JPH05525B2 - - Google Patents
Info
- Publication number
- JPH05525B2 JPH05525B2 JP3724787A JP3724787A JPH05525B2 JP H05525 B2 JPH05525 B2 JP H05525B2 JP 3724787 A JP3724787 A JP 3724787A JP 3724787 A JP3724787 A JP 3724787A JP H05525 B2 JPH05525 B2 JP H05525B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature difference
- heat medium
- heat
- engine
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 11
- 238000010248 power generation Methods 0.000 description 10
- 238000005338 heat storage Methods 0.000 description 7
- 239000010687 lubricating oil Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は低温熱エネルギを利用して発電を行う
温度差駆動ジエネレータに関し、特に発電機およ
び温度差エンジンを圧力容器内に収納し、デイー
デルエンジン、ガスエンジン等の内燃機関および
前記温度差エンジンを組み合せて熱エネルギの有
効利用を図りつつ発電機を駆動するようにした圧
力容器収納型温度差駆動ジエネレータに関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a temperature difference drive generator that generates electricity using low-temperature thermal energy, and in particular, a generator and a temperature difference engine are housed in a pressure vessel, The present invention relates to a pressure vessel-housed temperature difference drive generator which combines an internal combustion engine such as an engine, a gas engine, and the temperature difference engine to drive a generator while effectively utilizing thermal energy.
(従来技術)
従来、ガスタービンやデイーゼルエンジン等に
よつて発電機を回し、デイーゼルエンジン等の排
熱を他の加熱装置等の熱源として利用し、これに
よつて電気と熱を同時に供給する熱併給発電シス
テムが知られている。この場合、デイーゼルエン
ジンを駆動するのに用いた燃料が、一部は電気エ
ネルギに、他の一部は熱エネルギに変化したもの
であり、直接発電機を回転させるのはあくまでデ
イーゼルエンジンであり、しかもその排熱を再び
発電のエネルギとして利用することは行われてい
ない。(Prior art) Conventionally, a gas turbine, diesel engine, etc. is used to turn a generator, and the exhaust heat from the diesel engine, etc. is used as a heat source for other heating devices, etc., thereby providing electricity and heat at the same time. Co-generation power generation systems are known. In this case, part of the fuel used to drive the diesel engine is converted into electrical energy and the other part into thermal energy, and it is only the diesel engine that directly rotates the generator. Moreover, the waste heat is not reused as energy for power generation.
(発明が解決しようとする問題点)
上述した従来から知られている熱併給発電シス
テムは、電気と熱を同時に取り出すシステムであ
り、燃料等の一時エネルギ源の利用効率を高める
ものであるが、発電に限つてみればデイーゼルエ
ンジンの能力で発電がなされるために、発電効率
はデイーゼルエンジンの効率を超えることはでき
ず、排熱を利用することなく捨てていた従来の単
独の発電システムと変らない。(Problems to be Solved by the Invention) The conventionally known combined heat and power generation system described above is a system that extracts electricity and heat at the same time, and improves the efficiency of using temporary energy sources such as fuel. As far as power generation is concerned, power is generated using the diesel engine's capacity, so the power generation efficiency cannot exceed that of the diesel engine, which is different from conventional independent power generation systems that discard waste heat without utilizing it. do not have.
本発明は低温の熱エネルギ、デイーゼルエンジ
ンの回転駆動エネルギ、デイーゼルエンジンの発
生熱エネルギ、その他任意の熱源装置で得られる
熱エネルギを発電のエネルギとして利用し、高効
率の発電を行い得るようにし、しかも前記温度差
エンジンを特別に耐圧構造とする必要がなく、そ
の潤滑も効率より得、全体としてコンパクトに構
成し得る高効率の温度差駆動ジエネレータを提供
することを目的とする。 The present invention utilizes low-temperature thermal energy, rotational drive energy of a diesel engine, thermal energy generated by a diesel engine, and thermal energy obtained from any other heat source device as energy for power generation, and enables highly efficient power generation. Moreover, it is an object of the present invention to provide a highly efficient temperature difference drive generator that does not require the temperature difference engine to have a special pressure-resistant structure, provides lubrication through efficiency, and can be constructed compactly as a whole.
(問題点を解決するための手段)
本発明に係る温度差駆動ジエネレータは、放熱
器と蒸発器を結ぶ主熱媒体循環路に温度差エンジ
ンを設け、前記温度差エンジンの出力軸に発電機
を取り付け、前記温度差エンジン、前記発電機、
および該温度差エンジンの潤滑油ポンプを1つの
圧力容器内に収納し、前記温度差エンジの熱媒体
導入口を前記圧力容器内に開口せしめるとともに
その吐出口を前記熱媒体循環路に連結し、前記温
度差エンジンに導入される熱媒体を前記主熱媒体
循環路から前記圧力容器内に充満させ、内燃機関
の運転による生成熱およびその他の外部熱源装置
の集熱を副熱媒体循環路を介して前記蒸発器へ供
給し、前記発電機からの出力電流を前記圧力容器
に取り付けた電源プラグを介して取り出すように
したものである。(Means for Solving the Problems) A temperature difference drive generator according to the present invention includes a temperature difference engine provided in the main heat medium circulation path connecting the radiator and the evaporator, and a generator installed on the output shaft of the temperature difference engine. mounting, the temperature difference engine, the generator;
and a lubricating oil pump of the temperature difference engine is housed in one pressure vessel, a heat medium inlet of the temperature difference engine is opened in the pressure vessel, and a discharge port thereof is connected to the heat medium circulation path, The heat medium introduced into the temperature difference engine is filled from the main heat medium circulation path into the pressure vessel, and the heat generated by the operation of the internal combustion engine and the heat collected from other external heat source devices are collected through the auxiliary heat medium circulation path. The current is supplied to the evaporator, and the output current from the generator is taken out via a power plug attached to the pressure vessel.
(実施例)
次に、本発明を、図面を参照して実施例につき
説明する。(Example) Next, the present invention will be described with reference to the drawings.
第1図は本発明の実施例に係る温度差駆動ジエ
ネレータの概略図である。例えば屋外の冷気にさ
らされる放熱器11と、蓄熱槽8を介して例えば
太陽熱集熱装置9等の定温度熱源との間で熱交換
を行う蒸発器13と、温度差エンジン12を収容
した圧力容器30とが主熱媒体循環路14によつ
て閉回路状に結ばれ、この主熱媒体循環路14内
に、例えばフロン等の容易に気液変化する主熱媒
体が封入される。主熱媒体循環路14には必要に
応じてポンプ16が設けられる。前記温度差エン
ジン12はその熱媒体導入口が圧力容器30内に
開口しており、またその吐出口は主熱媒体循環路
14に連結されている。この温度差エンジギは、
タービン形式の回転動力機で構成され、その回転
出力軸15は同じ圧力容器30内に収納された発
電機4の駆動軸に連結される。この実施例では上
記発電機とは別の他の発電機あるいは他の熱交換
装置のヒートポンプ等を駆動するためのデイーゼ
ルエンジン9が設置されている。また圧力容器内
には後述する如く温度差エンジン12の潤滑油ポ
ンプが収納されている。10はデイーゼルエンジ
ン9に燃料を供給する燃料タンクである。なお、
主熱媒体循環路14を通る熱媒体は圧力容器30
の部分で該容器内に気体状態で充満される。 FIG. 1 is a schematic diagram of a temperature difference drive generator according to an embodiment of the present invention. For example, a radiator 11 exposed to outdoor cold air, an evaporator 13 that performs heat exchange between a constant temperature heat source such as a solar heat collector 9 via a heat storage tank 8, and a pressure difference engine 12 are accommodated. The container 30 is connected in a closed circuit by a main heat medium circulation path 14, and a main heat medium that easily changes into gas and liquid, such as fluorocarbon, is sealed in the main heat medium circulation path 14. A pump 16 is provided in the main heat medium circulation path 14 as necessary. The temperature difference engine 12 has a heat medium inlet opening into the pressure vessel 30 and a discharge port connected to the main heat medium circulation path 14 . This temperature difference engine is
It is composed of a turbine-type rotary power machine, and its rotary output shaft 15 is connected to the drive shaft of a generator 4 housed within the same pressure vessel 30. In this embodiment, a diesel engine 9 is installed to drive a generator other than the above generator or a heat pump or the like of another heat exchange device. Further, a lubricating oil pump for the temperature difference engine 12 is housed in the pressure vessel as will be described later. 10 is a fuel tank that supplies fuel to the diesel engine 9. In addition,
The heat medium passing through the main heat medium circulation path 14 is the pressure vessel 30
The container is filled with a gaseous state.
第2図は本発明の実施例に係る圧力容器30の
内部構造を示した図である。圧力容器30内に収
納された温度差エンジン12の熱媒体導入口12
aは該容器内に開口しており、またその熱媒体吐
出口12bは該容器の吐出口30bに吐出管38
を介して連結されている。前記主熱媒体循環路1
4はこの圧力容器30の熱媒体導入口30aに連
通され、これによつて該容器内に熱媒体(気体)
が充満され、温度差エンジンの導入口12aに導
入されて該温度差エンジン12を駆動し、エンジ
ン吐出口12b、吐出管38、容器吐出口30を
経て主熱媒体循環路14から放熱器11(第1
図)へ送られる。 FIG. 2 is a diagram showing the internal structure of the pressure vessel 30 according to the embodiment of the present invention. Heat medium inlet 12 of temperature difference engine 12 housed in pressure vessel 30
a is opened into the container, and the heat medium discharge port 12b is connected to the discharge pipe 38 to the discharge port 30b of the container.
are connected via. The main heat medium circulation path 1
4 is communicated with the heat medium inlet 30a of the pressure vessel 30, whereby a heat medium (gas) is introduced into the vessel.
is filled and introduced into the inlet 12a of the temperature difference engine to drive the temperature difference engine 12, and is passed from the main heat medium circulation path 14 to the radiator 11 ( 1st
(Figure).
圧力容器30に収容された発電機4からの出力
電力線32は、圧力容器30に気密にねじ込みで
固着されたプラグ33から容器外へ引き出され
る。圧力容器30内にはさらに、温度差エンジン
12およびその出力軸15(容器内で発電機に連
結)を潤滑するための潤滑油ポンプ34、潤滑油
配管35および油溜め36が設けられ、さらに必
要に応じて熱媒体(フロン)、潤滑油の回収口3
7が設けられる。温度差エンジン12に導入され
る熱媒体は高圧の気体となつているが、温度差エ
ンジン12は圧力容器(例えば20Kg/cm2)内に収
容される関係から特別に耐圧構造に構成する必要
はなく、例えば汎用のターボエンジン等を採用す
ることができる。温度差エンジン各部の潤滑も、
容器内の発電機4の電力で直接駆動される潤滑油
ポンプ34により該容器内で行われるので、効率
のよい良好な潤滑が可能となる。 An output power line 32 from the generator 4 housed in the pressure vessel 30 is drawn out of the pressure vessel 30 from a plug 33 that is screwed into the pressure vessel 30 in an airtight manner. The pressure vessel 30 is further provided with a lubricant pump 34, a lubricant pipe 35, and an oil reservoir 36 for lubricating the temperature difference engine 12 and its output shaft 15 (connected to the generator within the vessel). Recovery port 3 for heat medium (Freon) and lubricating oil depending on
7 is provided. The heat medium introduced into the temperature difference engine 12 is a high-pressure gas, but since the temperature difference engine 12 is housed in a pressure vessel (for example, 20 kg/cm 2 ), it is not necessary to have a special pressure-resistant structure. For example, a general-purpose turbo engine or the like can be used. Temperature difference also lubricates various parts of the engine.
Since the lubrication is carried out inside the container by the lubricating oil pump 34 that is directly driven by the electric power of the generator 4 inside the container, efficient and good lubrication is possible.
他の発電機あるいは他ヒートポンプを駆動する
のに使われるデイーゼルエンジン9の運転による
排ガスは、後述の排熱交換器19および消音器2
0を経て排出される。またデイーゼルエンジン9
の冷却水はエンジン稼働により加熱されるが、こ
の加熱冷却水も配管23により後述の水−水熱交
換器21を通つて循環する。蓄熱槽8には冷水が
供給されるが、この冷水はその一部が配管22に
よつて該蓄熱槽8と前記排熱交換器19との間を
循環し、また一部は前記水−水熱交換器21を通
つて循環する。さらに屋外設置の太陽熱集熱器1
8と蓄熱槽8との間も配管24,24′を介して
連結され、ポンプ25によりこの間を水が循環す
るように構成されている。これらの排熱交換器1
9、水−水熱交換器21および太陽熱集熱器18
により加熱された蓄熱槽8内の水は、一部は給油
ポンプ26によつて取り出され、給油として利用
されてもよいが、その大部分は副熱媒体循環路2
7およびポンプ29を介して前述の蒸発器13
を、前記主熱媒体循環路14とは別系統で循環す
るようになつている。 Exhaust gas from the operation of the diesel engine 9, which is used to drive other generators or other heat pumps, is transferred to an exhaust heat exchanger 19 and a silencer 2, which will be described later.
It is discharged after passing through 0. Also diesel engine 9
The cooling water is heated by the operation of the engine, and this heated cooling water is also circulated through a water-water heat exchanger 21, which will be described later, via piping 23. Cold water is supplied to the heat storage tank 8, and a part of this cold water circulates between the heat storage tank 8 and the waste heat exchanger 19 through the pipe 22, and a part of the cold water circulates between the water and the waste heat exchanger 19. It circulates through the heat exchanger 21. In addition, outdoor solar heat collector 1
8 and the heat storage tank 8 are also connected via piping 24, 24', and water is circulated between them by a pump 25. These waste heat exchangers 1
9. Water-water heat exchanger 21 and solar heat collector 18
A portion of the water heated in the heat storage tank 8 may be taken out by the oil supply pump 26 and used as oil supply, but most of it is taken out by the oil supply pump 26
7 and the aforementioned evaporator 13 via pump 29
is circulated in a separate system from the main heat medium circulation path 14.
このような構成で、主熱媒体循環系において、
放熱器11が対面している屋外の冷気と蒸発器1
3の熱源との間に或る温度差があると、前記熱源
により蒸発器13で気化した主熱媒体の気体は主
熱媒体循環路14から圧力容器30に導入され、
温度差エンジン12を駆動した後、放熱器11で
外冷気により液化し、再び蒸発器13で気化して
系内を循環する。温度差エンジン12の内部は、
放熱器11における主熱媒体の気体から液体への
相変化に伴なう体積の収縮による吸引によつて負
圧状態になつており、圧力容器30内に充満した
気体状の熱媒体によりタービンのロータを回転せ
しめ、出力軸15に回転動力を与える。屋外の冷
気が温度低下すればする程、放熱器11と蒸発器
13との間で温度が大きくなり、循環路14から
圧力容器30への気体噴出力は強く、大きな動力
が出力される。この温度差エンジン12の動力に
より発電機4が駆動され、電力が得られる。 With this configuration, in the main heat medium circulation system,
Outdoor cold air facing the radiator 11 and the evaporator 1
When there is a certain temperature difference between the heat source 3 and the heat source 3, the main heat medium gas vaporized in the evaporator 13 by the heat source is introduced from the main heat medium circulation path 14 into the pressure vessel 30,
After driving the temperature difference engine 12, it is liquefied in the radiator 11 by external cold air, vaporized again in the evaporator 13, and circulated within the system. Inside the temperature difference engine 12,
The radiator 11 is in a negative pressure state due to the suction caused by the volume contraction accompanying the phase change of the main heating medium from gas to liquid, and the gaseous heating medium filling the pressure vessel 30 causes the turbine to be heated. The rotor is rotated and rotational power is applied to the output shaft 15. As the temperature of the outdoor cold air decreases, the temperature between the radiator 11 and the evaporator 13 increases, and the gas jetting force from the circulation path 14 to the pressure vessel 30 is strong, and a large amount of power is output. The power of the temperature difference engine 12 drives the generator 4 to obtain electric power.
一方、デイーゼルエンジン9の運転による排熱
およびエンジン冷却水の熱は前述の如く熱交換器
19,21を介して蓄熱槽8内の副熱媒体に蓄え
られ、副熱媒体循環路27を介して蒸発器13の
熱源となる。デイーゼルエンジン9の回転数が上
る程、該エンジン9の排熱およびエンジン冷却水
の温度が上昇し、結局、放熱器11と蒸発器13
間の温度差が大きくなり、温度差エンジン12の
発電機駆動動力が増大する。 On the other hand, the exhaust heat from the operation of the diesel engine 9 and the heat of the engine cooling water are stored in the secondary heat medium in the heat storage tank 8 through the heat exchangers 19 and 21 as described above, and are transferred through the secondary heat medium circulation path 27. It becomes a heat source for the evaporator 13. As the rotation speed of the diesel engine 9 increases, the exhaust heat of the engine 9 and the temperature of the engine cooling water increase, and eventually the radiator 11 and the evaporator 13
The temperature difference between them increases, and the generator driving power of the temperature difference engine 12 increases.
上述の実施例で、建屋内と屋外との間に或る温
度差がある場合には屋外の冷気にさらされる放熱
器11と建屋内に設置される蒸発器13とによ
り、副熱媒体循環系がなくても、主熱媒体循環路
14内の熱媒体(フロン)は気液変化して循環
し、これによつて温度差エンジン12が作動し、
発電機4により発電がさなれる。発電機4による
発電能力が不足するときは、デイーゼルエンジン
駆動による他の発電機による電力を併せて用いる
ことができる。デイーゼルエンジンとしては発電
機内蔵形あるいはヒートポンプ内蔵形のものが有
効に使用される。 In the above embodiment, when there is a certain temperature difference between the inside of the building and the outside, the auxiliary heat medium circulation system is created by the radiator 11 exposed to the cold air outside and the evaporator 13 installed inside the building. Even if there is no heat transfer, the heat medium (fluorocarbon) in the main heat medium circulation path 14 changes into gas and liquid and circulates, thereby operating the temperature difference engine 12.
Power is generated by the generator 4. When the power generation capacity of the generator 4 is insufficient, electric power from another generator driven by a diesel engine can be used in conjunction. As diesel engines, those with a built-in generator or a built-in heat pump are effectively used.
(発明の効果)
以上説明したように本発明によれば、放熱器と
蒸発器の設置される場所の温度差を利用して発電
機を駆動するとともに、併用する他の発電機駆動
用あるいはヒートポンプ駆動用デイーゼルエンジ
ンの発生熱(排ガス、エンジン冷却水)を用いて
前記放熱器と蒸発器間の温度差を増大させるよう
にしたので、全体として高効率の、エネルギの無
駄のない発電を行うことができる。温度差エンジ
ンおよび発電機はともに圧力用器内に収納されて
いるので設置関係が簡潔となり、また温度差エン
ジンの全体を耐圧構造とする必要がなく、しかも
このエンジンの潤滑も圧力容器内部の潤滑油ポン
プで行うために外部から潤滑油を圧送する必要が
なく、効率のよい確実な潤滑をなし得る等の効果
がある。(Effects of the Invention) As explained above, according to the present invention, a generator is driven by utilizing the temperature difference between the radiator and the evaporator, and a heat pump or other generator for driving a generator or a heat pump is used. Since the temperature difference between the radiator and the evaporator is increased using the heat generated by the driving diesel engine (exhaust gas, engine cooling water), power generation is performed with high overall efficiency and no waste of energy. I can do it. Since both the temperature difference engine and the generator are housed within the pressure vessel, the installation relationship is simple, and there is no need for the entire temperature difference engine to have a pressure-resistant structure.Moreover, the engine is lubricated by the lubrication inside the pressure vessel. Since this is done using an oil pump, there is no need to pump lubricating oil from the outside, and there are advantages such as efficient and reliable lubrication.
第1図は本発明の実施例に係る温度差駆動ジエ
ネレータの概略図、第2図は本発明における圧力
容器の内部を示す断面図である。
4……発電機、8……蓄熱槽、9……デイーゼ
ルエンジン、11……放熱器、12……温度差エ
ンジン、13……蒸発器、14……主熱媒体循環
路、12……熱媒体導入口、12b……吐出口、
15……出力軸、18……太陽熱集熱器、19…
…排熱交換器、21……水−水熱交換器、27…
…副熱媒体循環路、30……圧力容器、30a…
…熱媒体導入口、30b……吐出口、32……出
力電力線、33……プラグ、34……潤滑油ポン
プ、36……油溜め。
FIG. 1 is a schematic diagram of a temperature difference driven generator according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the inside of a pressure vessel in the present invention. 4... Generator, 8... Heat storage tank, 9... Diesel engine, 11... Heat radiator, 12... Temperature difference engine, 13... Evaporator, 14... Main heat medium circulation path, 12... Heat Medium inlet port, 12b...discharge port,
15...Output shaft, 18...Solar heat collector, 19...
...Exhaust heat exchanger, 21...Water-water heat exchanger, 27...
...Sub-heat medium circulation path, 30...Pressure vessel, 30a...
...Heating medium inlet, 30b...Discharge port, 32...Output power line, 33...Plug, 34...Lubricating oil pump, 36...Oil reservoir.
Claims (1)
度差エンジンを設け、前記温度差エンジンの出力
軸に発電機を取り付け、前記温度差エンジン、前
記発電機、および該温度差エンジンの潤滑油ポン
プを1つの圧力容器内に収納し、前記温度差エン
ジンの熱媒体導入口を前記圧力容器内に開口せし
めるとともにその吐出口を前記熱媒体循環路に連
結し、前記温度差エンジンに導入される熱媒体を
前記主熱媒体循環路から前記圧力容器内に充満さ
せ、内燃機関の運転による生成熱およびその他の
外部熱源装置の集熱を副熱媒体循環路を介して前
記蒸発器へ供給し、前記発電機からの出力電流を
前記圧力容器に取り付けた電源プラグを介して取
り出すようにしたことを特徴とする圧力容器収納
型温度差駆動ジエネレータ。1. A temperature difference engine is provided in the main heat medium circulation path connecting the radiator and the evaporator, a generator is attached to the output shaft of the temperature difference engine, and the temperature difference engine, the generator, and the temperature difference engine are lubricated. An oil pump is housed in one pressure vessel, a heat medium inlet of the temperature difference engine is opened in the pressure vessel, and a discharge port thereof is connected to the heat medium circulation path, so that the heat medium is introduced into the temperature difference engine. The pressure vessel is filled with a heat medium from the main heat medium circulation path, and the heat generated by the operation of the internal combustion engine and the heat collected from other external heat source devices is supplied to the evaporator via the auxiliary heat medium circulation path. . A temperature difference driven generator housed in a pressure vessel, characterized in that the output current from the generator is taken out via a power plug attached to the pressure vessel.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3724787A JPS63205407A (en) | 1987-02-20 | 1987-02-20 | Pressure container storing type temperature difference driving generator |
PCT/JP1987/000316 WO1987007360A1 (en) | 1986-05-19 | 1987-05-19 | Heat exchanging system |
AU73962/87A AU7396287A (en) | 1986-05-19 | 1987-05-19 | Heat exchanging system |
US07/144,922 US4876856A (en) | 1986-05-19 | 1987-05-19 | Heat exchanging system |
EP19870903411 EP0272327A4 (en) | 1986-05-19 | 1987-05-19 | Heat exchanging system |
US07/260,471 US4920750A (en) | 1986-05-19 | 1988-10-13 | Heat exchanging system for power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3724787A JPS63205407A (en) | 1987-02-20 | 1987-02-20 | Pressure container storing type temperature difference driving generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63205407A JPS63205407A (en) | 1988-08-24 |
JPH05525B2 true JPH05525B2 (en) | 1993-01-06 |
Family
ID=12492299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3724787A Granted JPS63205407A (en) | 1986-05-19 | 1987-02-20 | Pressure container storing type temperature difference driving generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63205407A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113236439B (en) * | 2021-06-18 | 2022-11-08 | 安庆中船柴油机有限公司 | Marine diesel engine waste heat power generation system |
-
1987
- 1987-02-20 JP JP3724787A patent/JPS63205407A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63205407A (en) | 1988-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4876856A (en) | Heat exchanging system | |
US20090228150A1 (en) | HVAC system | |
US4079263A (en) | Power producing system | |
Prigmore et al. | Cooling with the sun's heat Design considerations and test data for a Rankine Cycle prototype | |
US4380909A (en) | Method and apparatus for co-generation of electrical power and absorption-type heat pump air conditioning | |
EP1016775A2 (en) | Waste heat recovery in an organic energy converter using an intermediate liquid cycle | |
US7637108B1 (en) | Power compounder | |
WO1987003933A1 (en) | Co-generation plant module systems | |
US20100156111A1 (en) | Thermo-Electric Engine | |
JP3679020B2 (en) | Windmill-driven heat pump and windmill-driven refrigeration system | |
US4910414A (en) | Bottoming cycle | |
GB1593100A (en) | Thermodynamic installation | |
CN106703994B (en) | A kind of gas turbine integrates the power assembly system of rankine cycle | |
US20120227425A1 (en) | Solar turbo pump - hybrid heating-air conditioning and method of operation | |
EP0775250A1 (en) | Low-temperature heat engine | |
JPH05525B2 (en) | ||
KR102170132B1 (en) | Power generation system using heat source in vehicles | |
FR2810076A1 (en) | Modular device for generating energy, e.g. for heating and air-conditioning of automotive vehicles | |
JPH0238765B2 (en) | ||
JPH0295757A (en) | Energy supply system | |
KR100658321B1 (en) | Power generation system of heat-absorption type | |
JPH1037845A (en) | Thermal differential generating set utilized with solar heat or the like | |
JP4265714B2 (en) | Waste heat absorption refrigerator | |
RU2091612C1 (en) | Heat engine | |
JPH02301651A (en) | Co-generation system |