスクの中心に向けて置いた参照
受光器と、前記参照受光器の受光面の中心とディスクの
回転中心を通る直線の、ディスクの回転中心から引いた
垂線上に、受光面の中心を置いた試料ホトダイオード
と、前記ディスクの外から前記試料ホトダイオードを照
射し、その反射光が前記参照受光器に達するように置い
た光源とから構成され、前記光源の発光面の径aと、前
記試料ホトダイオードの受光面の径bと、前記参照受光
器の受光面の径cと、前記光源から前記試料ホトダイオ
ードまでの距離S1と、前記試料ホトダイオードから前
記参照受光器までの距離S2が、 【数2】 なる条件を満足することを特徴とするホトダイオード表
面反射率測定装置。
3. A rotating disc, a reference photodetector having an optical axis directed to the center of the disc at a peripheral point on the disc, a center of a light receiving surface of the reference photodetector, and a rotation center of the disc. A sample photodiode with the center of the light receiving surface placed on a straight line drawn from the center of rotation of the disc and a sample photodiode from outside the disc so that the reflected light reaches the reference light receiver. The diameter of the light emitting surface of the light source, the diameter of the light receiving surface of the sample photodiode, the diameter of the light receiving surface of the reference light receiver, and the diameter from the light source to the sample photodiode. The distance S 1 and the distance S 2 from the sample photodiode to the reference photodetector are as follows: A device for measuring the surface reflectance of a photodiode, which satisfies the following conditions.
JP3217496A 1991-08-28 1991-08-28 Device for measuring surface reflectivity of photodiode Pending JPH0552747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3217496A JPH0552747A (en) 1991-08-28 1991-08-28 Device for measuring surface reflectivity of photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217496A JPH0552747A (en) 1991-08-28 1991-08-28 Device for measuring surface reflectivity of photodiode

Publications (1)

Publication Number Publication Date
JPH0552747A true JPH0552747A (en) 1993-03-02

Family

ID=16705151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217496A Pending JPH0552747A (en) 1991-08-28 1991-08-28 Device for measuring surface reflectivity of photodiode

Country Status (1)

Country Link
JP (1) JPH0552747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353474A (en) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp Apparatus and method for measuring internal quantum efficiency of solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353474A (en) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp Apparatus and method for measuring internal quantum efficiency of solar battery
JP4663155B2 (en) * 2001-05-29 2011-03-30 三菱電機株式会社 Apparatus and method for measuring internal quantum efficiency of solar cell

Similar Documents

Publication Publication Date Title
US5686993A (en) Method of and apparatus for measuring film thickness
JP5486692B2 (en) Integrating sphere photometer and measuring method thereof
JP2002181698A (en) Spectral reflectance measuring apparatus and method
CN102087483A (en) Optical system for focal plane detection in projection lithography
JP2001215114A (en) Optical measuring apparatus and inclination measuring method
US7349103B1 (en) System and method for high intensity small spot optical metrology
JPH0467889B2 (en)
JP3114410B2 (en) Image sensor test method
JPH07117475B2 (en) Lighting characteristic evaluation device for light source unit
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
JP2008139277A (en) Inspection device and method for concave surface reflector, and manufacturing method of light source device
JP2000258246A (en) Total luminous flux measuring method and device
JPH0552747A (en) Device for measuring surface reflectivity of photodiode
Lewin et al. Luminaire photometry using video camera techniques
JPH11101739A (en) Ellipsometry apparatus
JP3519605B2 (en) Ellipsometry equipment
JP2588588B2 (en) Color sensor
JP2003097924A (en) Shape measuring system and method using the same
JPH061215B2 (en) Optical system for projecting color sensor
JPH0968462A (en) Device for measuring reflection coefficient
JPH07294328A (en) Photometry device
RU1824546C (en) Method of measuring reflection coefficient absolute magnitude of mirrors
JP2001083012A (en) Optical path split type colorimeter
JPH10132662A (en) Double beam integrating sphere
JPS6234094B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees