JPH0552711U - Cantilever for atomic force microscope - Google Patents

Cantilever for atomic force microscope

Info

Publication number
JPH0552711U
JPH0552711U JP10495491U JP10495491U JPH0552711U JP H0552711 U JPH0552711 U JP H0552711U JP 10495491 U JP10495491 U JP 10495491U JP 10495491 U JP10495491 U JP 10495491U JP H0552711 U JPH0552711 U JP H0552711U
Authority
JP
Japan
Prior art keywords
probe
cantilever
deposited
lever body
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10495491U
Other languages
Japanese (ja)
Other versions
JP2593887Y2 (en
Inventor
康敏 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP1991104954U priority Critical patent/JP2593887Y2/en
Publication of JPH0552711U publication Critical patent/JPH0552711U/en
Application granted granted Critical
Publication of JP2593887Y2 publication Critical patent/JP2593887Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

(57)【要約】 【目的】 分解能を300Å以下とすることを可能とす
る。 【構成】 レバー本体21は板状体の一端の一面に角錐
状部23が形成され、Si3 4 からなる従来のカンチ
レバーで構成され、その表面にAuの導電層24が形成
され、その角錐状部23の先端に真空中での電子ビーム
照射により、カーボンを堆積し、その堆積を電子ビーム
を移動することにより成長させて、プローブ22とされ
る。プローブ22の線径は300Å以下、長さは200
Å程度、先端曲率半径は300Å以下とされる。
(57) [Summary] [Purpose] It is possible to set the resolution to 300 Å or less. [Structure] The lever main body 21 has a pyramidal portion 23 formed on one surface of one end of a plate-like body and is composed of a conventional cantilever made of Si 3 N 4, and a conductive layer 24 of Au is formed on the surface thereof. Carbon is deposited on the tip of the rib 23 by electron beam irradiation in vacuum, and the deposited carbon is grown by moving the electron beam to form the probe 22. The diameter of the probe 22 is less than 300Å and the length is 200.
About Å, and the radius of curvature of the tip is 300 Å or less.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

この考案は原子間力顕微鏡及びその原理を利用した装置の試料面探査に用いら れるカンチレバーに関する。 The present invention relates to an atomic force microscope and a cantilever used for sample surface exploration of an apparatus using the principle.

【0002】[0002]

【従来の技術】[Prior Art]

原子間力顕微鏡は、カンチレバーの遊端に取付けたプローブと試料との原子間 力によりカンチレバーがたわみ、このたわみをレーザ光を用いて検出し、カンチ レバーが一定の状態になるように制御しながら試料面を走査し、その制御信号か ら試料面の凹凸測定などに用いられている。 The atomic force microscope deflects the cantilever due to the atomic force between the probe attached to the free end of the cantilever and the sample, and detects this deflection using laser light, while controlling the cantilever to a constant state. It is used for scanning the surface of the sample and measuring the unevenness of the sample surface from the control signal.

【0003】 図3Aに従来のこの種のカンチレバーを示す。板状レバー本体11の一端部の 一面に角錐状プローブ12が形成されている。このカンチレバーはSiO2 ,S i3 4 ,Siなどの絶縁物で構成されている。例えば単結晶シリコンに対し、 その異方性エッチングを利用してプローブ12の型を作り、これに対し、SiO 2 やSi3 4 を充填して、高い寸法精度のプローブ12を作っていた。カンチ レバーは作り易さや、原子間力の大きさを検知できる程度の小さいばね定数をも ち、また高速走査が可能なように固有共振周波数を高くする点からSi3 4 で 構成される場合が多い。FIG. 3A shows a conventional cantilever of this type. A pyramidal probe 12 is formed on one surface of one end of the plate-shaped lever body 11. This cantilever is SiO2, S i3NFour, Si and the like. For example, with respect to single crystal silicon, a mold of the probe 12 is formed by using its anisotropic etching. 2 And Si3NFourWas filled in to make the probe 12 with high dimensional accuracy. The cantilever has a small spring constant such that it is easy to make and can detect the magnitude of the atomic force, and it has a high natural resonance frequency to enable high-speed scanning.3NFourOften consists of

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

従来のカンチレバーにおいてはプローブ12の頂角θ(図3B)が狭くても2 5°程度あり、IC素子のチップのパターンなど微細なパターンを正確に測定す ることができず、特に図3Bに示すように試料のパターンに微細で深い溝13が ある場合に、その溝底面にプローブ12が届かず、溝13の内面形状にプローブ を沿わして移動させることができず、その形状を測定することができない。 In the conventional cantilever, even if the apex angle θ of the probe 12 (Fig. 3B) is narrow, it is about 25 °, and it is impossible to accurately measure a fine pattern such as a chip pattern of an IC element. As shown in the figure, when the sample pattern has fine and deep grooves 13, the probe 12 does not reach the bottom surface of the groove, and the probe cannot move along the inner surface shape of the groove 13, and the shape is measured. I can't.

【0005】[0005]

【課題を解決するための手段】 この考案によればレバー本体の端部に、堆積導電物よりなるプローブが取付け られている。According to this invention, a probe made of a deposited conductive material is attached to the end of the lever body.

【0006】[0006]

【実施例】【Example】

図1Aにこの考案の実施例を示す。例えば板状レバー本体21の一端部にレバ ー本体21の板面とほぼ直角に堆積導電物からなるプローブ22が取付けられる 。この例はレバー本体21として、従来のカンチレバーを用いた場合で、その遊 端に形成された角錐状部23(従来のプローブ)の先端にこの軸心を延長するよ うにプローブ22が取付けられる。プローブ22は例えば線径が300Å以下で 長さが300Å以上、好ましくは1μ程度とされ、かつ先端の曲率半径が300 Å以下とされる。 FIG. 1A shows an embodiment of this invention. For example, a probe 22 made of a deposited conductive material is attached to one end of the plate-shaped lever main body 21 substantially at right angles to the plate surface of the lever main body 21. In this example, a conventional cantilever is used as the lever body 21, and the probe 22 is attached to the tip of a pyramid-shaped portion 23 (conventional probe) formed at the free end of the cantilever so as to extend the axis. The probe 22 has, for example, a wire diameter of 300 Å or less and a length of 300 Å or more, preferably about 1 μ, and a tip radius of curvature of 300 Å or less.

【0007】 レバー本体21は原子間力(10-11 〜10-9ニュートン程度)に応答する必 要からばね定数が0.5ニュートン/m程度とされ、絶縁材でも金属材でもよい 。レバー本体21の長さは例えば数1000Å、幅は200〜数1000Å程度 、厚さは2〜10Å程度である。図1Aの例では従来のカンチレバーにプローブ 22が形成された場合であり、従ってレバー本体21及び角錐状部23はSi3 4 のような絶縁材で構成されている。このように絶縁材のレバー本体21に堆 積導電物のプローブ22を堆積形成するため、少くとも角錐状部23の外周面及 びレバー本体21の角錐状部23側の面に導電層24が形成されている。導電層 24としては例えばAuのスパッタリングやコーティングなどで50〜100Å の程度の厚さに形成し、あるいはレバー本体21がSiの場合は不純物のイオン 打込みや拡散により導電層24を形成してもよい。The lever body 21 has a spring constant of about 0.5 Newton / m because it is necessary to respond to an atomic force (about 10 −11 to 10 −9 Newton), and may be an insulating material or a metal material. The lever body 21 has a length of, for example, several thousand Å, a width of about 200 to several thousand Å, and a thickness of about 2 to 10 Å. In the example of FIG. 1A, the probe 22 is formed on the conventional cantilever, and therefore the lever body 21 and the pyramidal portion 23 are made of an insulating material such as Si 3 N 4 . Since the deposited conductive material probe 22 is deposited on the lever body 21 made of an insulating material in this manner, the conductive layer 24 is formed on at least the outer peripheral surface of the pyramidal portion 23 and the surface of the lever body 21 on the pyramidal portion 23 side. Has been formed. The conductive layer 24 may be formed by sputtering or coating of Au, for example, to a thickness of about 50 to 100Å, or when the lever body 21 is Si, the conductive layer 24 may be formed by ion implantation or diffusion of impurities. ..

【0008】 プローブ22は例えばカーボンを角錐状部23の先端に堆積して形成する。す なわちレバー本体21を真空容器(例えば真空度10-7torr程度)内に配し 、直径が20〜30Å程度の電子ビームを、加速電圧10〜30kV、エミッシ ョン電流5〜20μAで角錐状部23の先端に横又は正面から照射する。これに より真空容器中に残存する炭化水素などのガスやロータリポンプのオイルが電子 ビームにより分解し、カーボンになって角錐状部23に堆積し、電子ビームの照 射位置を徐々に作りたいプローブ22の形状を画くように移動させるとその描画 した形状にカーボンの堆積が成長してプローブ22が得られる。同一位置での照 射時間を長くすると、カーボンの堆積が太く成長する。加速電圧やエミッション 電流を変化させてもプローブ22の太さを制御できる。例えば1秒で長さが50 0Å程度、太さが200Å程度の堆積を行うことができる。The probe 22 is formed, for example, by depositing carbon on the tip of the pyramidal portion 23. That is, the lever body 21 is placed in a vacuum container (for example, a vacuum degree of about 10 -7 torr), and an electron beam with a diameter of about 20 to 30 Å is applied to the pyramid at an acceleration voltage of 10 to 30 kV and an emission current of 5 to 20 μA. Irradiate the tip of the shaped portion 23 from the side or the front. As a result, gases such as hydrocarbons remaining in the vacuum container and oil of the rotary pump are decomposed by the electron beam, become carbon and are deposited on the pyramidal portion 23, and the irradiation position of the electron beam is gradually formed. When the shape of 22 is moved so as to draw the shape, carbon deposition grows in the drawn shape and the probe 22 is obtained. When the irradiation time at the same position is increased, the carbon deposit grows thicker. The thickness of the probe 22 can be controlled by changing the acceleration voltage and the emission current. For example, it is possible to deposit with a length of about 500Å and a thickness of about 200Å in 1 second.

【0009】 ここで導電層24がないと、電子ビームの照射によりその照射点付近に負電荷 が蓄積して、電子ビームの照射が効率的に行われないばかりか、電子ビームに曲 がりが生じたりして目的とする形状のプローブ22を作ることが困難となる。よ って導電層24を形成し、その導電層24を例えば接地して負電荷の蓄積が生じ ないようにされる。このようにプローブ22を堆積形成する際にレバー本体21 が導電性である必要があるが、プローブ22の堆積後はレバー本体21は導電性 がなくてもよく、従って必要に応じて導電層24を除去してもよい。If the conductive layer 24 is not provided, the electron beam irradiation causes negative charges to be accumulated in the vicinity of the irradiation point, so that the electron beam is not efficiently irradiated and the electron beam is bent. However, it becomes difficult to form the probe 22 having a desired shape. Thus, the conductive layer 24 is formed, and the conductive layer 24 is grounded, for example, to prevent the accumulation of negative charges. Although the lever body 21 needs to be conductive when the probe 22 is deposited and formed as described above, the lever body 21 does not need to be conductive after the probe 22 is deposited, and therefore, the conductive layer 24 may be formed if necessary. May be removed.

【0010】 以上のように堆積カーボンのプローブ22はその細径を著しく細くすることが できるから、例えば図1Bに示すように試料面に微細な溝13が存在してもその 溝13の底面にプローブ22の先端を接近乃至接地させることができ、溝13の 内面に沿わせてプローブ22を移動させることができ、その形状を正しく測定す ることができる。また図1Cに示すように導電層24を通じて電源25からプロ ーブ22に電位を与え、試料26の表面の電位との反発力又は吸引力を測定する ことにより、試料26の表面電位を測定することもできる。この場合はレバー本 体21を金属製にするか、絶縁材上に導電層24を形成したものとするかにより 導電性のものとする。As described above, since the deposited carbon probe 22 can be remarkably thinned, even if a fine groove 13 exists on the sample surface as shown in FIG. The tip of the probe 22 can be brought close to or grounded, the probe 22 can be moved along the inner surface of the groove 13, and its shape can be accurately measured. Further, as shown in FIG. 1C, a potential is applied from the power supply 25 to the probe 22 through the conductive layer 24, and the repulsive force or suction force with respect to the surface potential of the sample 26 is measured to measure the surface potential of the sample 26. You can also In this case, the lever body 21 is made to be conductive depending on whether it is made of metal or a conductive layer 24 is formed on an insulating material.

【0011】 図2Aに示すように板状レバー本体21の一端部の板面にほぼ直角にプローブ 22を形成してもよい。また図2Aに示すようにプローブ22の端部を字状に折 曲げ溝13の内壁面の形状を測定することもできる。このような探針によれば、 図2Bに示すように例えば絶縁材の試料26内に埋め込まれ、溝13の壁面に露 出している導電層27の電位を測定する場合に便利である。プローブ22を構成 する堆積導電物としては、W(CO)6 の雰囲気で電子ビーム照射してWを堆積 し、あるいは有機金属、例えばAl(CH)3 の雰囲気で電子ビーム照射してA lを堆積するなど他の導電物でもよい。また狭義の電子間力顕微鏡のカンチレバ ーとしてのみならず、電子間力顕微鏡の原理を用いて、例えばICチップを試験 する装置のカンチレバーにもこの考案を適用することができる。As shown in FIG. 2A, the probe 22 may be formed substantially at a right angle on the plate surface of the one end of the plate lever body 21. Further, as shown in FIG. 2A, it is also possible to measure the shape of the inner wall surface of the groove 13 by bending the end portion of the probe 22 into a letter shape. Such a probe is convenient for measuring the potential of the conductive layer 27 which is embedded in the sample 26 of an insulating material and exposed on the wall surface of the groove 13 as shown in FIG. 2B. As the deposited conductive material forming the probe 22, W is deposited by electron beam irradiation in an atmosphere of W (CO) 6 , or electron beam irradiation is performed in an atmosphere of organic metal such as Al (CH) 3 to obtain Al. Other conductive materials such as deposited may be used. Further, the present invention can be applied not only as a cantilever of an electron force microscope in a narrow sense, but also to a cantilever of a device for testing an IC chip by using the principle of the electron force microscope.

【0012】[0012]

【考案の効果】[Effect of the device]

以上述べたようにこの考案によれば堆積導電物のプローブを用いるため、線径 を300Å以下のものとすることも容易であり、従って高分解能のものとするこ とができ、試料の微細な溝の形状や、微細パターンの電位の測定を正しく行うこ とができる。 As described above, according to the present invention, since the probe of the deposited conductive material is used, it is easy to set the wire diameter to 300 Å or less, and thus it is possible to obtain the high resolution, and the fine sample It is possible to correctly measure the shape of the groove and the electric potential of the fine pattern.

【提出日】平成4年11月13日[Submission date] November 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】 レバー本体21は原子間力(10-12 〜10-7 ニュートン程度)に応答する必 要からばね定数が0.5ニュートン/m程度とされ、絶縁材でも金属材でもよい 。レバー本体21の長さは例えば数1000Å〜200μm程度、幅は200 〜20μm 程度、厚さは1μm程度である。図1Aの例では従来のカンチレバー にプローブ22が形成された場合であり、従ってレバー本体21及び角錐状部2 3はSi3 4 のような絶縁材で構成されている。このように絶縁材のレバー本 体21に堆積導電物のプローブ22を堆積形成するため、少くとも角錐状部23 の外周面及びレバー本体21の角錐状部23側の面に導電層24が形成されてい る。導電層24としては例えばAuのスパッタリングやコーティングなどで50 〜1000Åの程度の厚さに形成し、あるいはレバー本体21がSiの場合は不 純物のイオン打込みや拡散により導電層24を形成してもよい。The lever body 21 has a spring constant of about 0.5 Newton / m because it is necessary to respond to an atomic force (about 10 −12 to 10 −7 Newton), and may be an insulating material or a metal material. The length of the lever main body 21 is, for example, about several thousand Å to 200 μm , the width is about 200 Å to 20 μm , and the thickness is about 1 μm . In the example of FIG. 1A, the probe 22 is formed on the conventional cantilever, and therefore the lever body 21 and the pyramidal portion 23 are made of an insulating material such as Si 3 N 4 . Since the deposited conductive material probe 22 is deposited on the lever body 21 made of an insulating material as described above, the conductive layer 24 is formed on at least the outer peripheral surface of the pyramidal portion 23 and the surface of the lever body 21 on the pyramidal portion 23 side. Has been done. The conductive layer 24 is formed by sputtering or coating of Au, for example, to a thickness of about 50 to 1000 Å, or when the lever body 21 is Si, the conductive layer 24 is formed by ion implantation or diffusion of impurities. May be.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】 プローブ22は例えばカーボンを角錐状部23の先端に堆積して 形成する。すなわちレバー本体21を真空容器(例えば真空度10-7torr程 度)内に配し、直径が10〜30Å程度の電子ビームを、加速電圧10〜30k V、10-9〜10-10 Aオーダー程度の照射電流で角錐状部23の先端に横又は 正面から照射する。これにより真空容器中に残存する炭化水素などのガスやロー タリポンプのオイルが電子ビームにより分解し、カーボンになって角錐状部23 に堆積し、電子ビームの照射位置を徐々に作りたいプローブ22の形状を画くよ うに移動させるとその描画した形状にカーボンの堆積が成長してプローブ22が 得られる。同一位置での照射時間を長くすると、カーボンの堆積が太く成長する 。加速電圧やエミッション電流を変化させてもプローブ22の太さを制御できる 。例えば1秒で長さが500Å程度、太さが200Å程度の堆積を行うことがで きる。The probe 22 is formed, for example, by depositing carbon on the tip of the pyramidal portion 23. That is, the lever main body 21 is arranged in a vacuum container (for example, a vacuum degree of about 10 -7 torr), and an electron beam having a diameter of about 10 to 30 Å is applied to an accelerating voltage of 10 to 30 kV, 10 -9 to 10 -10 A. The tip of the pyramidal portion 23 is irradiated laterally or from the front with an irradiation current of the order of magnitude . As a result, gases such as hydrocarbons remaining in the vacuum container and oil of the rotary pump are decomposed by the electron beam, become carbon, and are deposited on the pyramid-shaped portion 23, so that the irradiation position of the electron beam of the probe 22 is gradually made. When the shape is moved so as to draw a shape, carbon deposition grows in the drawn shape and the probe 22 is obtained. When the irradiation time at the same position is extended, the carbon deposit grows thicker. The thickness of the probe 22 can be controlled even when the acceleration voltage or the emission current is changed. For example, it is possible to deposit with a length of about 500Å and a thickness of about 200Å in 1 second.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの考案の実施例を示す断面図、Bはその
カンチレバーを用いて試料の溝を走査する状態を示す断
面図、Cはそのカンチレバーを用いて試料の表面電位を
測定する状態を示す断面図である。
1A is a sectional view showing an embodiment of the present invention, B is a sectional view showing a state in which a groove of a sample is scanned by using the cantilever, and C is a state in which the surface potential of the sample is measured by using the cantilever. It is sectional drawing which shows.

【図2】Aはこの考案の他の実施例を示す断面図、B及
びCはそれぞれ更に他の実施例の要部を示す断面図であ
る。
FIG. 2A is a cross-sectional view showing another embodiment of the present invention, and B and C are cross-sectional views showing the main parts of still another embodiment.

【図3】Aは従来のカンチレバーを示す斜視図、Bはそ
の問題点を説明するための図である。
FIG. 3A is a perspective view showing a conventional cantilever, and B is a view for explaining the problem.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 レバー本体の端部に、堆積導電物よりな
るプローブが取付けられていることを特徴とする原子間
力顕微鏡用カンチレバー。
1. A cantilever for an atomic force microscope, wherein a probe made of a deposited conductive material is attached to an end of a lever body.
JP1991104954U 1991-12-19 1991-12-19 Cantilever for atomic force microscope Expired - Fee Related JP2593887Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991104954U JP2593887Y2 (en) 1991-12-19 1991-12-19 Cantilever for atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991104954U JP2593887Y2 (en) 1991-12-19 1991-12-19 Cantilever for atomic force microscope

Publications (2)

Publication Number Publication Date
JPH0552711U true JPH0552711U (en) 1993-07-13
JP2593887Y2 JP2593887Y2 (en) 1999-04-19

Family

ID=14394491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991104954U Expired - Fee Related JP2593887Y2 (en) 1991-12-19 1991-12-19 Cantilever for atomic force microscope

Country Status (1)

Country Link
JP (1) JP2593887Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024706A (en) * 2005-07-19 2007-02-01 Daiken Kagaku Kogyo Kk Nanotube probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518741A (en) * 1990-08-16 1993-01-26 Canon Inc Micro displacement type information detecting probe element, and scanning type tunneling microscope, interatomic force microscope and information processor using the probe element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518741A (en) * 1990-08-16 1993-01-26 Canon Inc Micro displacement type information detecting probe element, and scanning type tunneling microscope, interatomic force microscope and information processor using the probe element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024706A (en) * 2005-07-19 2007-02-01 Daiken Kagaku Kogyo Kk Nanotube probe

Also Published As

Publication number Publication date
JP2593887Y2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US4943719A (en) Microminiature cantilever stylus
US5021364A (en) Microcantilever with integral self-aligned sharp tetrahedral tip
US4916002A (en) Microcasting of microminiature tips
US5540958A (en) Method of making microscope probe tips
Schwarz et al. Tip artefacts in scanning force microscopy
US5811017A (en) Cantilever for use in a scanning probe microscope and method of manufacturing the same
US4968585A (en) Microfabricated cantilever stylus with integrated conical tip
US6864481B2 (en) Probe for scanning probe microscope
US6139759A (en) Method of manufacturing silicided silicon microtips for scanning probe microscopy
JP3272935B2 (en) Manufacturing method of chip for nuclear microscope
US5581083A (en) Method for fabricating a sensor on a probe tip used for atomic force microscopy and the like
KR101159074B1 (en) Conductive carbon nanotube tip, probe of scanning probe microscope comprising the same and manufacturing method of the conductive carbon nanotube tip
US7441444B2 (en) AFM cantilevers and methods for making and using same
US7258901B1 (en) Directed growth of nanotubes on a catalyst
US6918286B2 (en) SPM cantilever
EP2133883B1 (en) Method for cost-efficient manufacturing diamond tips for ultra-high resolution electrical measurements
US6121771A (en) Magnetic force microscopy probe with bar magnet tip
US6156216A (en) Method for making nitride cantilevers devices
US5965218A (en) Process for manufacturing ultra-sharp atomic force microscope (AFM) and scanning tunneling microscope (STM) tips
JPH01262403A (en) Probe and its manufacture
TWI287803B (en) SPM sensor
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
JPH05164514A (en) Probe used for both of tunnel microscope and interatomic force microscope
JPH0552711U (en) Cantilever for atomic force microscope
JP2819518B2 (en) Scanning tunnel microscope and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117

LAPS Cancellation because of no payment of annual fees